Nucleotides

Part LIX ${ }^{1}$)

Synthesis, Characterization, and Biological Activities of New Potential Antiviral Agents: $\left(\mathbf{2}^{\prime}-5^{\prime}\right)$ Adenylate Trimer Analogs Containing 3'-Deoxy-3'(hexadecanoylamino) adenosine at the $\mathbf{2}^{\prime}$-Terminus
by Helga Schirmeister-Tichy ${ }^{\text {a }}$), Kathryn T. Iacono ${ }^{\text {c }}$), Nicholas F. Muto ${ }^{\text {c }}$), Joseph W. Homan ${ }^{\text {b }}$), Robert J. Suhadolnik ${ }^{\text {b }}$), and Wolfgang Pfleiderer*ab
${ }^{\text {a }}$) Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz
${ }^{\text {b }}$) Department of Biochemistry, Temple University, School of Medicine, Philadelphia, PA 19140, USA
${ }^{c}$) Fels Institute for Cancer Research and Molecular Biology, Temple University, School of Medicine, Philadelphia, PA 19140, USA

Abstract

Based upon 3^{\prime}-amino- 3^{\prime}-deoxyadenosine (15), its protected 3^{\prime}-hexadecanoylamino derivative $\mathbf{2 2}$ was chosen as starting material for the synthesis of a series of new modified $2^{\prime}-5^{\prime}$-adenylate trimers $\mathbf{3 3 - 3 6}$ as potential antiviral agents. All $\left(2^{\prime}-5^{\prime}\right)$ A trimer analogs $33-36$ inhibit HIV-1 replication as measured by the inhibition of syncytia formation and inhibition of HIV-1 reverse transcriptase activity. Compound $\mathbf{3 4}$ inhibits HIV-1 reverse transcription by 100% and subsequently inhibits expression of HIV-1 p24. However, compound 35 acts differently, since it does not inhibit HIV-1 reverse transcription, HIV-1 integrase, or HIV-1 p24 expression. Therefore, $\mathbf{3 5}$ appears to exert its inhibitory effect at a later stage of HIV-1 replication, i.e., the budding process.

1. Introduction. - The discovery of the natural $\left(2^{\prime}-5^{\prime}\right)$-oligoA system [3] initiated broad studies of the biochemical mechanism of interferon [4] and much activities to synthesize new types of potentially antivirally active compounds by chemical modification of $\left(2^{\prime}-5^{\prime}\right)$-linked oligoadenylates and oligonucleotides. Numerous derivatives of $\left(2^{\prime}-5^{\prime}\right)$-oligonucleotides [5-14] were modified at the sugar moiety, at the heterobase and at the internucleotide linkages, respectively, by chemical means to improve, e.g., the permeability of oligoadenylates through the eucaryotic cell membranes as well as to prevent the high sensitivity of the oligonucleotides to nucleases. Thus, in comparison to the native $\mathrm{pppA}^{\prime} \mathrm{p}^{\prime} \mathrm{A} 2^{\prime} \mathrm{p}^{\prime} \mathrm{A}$, new adenylate trimers carrying an amino group [12] [13] at the ribose moiety instead of the $3^{\prime}-\mathrm{OH}$ or $5^{\prime}-\mathrm{OH}$ function improved the enzymatic stability and revealed promising biological effects. Our recent efforts have been focussed in the same direction by synthesizing modified $\left(2^{\prime}-5^{\prime}\right)$ adenylate trimers carrying a 3^{\prime}-deoxy- 3^{\prime}-palmitoylamino group at the 2^{\prime}-terminal unit.
2. Syntheses. - The successful synthesis of the four new trimers $\mathbf{3 3 - 3 6}$ was based on the availability of 3^{\prime}-amino-3'-deoxyadenosine (15) for which several synthetic approaches have been described in literature. Till 1989 when Samano and Robins [2]

[^0]reported an efficient nine-step synthesis of $\mathbf{1 5}$ in a 66% overall yield, this biologically active compound was isolated either from microbiological cultures or was prepared in very low yields ($<2-20 \%$) by chemical means, as, e.g. by transformation [15] [16] of adenosine into 3^{\prime}-azido- 3^{\prime}-deoxyadenosine (12 steps, overall yields $<5 \%$) and further reduction to the 3^{\prime}-amino component [17], or by coupling reactions of suitable protected purine bases with glucose or xylose derivatives [18] [19] (overall yield $<$ 20\%). More efforts by Robins et al. [20] led in 1992 to another seven-step synthesis of 15 starting from adenosine via a stereoselective inversion (oxidation/reduction) at $\mathrm{C}\left(3^{\prime}\right)$, triflation, azide displacement, and reduction to amine resulting, however, in a much lower overall yield.

We chose the first route [2] starting from adenosine (1), but realized that the described synthetic approach has to be discussed in more detail, since, in our hands, most steps have to be modified to achieve good yields of $\mathbf{1 5}$ (Scheme 1). It is recommended to treat dry 1 first with freshly prepared α-acetoxyisobutyryl bromide (2) [21] [22] in 'moist' MeCN [2] [23] [24] leading to a mixture of 9-(2-O-acetyl-3-bromo-3-deoxy- β-D-xylofuranosyl)- and 9-(3-O-acetyl-2-bromo-2-deoxy- β-D-arabinofuranosyl) adenines $\mathbf{3 a}-\mathbf{d}$ in which the $5^{\prime}-\mathrm{OH}$ group is present either in the orthoester function derived from 2,5,5-trimethyl-1,3-dioxol-4(5H)-one (3a, 3c) or in unprotected form (3b, 3d) [15] [16]. The dioxolone and acetyl protecting groups can either be sequentially removed by mild acidic treatment to give from 3a the hydrolysed compound $\mathbf{3 b}$ and finally $\mathbf{4}$ [15] [16] [25], or the mixture of the trans- $3^{\prime}\left(2^{\prime}\right)$-bromo-$2^{\prime}\left(3^{\prime}\right)$-acetoxy derivatives $\mathbf{3 a}-\mathbf{d}$ was directly treated without further separation with Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$resin in MeOH to give $2^{\prime}, 3^{\prime}$-anhydroadenosine (4) in high yield [23-26]. In larger scale experiments, we obtained compound 4 with small contaminations of 9 -(β-D-xylofuranosyl)adenine [27] which could be removed by recrystallization which is actually not necessary since the next step yielding $2^{\prime}, 3^{\prime}$-anhydro- $5^{\prime}-O$ -[(tert-butyl)diphenylsilyl]anhydroadenosine (5) by silylation with (tert-butyl)chlorodiphenylsilane (tbdps-Cl) in pyridine required purification by silica-gel chromatography to give 5 in 87% and the corresponding xylofuranosyl derivative $\mathbf{6}$ in 6% yield. The anhydroadenosine 5 was then submitted to a regiocontrolled epoxide-ring-opening reaction with bromodimethylborane ($7 ; \mathrm{Me}_{2} \mathrm{BBr}$) at -78° to give $\mathbf{8}$ in 90% yield (TLC monitoring). The reagent 7, useful for cleavage of various cyclic ethers, was prepared from BBr_{3} and $\mathrm{Me}_{4} \mathrm{Sn}$ at -55° under inert-gas atmosphere and final distillation by known procedures [28-31]. During the epoxide-cleavage reaction, the bulky (tertbutyl)diphenylsilyl group of 5 was not attacked by $\mathrm{Me}_{2} \mathrm{BBr}$, in contrast to some (tertbutyl)dimethylsilyl (tbdms) ethers which readily reacted with $\mathrm{Me}_{2} \mathrm{BBr}$ at room temperature [28]. Furthermore, $\mathbf{8}$ was obtained by treatment of 9-(3-bromo-3-deoxy-β-D-xylofuranosyl)adenine (9) [11] [22] with tbdps-Cl in pyridine within 19 h in 89% isolated yield. In subsequent reactions, the $2^{\prime}-\mathrm{OH}$ group of $\mathbf{8}$ was selectively protected by treatment with benzyl isocyanate under $\mathrm{Et}_{3} \mathrm{~N}$ activation for 3 days at room temperature [2] [32] to give compound $\mathbf{1 0}$ in 93% yield after flash chromatography (silica gel). The reaction time could be shortened to a few hours if $\mathbf{8}$ was first suspended in THF/MeCN and then reacted with benzyl isocyanate and $\mathrm{Et}_{3} \mathrm{~N}$ at 80° to give, within 15 min , a clear solution; further stirring for 75 min and usual workup gave $\mathbf{1 0}$ (78% yield) and some unreacted starting material $\mathbf{8}$ (14\%). The reaction was accompanied by formation of little N^{6}, N^{6} doubly protected adenosine derivative $\mathbf{1 1}(4 \%)$ due to the

Scheme 1

3a $\mathrm{R}=$
3b $\quad R=H$
3c
3d

Scheme 2

22

$23 R=H$
$24 R=O t b d m s$

1H-tetrazole

	R^{1}	R^{2}
29	H	H
30	Otbdms	H
31	H	Otbdms
32	Otbdms	Otbdms

	R^{1}	R^{2}	
33	H	H	$A_{d 3^{\prime}}\left(2^{\prime}-5^{\prime}\right) A_{d 3^{\prime}}\left(2^{\prime}-5^{\prime}\right) A_{d 3^{\prime}}(\text { NHpalm })^{3 \prime}$
34	OH	H	$A\left(2^{\prime}-5^{\prime}\right) A_{d 3^{\prime}}\left(2^{\prime}-5^{\prime}\right) A_{d 3^{\prime}}\left(\right.$ (NHpalm) ${ }^{3 \prime}$
35	H	OH	$\mathrm{A}_{\mathrm{d} 3^{\prime}}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{\mathrm{c3}}(\mathrm{NHpalm})^{3^{\prime}}$
36	OH	OH	$A\left(2^{\prime}-5^{\prime}\right) A\left(2^{\prime}-5^{\prime}\right) A_{\text {d3 }}(\text { (NHpalm) })^{3^{\prime}}$

more severe reaction conditions. In the next step, the intramolecular nucleophilic ring closure of the N-benzylcarbamate derivative $\mathbf{1 0}$ was achieved by treatment with 80% NaH in DMF for 1 h at -5° and 30 min at room temperature to give three derivatives: the anticipated oxazolidinone $\mathbf{1 2}$ in only 13%, the corresponding $5^{\prime}-O$-desilylated
compound $\mathbf{1 3}$ in 56% yield, and 10% of $3^{\prime}-N$-(benzylamino)- 3^{\prime}-deoxyadenosine 14 . Further studies on the interconversion of $\mathbf{1 0}$ to $\mathbf{1 3}$ by variation of the reaction conditions to 4 h at -5° and 1 h at room temperature proceeded with ring closure and complete cleavage of the $5^{\prime}-O$-tbdps group to yield crystalline $\mathbf{1 3}$ in 87%. On the other hand, removal of the silyl group of pure $\mathbf{1 2}$ could also be performed with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in THF leading in 88% to 13. Hydrolysis of the oxazolidinone ring of $\mathbf{1 3}$ and subsequent decarboxylation was performed with aq. 1 N NaOH at room temperature to give the desired $3^{\prime}-N$-(benzylamino)- 3^{\prime}-deoxyadenosine (14). To shorten the timeconsuming synthesis from 10 to $\mathbf{1 4}$, a two-step reaction was developed, treating 10 first with $80 \% \mathrm{NaH}$ in the described manner followed by $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to cleave the $5^{\prime}-O-$ tbdps group completely. The mixture was then purified by flash chromatography, and the resulting mixture of $\mathbf{1 3}$ and $\mathbf{1 4}$ was then treated with aq. 1 N NaOH and THF for 5 days; neutralization with Amberlite $\left(\mathrm{H}^{+}\right)$resin and isolation of $\mathbf{1 4}$ by Dowex 1×2 $\left(\mathrm{OH}^{-}\right)$column chromatography $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ gave 14 in 56% yield from 10. The benzyl group of $\mathbf{1 4}$ was finally removed by hydrogenolysis in presence of $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst under vigorous stirring for 4 days leading to 3^{\prime}-amino- 3^{\prime}-deoxyadenosine (15) in 69% isolated yield as colourless crystals. In our preparative-scale synthesis of $\mathbf{1 5}$ starting from adenosine (1), we were able to reach an overall yield of 53% over 8 steps $(\mathbf{1} \rightarrow \mathbf{1 4})$. Including the last debenzylation step $(\mathbf{1 4} \rightarrow \mathbf{1 5} ; 69 \%)$, we can claim only 37% $(\mathbf{1} \rightarrow \mathbf{1 5})$ instead of 66% obtained by Samano and Robins [2].

The introduction of the hexadecanoyl (palmitoyl) residue into the 3^{\prime}-amino position of $\mathbf{1 5}$ was performed almost quantitatively with the acylating agent $\mathbf{1 6}$, which was prepared from hexadecanoyl chloride and 1-methyl- $1 H$-imidazole in dry DMF in 90% yield as a colorless powder. The subsequent protection of the $6-\mathrm{NH}_{2}$ function of $\mathbf{1 7}$ by the npeoc group required a transient protection of the sugar OH groups by silylation with 1-(trimethylsilyl)- 1 H -imidazole in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then treatment with 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazol-3-ium chloride [33], and finally cleavage of the silyl groups in pyridine $/ \mathrm{H}_{2} \mathrm{O}$ to give crystalline 3^{\prime}-deoxy- 3^{\prime}-(hexadecanoylami-no)- $N^{6}-2-[(4-n i t r o p h e n y l) e t h o x y c a r b o n y l]$ adenosine (18) in 87% yield. Desilylation by the common $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}$ treatment was less successful and proceeded with partial transesterification of the N^{6}-npeoc into the N^{6}-(methoxycarbonyl) group [34] forming 19 as a by-product. Finally, the required building block 22 resulted from subsequent reactions involving selective monomethoxytritylation of the $5^{\prime}-\mathrm{OH}$ group of $\mathbf{1 8}(\rightarrow \mathbf{2 0}$; 88%), then introduction of the (tert-butyl)dimethylsilyl (tbdms) group at the $2^{\prime}-\mathrm{OH}$ position ($\rightarrow \mathbf{2 1}$; 95\%) , followed by treatment with $2 \% \mathrm{TsOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$ to cleave off the MeOTr group ($\rightarrow \mathbf{2 2} ; 89 \%$).

The other two building blocks for the oligonucleotide syntheses were derived from 3^{\prime}-deoxy-5'- O-(monomethoxytrityl)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine [35] and $3^{\prime}-O-[(t e r t-b u t y l) d i m e t h y l s i l y l]-5 '-O-(m o n o m e t h o x y t r i t y l)-N^{6}-[2-(4-n i t r o p h e n y l)-$ ethoxycarbonyl]adenosine [6] by phosphitylation with 2-(4-nitrophenyl)ethyl tetraisopropylphosphonodiamidite [6] [36] to give the corresponding 2'-phosphoramidites $\mathbf{2 3}$ and 24 in high yields, respectively.

The first condensation reactions between the starting $5^{\prime}-\mathrm{OH}$ component 22 and $\mathbf{2 3}$ or 24, respectively, in a mixture of abs. MeCN and abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of $1 H$-tetrazole and subsequent oxidation by I_{2} in pyridine $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the corresponding fully protected dimers $\mathrm{A}_{\mathrm{d}^{3}} \varphi \mathrm{~A}_{\mathrm{d}^{3}}$ (NHpalm$)^{3^{\prime}}$ (25) and $\mathrm{A} \varphi \mathrm{A}_{\mathrm{d}^{3}}$ (NHpalm) $)^{3^{\prime}}$
($\left.\varphi=\mathrm{PO}_{3}(\text { Onpe })^{2-}\right)(\mathbf{2 6})$, respectively, in excellent quantitative yields. Detritylation of these intermediates with $2 \% \mathrm{TsOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$ afforded in yields of $\mathrm{ca} .90 \%$ the $5^{\prime}-\mathrm{OH}$ components $\mathbf{2 7}$ and $\mathbf{2 8}$, respectively, which were then separately condensed again with the phosphoramidites $\mathbf{2 3}$ and 24, respectively in an analogous manner. The four fully protected (2'-5')adenylate trimers $\mathrm{A}_{d^{3}} \varphi \mathrm{~A}_{\mathrm{d}^{3}} \varphi \mathrm{~A}_{\mathrm{d}^{3}}$ (NHpalm$)^{3^{3}} \mathbf{2 9}$ (96\%), $\mathrm{A} \varphi \mathrm{A}_{\mathrm{d}^{3}} \varphi \mathrm{~A}_{\mathrm{d}^{3}}$ (NHpalm$)^{3^{3}} \mathbf{3 0}$ (91\%), $\mathrm{A}_{\mathrm{d}^{3}} \varphi \mathrm{~A}^{2} \varphi \mathrm{~A}_{\mathrm{d}^{3}}$ (NHpalm$)^{3^{3}} \mathbf{3 1}$ (97\%), and finally $\mathrm{A} \varphi \mathrm{A} \varphi \mathrm{A}_{\mathrm{d}^{3}}(\mathrm{NHpalm})^{3} \mathbf{3 2}$ (94\%) were obtained, after purification by FC (silica gel), as colorless foams.

The final removal of the various protecting groups from the four trimers $\mathbf{2 9}-\mathbf{3 2}$ was achieved by subsequent treatment first with 0.5 m DBU ($=1.8$-diaza-bicyclo[5.4.0]un-dec-7-ene) in abs. MeCN to eliminate the 2-(4-nitrophenyl)ethyl (npe) and 2-(4nitrophenyl)ethoxycarbonyl groups, then with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF to remove the (tertbutyl)dimethylsilyl groups, and finally with AcOH to cleave the monomethoxytrityl residue at the 5^{\prime}-end of the trimers. The purity of the newly synthesized $\left(2^{\prime}-5^{\prime}\right)$ adenylate trimers $\mathbf{3 3}-\mathbf{3 6}$ carrying 3^{\prime}-deoxy- 3^{\prime}-(hexadecanoylamino) adenosine at the 2^{\prime} terminus was checked by TLC and HPLC (Fig. 1), and the composition was proven by FAB-MS (Fig. 2).

Fig. 1. HPLC Analysis of $A_{d^{3}}\left(2^{\prime}-5^{\prime}\right) A_{d^{3}}\left(2^{\prime}-5^{\prime}\right) A_{d^{3}}(\text { NHpalm })^{3^{\prime}}(\mathbf{3 3})$ and $A\left(2^{\prime}-5^{\prime}\right) A\left(2^{\prime}-5^{\prime}\right) A_{d^{3}}$ (NHpalm $)^{3^{\prime}}(\mathbf{3 6})$. Conditions: RP 18 column; for elution gradient, see Exper. Part.

Fig. 2. FAB-MS of $A\left(2^{\prime}-5^{\prime}\right) A_{d^{3}}\left(2^{\prime}-5^{\prime}\right) A_{d^{3}}(\text { NHpalm })^{3^{\prime}}$ (34) and $A_{d^{3}}\left(2^{\prime}-5^{\prime}\right) A\left(2^{\prime}-5^{\prime}\right) A_{d^{3}}(\text { NHpalm })^{3^{\prime}}$ (35). $[M+\mathrm{H}]^{+} 1147,[M+\mathrm{Na}]^{+} 1169$ (matrix DMSO/3-nitrobenzyl alcohol).
3. Biological Applications. - In a previous publication [1], we described the inhibition of HIV-1 replication in SupT1 cells treated with 5'-terminally (hexadeca-noylamino)-substituted ($2^{\prime}-5^{\prime}$)adenylyl- 3^{\prime}-deoxyadenylyl trimer core derivatives. In this study, we report the inhibition of HIV-1 replication by 2^{\prime}-terminal (hexadecanoyl-amino)-substituted ($2^{\prime}-5^{\prime}$)adenylyl-3'-deoxyadenylyl trimer cores. Replacement of the $3^{\prime}-\mathrm{OH}$ with the 3^{\prime}-(hexadecanoylamino) group produced trimer derivatives that inhibited HIV-1 replication as determined by the inhibition of HIV-induced syncytia formation and HIV-1 reverse transcriptase (RT) activity (Table 1). The inhibition of syncytia formation for compounds $\mathbf{3 3 - 3 6}$ was $91,99,91$, and 21%, respectively. In this study, the substitution of the (hexadecanoylamino) group at the 3^{\prime}-hydroxy terminus of 33,34 and 35 resulted in derivatives that were markedly more potent than compound 36.

Table 1. Inhibition of HIV-1 Replication and Biological Activities of ($\left.2^{\prime}-5^{\prime}\right)$ Adenylyl/3'-Deoxyadenylyl Trimer Derivatives ${ }^{\text {a }}$) 33-36

	R^{1}	R^{2}	Inhibition of HIV-1 replication [\%]	
			Syncytia $^{\mathrm{b}}$)	54
$\mathbf{3 3}$	H	H	91	50
$\mathbf{3 4}$	OH	H	99	78
$\mathbf{3 5}$	H	OH	91	0
$\mathbf{3 6}$	OH	OH	21	

${ }^{\text {a }}$) Compounds $\mathbf{3 3 - 3 6}$ were tested at $100 \mu \mathrm{M}$. ${ }^{\text {b }}$) Inhibition of HIV-1 replication as determined by HIV-1induced syncytia formation (\%) for each compound. The number of syncytia/104 cells was 324 ± 3 for the control SupT1 cells. The mean of duplicate determinations is shown; variance did not exceed $5-10 \%$. ${ }^{c}$) Inhibition of reverse transcriptase (HIV-1 RT) activity. Control values for HIV-1 RT activity averaged 4325 dpm . The mean of duplicate determinations is shown; variance did not exceed $5-10 \%$.

We have also studied the effects of compounds 34 and 35 on HIV-1 reverse transcription by PCR amplification, inhibition of HIV-1 integrase, and the inhibition of HIV-1 p24 antigen expression. Compound 34, but not compound 35, completely inhibited PCR amplification of HIV-1 partial reverse transcripts (Table 2). Again, these data demonstrate the significance of the position of the adenylyl and 3'deoxyadenylyl groups in these trimer core derivatives as related to the inhibition of

Table 2. Effect of $\left(2^{\prime}-5^{\prime}\right)$ A Derivatives on Critical Stages of the HIV-1 Replicative Cycle

	R^{1}	R^{2}	Inhibition [\%] of		
			${\text { HIV-1 } \text { PCR }^{\mathrm{a}} \text {) }}^{\text {Integrase }{ }^{\mathrm{b}} \text {) }}$	Expression of $\mathrm{p} 24^{\mathrm{c}}$)	
$\mathbf{3 4}$	OH	H	100	0	100
$\mathbf{3 5}$	H	OH	0	0	0

[^1]HIV-1 RT. Because compound 34 inhibited HIV-1 reverse transcription as determined by PCR, the expression of p24 antigen was also inhibited (Table 2). However, compound $\mathbf{3 4}$ did not inhibit HIV-1 integrase. Although compound $\mathbf{3 5}$ inhibited HIV-1 replication as determined by inhibition of HIV-1-induced syncytia formation and HIV1 RT assays, this inhibition of HIV-1 replication exhibited by compound $\mathbf{3 5}$ can not be attributed to the inhibition of HIV-1 reverse transcription, HIV-1 integrase, or p24 antigen expression (Table 2). Therefore, compound $\mathbf{3 5}$ may affect the budding process required for HIV-1 replication.

We thank the Bundesministerium für Forschung und Technologie (grant No. II-054-88), the Fonds der Chemischen Industrie and the National Institutes of Health for financial support.

Experimental Part

General. TLC: Precoated silica gel thin-layer sheets $60 F_{254}$ from Merck; precoated cellulose thin-layer sheets $F 1440 / L S 254$ from Schleicher \& Schüll. Flash chromatography (FC): silica gel for FC, J. T. Baker (\varnothing $40 \mu \mathrm{~m})$. HPLC: Merck-Hitachi, L-6200-Intelligent pump, D-2000 chromatointegrator, detection at 260 nm (Uvikon 730SLC, Fa. Kontron); column RP18 (LiChrospher $125 \times 4 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Merck 50943); flow rate $1 \mathrm{ml} /$ \min; mobile phase: $\mathrm{A}=0.1 \mathrm{~m}\left(\mathrm{Et}_{3} \mathrm{NH}\right)$ OAc buffer $(\mathrm{pH} 6.9) / \mathrm{MeCN} 1: 1, \mathrm{~B}=0.1 \mathrm{~m}\left(\mathrm{Et}_{3} \mathrm{NH}\right)$ OAc buffer $(\mathrm{pH} 6.9)$, gradient for $33-\mathbf{3 6}: 0 \mathrm{~min}, 50 \% \mathrm{~A} / 50 \% \mathrm{~B} ; 5 \mathrm{~min}, 50 \% \mathrm{~A} / 50 \% \mathrm{~B} ; 35 \mathrm{~min}, 100 \% \mathrm{~A} ; 40 \mathrm{~min}, 100 \%$ A. M.p.: Gallenkamp or Büchi (model Dr. Tottoli) melting-point apparatus; no corrections. UV/VIS: Perkin-Elmer Lambda 5; $\lambda_{\text {max }}$ in $\mathrm{nm}(\log \varepsilon) .{ }^{1} \mathrm{H}$-NMR: Bruker WM 250, AC 250; δ in ppm rel. to CDCl_{3} or $\left(\mathrm{D}_{6}\right)$ DMSO as internal standard. ${ }^{31}$ P-NMR: Jeol JM $G X-400$; δ in ppm rel. to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ soln. Fast-atom-bombardment (FAB) MS: Finnigan MAT 312/AMD-5000, matrix DMSO/3-nitrobenzyl alcohol.

Bioassay. Assays measuring HIV-1-induced syncytia formation, HIV-1 reverse transcriptase activity, HIV-1 RT PCR amplification, HIV-1 integrase, and expression of p24 antigen were accomplished as previously described [1].

1. 2-Acetoxy-2-methylpropanoyl Bromide (2). 1.1. 2-Acetoxy-2-methylpropanoyl Chloride [21] [22]. Acetyl chloride ($240 \mathrm{~g}, 3.06 \mathrm{~mol}$) was added within 40 min under stirring and ice-cooling to 2-hydroxy-2-methylpropanoic acid ($120 \mathrm{~g}, 1.15 \mathrm{~mol}$). Then, the mixture was stirred for further 10 min at 0° and 20 min at r.t. until the gas evolution had ceased. The mixture was heated under reflux for 2 h , excess acetyl chloride was then removed by destillation (at $10-12$ Torr). The yellowish residue ($=2$-acetoxy-2-methylpropanoic acid) was cooled to r.t., then thionyl chloride ($117 \mathrm{~g}, 0.987 \mathrm{~mol}$) was added dropwise within 15 min , and the mixture was heated once more under reflux for 2 h . The resulting 2-acetoxy-2-methylpropanoyl chloride was then isolated by destillation at $67-69^{\circ} / 8-10$ Torr ([21]; $55-56^{\circ} / 6$ Torr): $175 \mathrm{~g}(93 \%) . n_{\mathrm{D}}^{25} 1.4272$ ([21]: $n_{\mathrm{D}}^{25} 1.4278$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 2.10 (s, MeCOO); $1.60\left(s, \mathrm{Me}_{2} \mathrm{C}\right)$.
1.2. 2-Acetoxy-2-methylpropanoyl Bromide (2) [21] [22]. To dried (8 h at $150^{\circ} /$ high vacuum) LiBr (108 g , $1.25 \mathrm{~mol})$, anh. $\operatorname{AcOEt}(375 \mathrm{ml})$ was added, and the mixture was stirred at r.t. until LiBr was dissolved. Then, 2 -acetoxy-2-methylpropanoyl chloride ($164 \mathrm{~g}, 1 \mathrm{~mol}$) was added in one portion, and the suspension was stirred at 80° for 2 h . After cooling to r.t., the colourless precipitate (LiCl) was removed by filtration, and the soln. was concentrated to $1 / 3$ of the volume. The residue was distilled at $74-83^{\circ} / 10-12$ Torr: $\mathbf{2}(109 \mathrm{~g}, 52 \%$) ([22]: 63%; b.p. $75-77^{\circ} / 12$ Torr]. Colorless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.11(s, \mathrm{MeCOO}) ; 1.57\left(s, \mathrm{Me}_{2} \mathrm{C}\right)$.
2. 9-(2,3-Anhydro- β-d-ribofuranosyl)adenine (=Adenosine Epoxide; 4). Dry adenosine (13.36 g , $50 \mathrm{mmol})$ was suspended in abs. $\mathrm{MeCN}(200 \mathrm{ml})$ and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 99: 1(20 \mathrm{ml}), 2(24 \mathrm{ml}, 60 \mathrm{mmol})$ was added, and the mixture was stirred at r.t. A homogeneous soln. was obtained after 45 min , and after $1 \mathrm{~h}, \mathrm{AcOEt}$ $(160 \mathrm{ml})$ was added and the mixture washed twice with NaHCO_{3} soln. $(120 \mathrm{ml})$. The aq. phase was reextracted with $\operatorname{AcOEt}(5 \times 60 \mathrm{ml})$ and the combined org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give an amorphous solid of four intermediates, namely 9-(2-O-acetyl-3-bromo-3-deoxy-5-O-(2,4,4-trimethyl-5-oxo-1,3-dioxolan-2-yl)- β-D-xylofuranosyl) adenine (3a), 9-(2-O-acetyl-3-bromo-3-deoxy- β-D-xylofuranosyl)adenine (3b), 9-(3-O-acetyl-2-bromo-2-deoxy-5-O-(2,4,4-trimethyl-5-oxo-1,3-dioxolan-2-yl)- β-D-arabinofuransoyl)adenine (3c), and 9-(3-O-acetyl-2-bromo-2-deoxy- β-D-arabinofuranosyl)adenine (3d) which were suspended in abs. MeOH (200 ml) without further isolation. Dowex $1 \times 2\left(\mathrm{OH}^{-}, 200-400\right.$ mesh; washed with abs. MeOH and dried in vacuo; 50 g) was added and the mixture stirred vigorously at r.t. for 15 min . The mixture was heated until the precipitated product was dissolved, filtered hot from Dowex, washed with hot $\mathrm{MeOH}(3 \times 50 \mathrm{ml})$, then cooled
to r.t., and evaporated to $1 / 3$ of the volume. To complete the crystallization of 4 , the mixture was cooled to 4° over night, filtered off by suction, and dried at $50^{\circ} /$ high vacuum: 4 ($10.33 \mathrm{~g}, 83 \%$) ($[17]: 92 \%$). Colorless powder. M.p. 180° (dec.). TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$): $R_{\mathrm{f}} 0.56$. UV (MeOH): 258(4.15), 209(4.29). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.32(s, \mathrm{H}-\mathrm{C}(8)) ; 8.16(s, \mathrm{H}-\mathrm{C}(2)) ; 7.33\left(s, \mathrm{NH}_{2}\right) ; 6.20\left(s, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.06\left(t, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right)$; $4.45\left(d, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.21\left(d, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.17\left(t, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$ (249.2): C 48.19, H 4.45, N 28.10; found: C 48.01, H 4.63, N 28.27 .

For anal. purposes, a small amount of the mixture 3a-d was suspended in abs. MeOH and filtered from insoluble material to give the two isomers $\mathbf{3 a} / \mathbf{3 c}$ as solid. Thereof, 145 mg were re-crystallized from EtOH $(10 \mathrm{ml})$ to give pure $\mathbf{3 a}(104 \mathrm{mg}, 72 \%)$. M.p. $171-172^{\circ}$ ([15] [16]: $\left.171-172^{\circ}\right)$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right): R_{\mathrm{f}}$ 0.53. UV (MeOH): 258(4.17), 208(4.28). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.25(s, \mathrm{H}-\mathrm{C}(8)) ; 8.15(s, \mathrm{H}-\mathrm{C}(2))$; $7.38\left(s, \mathrm{NH}_{2}\right) ; 6.14\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.91\left(t, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.91-4.88\left(d t, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.49-4.46\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$; $2.09(s, \mathrm{MeC}=\mathrm{O})$; $1.72\left(s, \mathrm{MeC}\left(\mathrm{O}_{2}\right)\right) ; 1.48,1.45\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{5} \mathrm{O}_{7}$ (500.3): C 43.21, H 4.43, N 14.00; found: C 43.09, H 4.49, N 14.06 .
3. 9-\{2,3-Anhydro-5-O-[(tert-butyl) diphenylsilyl]- β-D-ribofuranosyl\}-adenine (=5'-O-[(tert-Butyl)diphenylsilyl]adenosine Epoxide; 5). In dry pyridine ($3 \times 20 \mathrm{ml}$), not recrystallized $4(6.23 \mathrm{~g}, 25 \mathrm{mmol}$) was coevaporated, the residue suspended in dry pyridine (75 ml), then $(t-\mathrm{Bu}) \mathrm{Ph}_{2} \mathrm{SiCl}(8.25 \mathrm{~g}, 30 \mathrm{mmol})$ added, and the mixture stirred at r.t. for 16 h . The mixture was poured into ice-water (100 ml) and extracted with AcOEt $(200 \mathrm{ml})$. The aq. phase was washed with $\mathrm{AcOEt}(2 \times 100 \mathrm{ml})$ and the combined org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and co-evaporated with toluene ($3 \times 30 \mathrm{ml}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$. Purification by FC (silica gel, $10 \times 5 \mathrm{~cm}, 1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml}), 1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml}), 2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.2 1; elution of 5), $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml}$; elution of $\mathbf{5}), 4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml}$; elution of $\mathbf{6})$) gave $\mathbf{5}(10.56 \mathrm{~g}, 87 \%)$ and 6 ($753 \mathrm{mg}, 6 \%$; formation due to crude 4) as colorless foams.

Data of 5: TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1 ; 2$ developments): $R_{\mathrm{f}} 0.69$. UV (MeOH): 259(4.13), 208(4.56). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.24(s, \mathrm{H}-\mathrm{C}(8)) ; 8.01(s, \mathrm{H}-\mathrm{C}(2)) ; 7.54-7.21\left(m, \mathrm{Ph}_{2} \mathrm{Si}, \mathrm{NH}_{2}\right) ; 6.24\left(s, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $4.46\left(d, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.32\left(t, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.23\left(d, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.85\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.65\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 0.89$ ($s, \mathrm{Me}_{3} \mathrm{C}$). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Si}$ (487.6): C 64.04, H 5.99, N 14.36; found: C 64.06, H 6.15, N 14.25.

9-\{5-O-[(tert-Butyl) diphenylsilyl]- β-D-xylofuranosyl\}adenine (6). M.p. 198-200 ${ }^{\circ}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 9:1): $R_{\mathrm{f}} 0.43 . \mathrm{UV}(\mathrm{MeOH}): 259(4.17), 207(4.59) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.25(s, \mathrm{H}-\mathrm{C}(8)) ; 8.08(s, \mathrm{H}-\mathrm{C}(2))$; $7.61-7.31(m, \mathrm{PhSi}, \mathrm{NH}) ; 5.93\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.57\left(d, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.26\left(d, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.64\left(q, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; $4.34\left(q, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.03\left(q, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.94-3.73\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 0.97\left(s, \mathrm{Me}_{3} \mathrm{C}\right)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}$ (505.7): C 61.76, H 6.18, N 13.85; found: C 61.81, H 6.18, N 14.09.
4. Bromodimethylborane (7) [28-30]. A dried (15 h at 100°) 25 -ml flask was evacuated and then flushed with N_{2} and equipped with a septum. A short-path distillation apparatus utilizing a preweighed dry (15 h at 100°) $50-\mathrm{ml}$ two-necked flask as the receiver was stoppered with a septum. The $25-\mathrm{ml}$ flask was cooled to -55° (i$\mathrm{PrOH} /$ solid CO_{2}) and charged with $\mathrm{BBr}_{3}\left(7 \mathrm{ml}, 72.5 \mathrm{mmol}\right.$; Fluka) under $\mathrm{N}_{2} . \mathrm{Me} \mathrm{e}_{4} \mathrm{Sn}(10 \mathrm{ml}, 72.5 \mathrm{mmol}$; Fluka) was added dropwise by syringe within 60 min . The mixture was stirred for another 60 min at -50° (without N_{2} stream!) and for additional 30 min at r.t. The bromodimethylborane (b.p. $32-36^{\circ}$; [27]: $31-32^{\circ}$] was separated from the by-product $\mathrm{Me}_{2} \mathrm{SnBr}_{2}$ by distillation at max. 100° bath temp., and the receiver was cooled to -35° from beginning of the distillation. Compound $7(8.59 \mathrm{~g}, 98 \%$; [27]: $84 \%)$ was mixed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a $1.1-2.1 \mathrm{~m}$ soln. of 7 , which was stored at -20° and used within few weeks for epoxide cleavage reactions.
5. 9-\{3-Bromo-5-O-[(tert-butyl)diphenylsilyl]-3-deoxy- β-d-xylofuranosylfadenine (8) [17] [21] [25]. 5.1. To a cold (-78°; i-PrOH/solid CO_{2}), stirred soln. of pure $\mathbf{5}(4.88 \mathrm{~g}, 10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{ml})$ under N_{2}, successively $\mathrm{Et}_{3} \mathrm{~N}(0.25 \mathrm{ml}, 2 \mathrm{mmol})$ and 1.45 m 7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{ml}, 20 \mathrm{mmol})$ were added. After 15 min . at -78°, the mixture was transferred by cannula into a vigorously stirred soln. of sat. NaHCO_{3} soln. (200 ml) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The org. phase was washed with NaCl soln. $(200 \mathrm{ml})$ and the combined aq. phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{ml})$. The org. layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The solid residue was crystallized from EtOH to give pure $\mathbf{8}\left(5.14 \mathrm{~g}, 90 \%\right.$), after drying at $40^{\circ} /$ high vacuum ([18]: 98% (crude); [21]: 96% (crude)). Colorless powder. M.p. 211-213 ($\left.[18]: 210-211^{\circ}\right)$. TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1 ; 2$ developments): $R_{\mathrm{f}} 0.64$. UV (MeOH): 259(4.20), 206(4.60). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.13(s, \mathrm{H}-\mathrm{C}(8)) ; 8.08(s, \mathrm{H}-\mathrm{C}(2))$; $7.64\left(m, 4 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{Si}\right) ; 7.47-7.34\left(m, 6 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{Si}\right) ; 6.49\left(d, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.90\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 4.94\left(q, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; $4.60\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.53\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.00\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.00(s, t-\mathrm{Bu})$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{BrN}_{5} \mathrm{O}_{3} \mathrm{Si}$ (568.5): C 54.93, H 5.32, N 12.32 ; found: C 54.59 , H 5.38, N 12.21 .
5.2. Pure $\mathbf{4}(6.86 \mathrm{~g}, 27.52 \mathrm{mmol})$ was dried by co-evaporations with abs. pyridine ($3 \times 20 \mathrm{ml}$). Abs. pyridine $(100 \mathrm{ml})$, and $(t-\mathrm{Bu}) \mathrm{Ph}_{2} \mathrm{SiCl}(9.08 \mathrm{~g}, 33 \mathrm{mmol})$ were added, and the suspension was stirred at r.t. over night $(18 \mathrm{~h}) . \mathrm{H}_{2} \mathrm{O}(11 \mathrm{ml})$ was added. The mixture cleared within a few minutes and was stirred for another 30 min , evaporated, and co-evaporated with toluene ($2 \times 20 \mathrm{ml}$). The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$, the
soln. washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$, sat. NaHCO_{3} soln. $(2 \times 100 \mathrm{ml})$, and NaCl soln. $(2 \times 100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue dried in vacuo to give crude $5(15.2 \mathrm{~g},>100 \%)$. Without further purification, the quantity of crude compound 5 was halved, and each half was reacted separately in the same manner. Under N_{2}, crude $5(7.6 \mathrm{~g})$ was dissolved in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ and cooled to $-65^{\circ}(\mathrm{i}-\mathrm{PrOH} / \mathrm{solid}$ $\left.\mathrm{CO}_{2}\right) . \mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml}, 3.57 \mathrm{mmol})$ and a soln. of $\mathrm{Me}_{2} \mathrm{BBr}(7 ; 24.88 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{ml})$ were added successively. After 5 h at -60° (TLC monitoring), the ratio $\mathbf{5 / 8}$ was $c a .1: 3$ to $2: 3$. The mixture was kept at -15° overnight to allow the reaction to reach completion. The mixture was then poured into a vigorously stirred sat. NaHCO_{3} soln. $(600 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{ml})$. The org. phases were washed with sat. NaCl soln. $(500 \mathrm{ml})$, the aq. layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residual powder was crystallized from THF/MeCN $1: 1(120 \mathrm{ml}): \mathbf{8}$ $(10.44 \mathrm{~g}, 67 \%$ rel. to 4$)$. The mother liquour was purified by FC (silica gel, $13 \times 3 \mathrm{~cm}, 2-20 \% \mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give another 1.45 g of $\mathbf{8}$. Overall yield of $\mathbf{8}: 11.89 \mathrm{~g}(76 \%$, rel. to $\mathbf{4})$.
5.3. In dry pyridine, 9-(3-bromo-3-deoxy- β-d-xylofuranosyl)adenine (9) [11] [22] ($2.2 \mathrm{~g}, 6.66 \mathrm{mmol}$) was co-evaporated $(3 \times 20 \mathrm{ml})$ and then dissolved in pyridine $(40 \mathrm{ml}) .(t-\mathrm{Bu}) \mathrm{Ph}_{2} \mathrm{SiCl}(1.83 \mathrm{~g}, 6.66 \mathrm{mmol})$ was added and stirred for 19 h at r.t. The reaction was stopped with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$, the mixture stirred for further 30 min at r.t., and then evaporated. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$, the org. phase washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 60 \mathrm{ml})$, sat. NaHCO_{3} soln. $(100 \mathrm{ml})$ and NaCl soln. $(100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and co-evaporated with toluene $(3 \times 40 \mathrm{ml})$, and the residue crystallized from MeCN/THF 5:7 $(24 \mathrm{ml})$ to give, after drying at 40° in vacuo, $\mathbf{8}(3.36 \mathrm{~g}, 89 \%)$. Colourless powder.
6. 9-\{2-O-[(Benzylamino)carbonyl]-3-bromo-5-O-[(tert-butyl)diphenylsilyl]-3-deoxy- β-D-xylofuranosyl\}adenine (10). 6.1. To a soln. of $\mathbf{8}(4.45 \mathrm{~g}, 7.83 \mathrm{mmol})$ in abs. THF/MeCN $2: 1(150 \mathrm{ml})$, benzyl isocyanate (2 ml , $15.66 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{ml}, 11.75 \mathrm{mmol})$ were added and stirred at r.t. for 3 days. Then, $\mathrm{EtOH}(25 \mathrm{ml})$ was added and stirring continued for 30 min . After evaporation, the sirupy residue was purified by FC (silica gel, $6 \times$ $5 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (elution of dibenzylurea), $1-5 \% \mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2-5 \% \mathrm{EtOH}$, elution of pure $\mathbf{1 0})$) to give $\mathbf{1 0}$ $(5.11 \mathrm{~g}, 93 \%)$. Colourless foam ([21]: 90\%). TLC: $R_{\mathrm{f}} 0.47$ (hexane/acetone 1:2), $0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right) . R_{\mathrm{f}}$ UV (MeOH): $262(\mathrm{sh}, 4.18), 259(4.20) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.13(m+d t, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(2), \mathrm{NH}) ; 7.65$ $\left(m, 4 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{Si}\right) ; 7.48-7.13\left(m, 13 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{Ph}, \mathrm{Ph}_{2} \mathrm{Si}\right) ; 6.14\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.87\left(t, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.90\left(t, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$; $4.51\left(q, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.17-3.98\left(m, \mathrm{NHCH}_{2}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.02(s, t-\mathrm{Bu})$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{BrN}_{6} \mathrm{O}_{4} \mathrm{Si}(701.7)$: C 58.20, H 5.32, N 11.98; found: C 58.13, H 5.31, N 12.04.
6.2. $9-\left\{\mathrm{N}^{6}, \mathrm{~N}^{6}, 2-\mathrm{O}-\right.$ Tris[(benzylamino) carbonyl]-3-bromo-5-O-[(tert-butyl)diphenylsilyl]-3-deoxy- β-D-xylofuranosylfadenine (11). To a suspension of $\mathbf{8}(2.84 \mathrm{~g}, 5 \mathrm{mmol})$ in abs. THF/MeCN 1:1 $(20 \mathrm{ml})$, benzyl isocyanate $(524 \mathrm{ml}, 6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.25 \mathrm{ml}, 10 \mathrm{mmol})$ were added and stirred at 80°. After 15 min , the mixture cleared, and after further stirring for 75 min at $80^{\circ}, \mathrm{AcOH}(524 \mathrm{ml}, 9 \mathrm{mmol})$ was added and stirring continued for 15 min at r.t. The mixture was diluted with $\operatorname{AcOEt}(50 \mathrm{ml})$ and washed twice with $\mathrm{H}_{2} \mathrm{O}(2 \times 80 \mathrm{ml})$. The aq. phases were re-extracted with $\mathrm{AcOEt}(3 \times 50 \mathrm{ml})$ and the combined AcOEt layers dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Purification by FC (silica gel, $26 \times 2.5 \mathrm{~cm}$, hexane/acetone $2: 1(800 \mathrm{ml} \rightarrow \mathbf{1 1}), 1: 1(400 \mathrm{ml} \rightarrow \mathbf{1 0})$, and $1: 2$ $(400 \mathrm{ml} \rightarrow \mathbf{8})$) gave $\mathbf{1 1}(0.21 \mathrm{~g}, 4 \%), \mathbf{1 0}(2.72 \mathrm{~g}, 78 \%)$ and unreacted $\mathbf{8}(0.4 \mathrm{~g}, 14 \%)$. Colourless foams. 11: TLC: $R_{\mathrm{f}} 0.78$ (hexane/acetone $\left.1: 2\right), 0.70\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right)$. UV (MeOH$): 262(\mathrm{sh}, 4.18), 259(4.20) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 8.13(m+d t, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(2), \mathrm{NH}) ; 7.65\left(m, 4 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{Si}\right) ; 7.48-7.13\left(m, 13 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{Ph}, \mathrm{PhSi}_{2}\right)$; $6.14\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.87\left(t, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.90\left(t, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.51\left(q, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.17-3.98\left(m, \mathrm{NHCH}_{2}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$; $1.02(s, t-\mathrm{Bu})$. Anal. calc. for $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{BrN}_{8} \mathrm{O}_{6} \mathrm{Si}$ (968.0): C 62.04, H 5.31, N 11.58; found: C 61.92, H 5.40, N 11.46 .
7. 3^{\prime}-(Benzylamino)-5'-O-[(tert-butyl)diphenylsilyl]-3'-N, 2'-O-carbonyl-3'-deoxyadenosine (12), 3'-(Benzylamino) - 3^{\prime}-N, 2'-O-carbonyl-3'-deoxyadenosine (13), and 3^{\prime}-(Benzylamino)-3'-deoxyadenosine (14). 7.1. NaH (80% in mineral oil; $350 \mathrm{mg}, 11.45 \mathrm{mmol}$) was washed 3 times with abs. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$, filtered by suction, and then added to a soln. of $\mathbf{1 0}(2.68 \mathrm{~g}, 3.82 \mathrm{mmol})$ in abs. DMF $(38 \mathrm{ml})$ at $-5^{\circ}(\mathrm{ice} / \mathrm{NaCl})$. The mixture was stirred for 60 min at -5° to 0° and 30 min at r.t., $\mathrm{MeOH}(40 \mathrm{ml})$ was added, the mixture stirred at r.t. for further 10 min , evaporated, and co-evaporated with $\mathrm{MeOH}(3 \times 20 \mathrm{ml})$, and the residue dissolved in little $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 2: 1$. FC silica gel (6 g) was added, the mixture evaporated, and the residue applied to a column of FC (silica gel, $15 \times$ $2.5 \mathrm{~cm}, 1-15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The three product fractions were evaporated separately. Compound $\mathbf{1 2}$ was coevaporated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $296 \mathrm{mg}(13 \%)$ of $\mathbf{1 2}$ as colorless foam. The residue containing pure $\mathbf{1 3}$ was coevaporated twice with $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} 2: 1(20 \mathrm{ml})$ and led to $812 \mathrm{mg}(56 \%)$ of $\mathbf{1 3}$ as colourless powder. Compound 14 was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 2(15 \mathrm{ml})$ to give $130 \mathrm{mg}(10 \%)$ of $\mathbf{1 4}$. Overall yield: 79%.

Data of 12: TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.36$. UV (MeOH): 258(4.16), 261 (sh, 4.15), 207 (4.65). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.27(s, \mathrm{H}-\mathrm{C}(8)) ; 8.12(s, \mathrm{H}-\mathrm{C}(2)) ; 7.40-7.32\left(m, 17 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{Si}, \mathrm{NH}_{2}, \mathrm{Ph}\right) ; 6.30$
$\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.69\left(d d, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.66-4.26\left(m, \mathrm{NCH}_{2}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.43-3.35\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Si} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (630.8): C 64.74, H 6.07, N 13.32; found: C 65.03, H 5.85, N 13.24.
7.2. $\mathrm{NaH}(80 \%$ in mineral oil; $176 \mathrm{mg}, 5.76 \mathrm{mmol})$ was first treated with abs. $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, filtered by suction to remove the mineral oil and then added to the ice-cooled $\left(-5^{\circ}\right)$ soln. of $\mathbf{1 0}(1.35 \mathrm{~g}, 1.92 \mathrm{mmol})$ in abs. DMF (19 ml). The mixture was stirred for 4 h at -5° to 0° and 1 h at r.t. $\mathrm{MeOH}(4 \mathrm{ml})$ was added and the mixture evaporated under high vacuum, and co-evaporated with $\mathrm{MeOH}(3 \times 20 \mathrm{ml})$. The residual solid was crystallized first from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 3: 1(20 \mathrm{ml})$ and then from $\mathrm{MeOH} / \mathrm{AcOEt} 2: 1(15 \mathrm{ml})$ to give $\mathbf{1 3}(639 \mathrm{mg}$, $87 \%)$. Colourless crystals. M.p. $231-232^{\circ}$ ([21]: $\left.229-230^{\circ}\left(\mathrm{MeOH}^{2} / \mathrm{Et}_{2} \mathrm{O}\right)\right)$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right.$, then hexane/acetone 1:2): $R_{\mathrm{f}} 0.21$. UV (MeOH): 258(4.18), 207 (4.45). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.33(s, \mathrm{H}-\mathrm{C}(8))$; $8.12(s, \mathrm{H}-\mathrm{C}(2)) ; 7.43-7.32\left(m, 7 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{Ph}\right) ; 6.30\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.69\left(d d, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.27\left(t, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right)$; $4.63(d, 1, \mathrm{NCH}) ; 4.39-4.26\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 1 \mathrm{NCH}\right) ; 3.42\left(t, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4}$ (382.4): C 56.54, H 4.75, N 21.98; found: C 56.62, H 4.76, N 21.80.
7.3. Pure $\mathbf{1 2}$ ($295 \mathrm{mg}, 0.474 \mathrm{mmol}$) was dissolved in abs. THF (25 ml), and $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(240 \mathrm{mg}$, $0.76 \mathrm{mmol})$ was added. After stirring for 2 h at r.t., the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, the soln. washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{ml})$, sat. NaHCO_{3} soln. (50 ml), and sat. NaCl soln. (50 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue purified by $\mathrm{FC}\left(16 \times 1.5 \mathrm{~cm}\right.$, packed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1$, elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} 19: 1(350 \mathrm{ml}))$. Treatment of the crude product with little $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ gave, after evaporation and drying, $\mathbf{1 3}$ ($160 \mathrm{mg}, 88 \%$). Colorless powder.
7.4. $\mathrm{NaH}(80 \%$ in mineral oil; $1.35 \mathrm{~g}, 45 \mathrm{mmol})$ was washed with hexane $(3 \times 15 \mathrm{ml})$, then suspended in dist. THF (250 ml), and cooled to $-5^{\circ}(\mathrm{ice} / \mathrm{NaCl})$. Then, the soln. of $\mathbf{1 0}(15 \mathrm{~g}, 21.4 \mathrm{mmol})$ in dist. THF (250 ml) was added dropwise within 1 h and the mixture stirred for further 45 min at -5° and finally at r.t. for 20 h . The suspension was filtered over Celite over a glass suction filter (D4), the Celite washed with THF, and the filtrate dried and evaporated: 15.6 g of crude mixture containing mainly $\mathbf{1 2}$, smaller amounts of $\mathbf{1 3}$, and traces of $\mathbf{1 4}$ (by TLC). Without further purification steps, the mixture was dissolved in dist. THF (250 ml) and treated with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(6.4 \mathrm{~g}, 20.28 \mathrm{mmol})$ at r.t. for 4 h . The mixture was concentrated in vacuo to $1 / 3$ of its volume, diluted with $\mathrm{CHCl}_{3}(500 \mathrm{ml})$, and transferred by cannula under vigorous stirring into $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{ml})$. The org. phase was separated, the aq. layer extracted with $\mathrm{CHCl}_{3}(250 \mathrm{ml})$, the combined org. phase washed with NaHCO 3 and NaCl soln. (each 700 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{MeOH} 9: 1$ and chromatographed by $\mathrm{FC}\left(13 \times 5.5 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1(11)\right.$ and $\left.4: 1,(0.5 \mathrm{l})\right)$. The obtained crude solid was dissolved in hot $\mathrm{MeOH}(30 \mathrm{ml}), \mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$ was added, the mixture evaporated to $1 / 2$ of its volume, cooled at -8° for 16 h , and the precipitate filtered off by suction, washed $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and dried at $40^{\circ} / \mathrm{high}$ vacuum: $\mathbf{1 3}(3.65 \mathrm{~g} ; 45 \%$ rel. to $\mathbf{1 0})$. The mother liquor containing $\mathbf{1 3} / \mathbf{1 4}$ was used without further purification for the next procedure.

Crystalline $\mathbf{1 3}$ ($4.74 \mathrm{~g}, 12.4 \mathrm{mmol}$; isolated from the $15-\mathrm{g}$ and a $5-\mathrm{g}$ batch of $\mathbf{1 0}$) was suspended together with the residue of the above mother liquor $(\mathbf{1 3} / \mathbf{1 4})$ in dist. THF $(100 \mathrm{ml}) . \mathrm{NaOH}(1 \mathrm{~N}, 50 \mathrm{ml})$ was added and the emulsion stirred at r.t. for 3 d . Then, dist. THF $(50 \mathrm{ml})$ and NaOH soln. $(1 \mathrm{~N}, 70 \mathrm{ml})$ were added once more, and the mixture was kept for another 2 d at r.t. under stirring. The mixture $(\mathrm{pH} 12.5)$ was neutralized with Amberlite $\left(\mathrm{H}^{+}\right)$resin (Amberlyst 15, Fa. Serva), filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and MeOH and evaporated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and applied to a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$resin $\left(17 \times 3.5 \mathrm{~cm}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 1: 1\right)$. The eluate was evaporated and the residue treated with hot $\mathrm{MeOH}(100 \mathrm{ml})$. Then $\mathrm{CHCl}_{3}(60 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{ml})$ were added. The mixture was concentrated to $c a .1 / 2$ of its volume and cooled, and the precipitate collected by filtration, washed ($\mathrm{Et}_{2} \mathrm{O}$), and dried $40 \% /$ high vacuum: 3.18 g . Workup of the mother liquor finally yielded a total of $5.7 \mathrm{~g}\left(56 \%, 3\right.$ steps, rel. to 10) of 14. M.p. $170-173^{\circ}$ ([32]: 175-176 $)$. TLC (silica gel, i- $\mathrm{PrOH} /$ $\left.\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1\right): R_{\mathrm{f}} 0.85$. UV (MeOH): 259(4.18). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.36(s, \mathrm{H}-\mathrm{C}(8)) ; 8.12(s$, $\mathrm{H}-\mathrm{C}(2)) ; 7.36-7.19\left(m, 8 \mathrm{H}, \mathrm{Ph}, \mathrm{NH}_{2}, \mathrm{HN}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.96\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.89\left(d, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.30(t$, $\left.\mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.57\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.92\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.78-3.70\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), \mathrm{PhCH}_{2}\right) ; 3.55\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$; $3.35\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (365.4): C 55.88, H 5.79, N 23.00 ; found: C 56.15, H 5.63, N 23.19.
8. 9-(3-Amino-3-deoxy- β-D-ribofuranosyl)adenine ($=3^{\prime}$-Amino-3'-deoxyadenosine; 15). To a soln. of 14 $(1 \mathrm{~g}, 2.81 \mathrm{mmol})$ in $95 \% \mathrm{EtOH}(120 \mathrm{ml})$ was added $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst $(700 \mathrm{mg})$. The suspension was vigorously stirred under H_{2} (1 atm) for 4 days. The catalyst was filtered over Celite over a glass suction filter (D4), and the solid catalyst/Celite was then extracted with EtOH in a Soxhlet extractor for 48 h . The extract was evaporated and the residue applied to a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$resin $\left(15 \times 3.5 \mathrm{~cm}, \mathrm{H}_{2} \mathrm{O}(1.41), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 1: 9\right.$ (11), $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 1: 1(1.5 \mathrm{l})$, and $\mathrm{MeOH}(2.5 \mathrm{l})$). The product fraction was evaporated to 20 ml of the volume and cooled to -12°. The solid material was filtered off by suction and dried at $40^{\circ} / \mathrm{high}$ vacuum: $\mathbf{1 5}$ (514 mg , 69%). Colorless crystals. M.p. 262° ([29]: $259-261^{\circ}$). TLC (silica gel, i-PrOH/ $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1$): $R_{\mathrm{f}} 0.56$. TLC
(silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 6: 1\right): R_{\mathrm{f}} 0.37$. UV (MeOH): $259(4.14), 207(4.22) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.37$ $(s, \mathrm{H}-\mathrm{C}(8)) ; 8.12(s, \mathrm{H}-\mathrm{C}(2)) ; 7.29\left(s, \mathrm{NH}_{2}\right) ; 5.90\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.76\left(\mathrm{br} . s, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.17\left(t, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right)$; $4.27\left(t, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.74-3.42\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; 1.68 (br. $\left.s, \mathrm{NH}_{2}-\mathrm{C}\left(3^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3}$ (266.3): C 45.11, H 5.30, N 31.56; found: C 44.68, H 5.31, N 31.72.
9. 1-Hexadecanoyl-3-methyl-1H-imidazolium Chloride (16). To a soln. of hexadecanoyl chloride (2.75 g , $10 \mathrm{mmol})$ in dry DMF $(80 \mathrm{ml}), 1$-methyl- $1 H$-imidazole $(820 \mathrm{mg}, 10 \mathrm{mmol})$ in dry DMF $(20 \mathrm{ml})$ was added at 0° within 10 min to form $\mathbf{1 6}$ as voluminous colourless precipitate. The mixture was stirred vigorously at 0° for further 15 min , filtered off by suction, washed with cooled $\mathrm{Et}_{2} \mathrm{O}$, and dried at $50^{\circ} / \mathrm{high}$ vacuum: $3.2 \mathrm{~g}(90 \%)$ of colourless powder. M.p. $162^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.96(s, 1 \mathrm{H}) ; 7.58(s, 1 \mathrm{H}) ; 3.83(s, \mathrm{Me}) ; 2.17\left(t, \mathrm{CH}_{2}\right)$; $1.46\left(m, \mathrm{CH}_{2}\right) ; 1.22\left(s, 12 \mathrm{CH}_{2}\right) ; 0.84(t, \mathrm{Me})$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{ClN}_{2} \mathrm{O}(357.0): \mathrm{C} 67.29, \mathrm{H} 10.45$, N 7.85 ; found: C 67.20, H 10.43, N 7.76 .
10. 3^{\prime}-Deoxy-3'-(hexadecanoylamino)adenosine (17). The susp. of $\mathbf{1 5}$ ($250 \mathrm{mg}, 0.94 \mathrm{mmol}$) in dry DMF $(25 \mathrm{ml})$ was stirred at r.t. for 15 min , then $\mathbf{1 6}(400 \mathrm{mg}, 1.12 \mathrm{mmol})$ was added and the mixture kept for 1 h at r.t. under vigorous stirring. During reaction, the precipitate was converted slowly into 17. After $2 \mathrm{~h}, \mathrm{MeOH}(25 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ were added. The mixture was stirred for further 10 min and filtered by suction and the solid washed with MeOH and $\mathrm{Et}_{2} \mathrm{O}$ and dried ($40^{\circ} / \mathrm{high}$ vacuum): $442 \mathrm{mg}(93 \%)$ of 17. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$: R_{f} 0.43. UV(MeOH): $259(4.14) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.40(s, \mathrm{H}-\mathrm{C}(8)) ; 8.14(s, \mathrm{H}-\mathrm{C}(2)) ; 7.89\left(d, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right)$; $7.33\left(s, \mathrm{NH}_{2}\right) ; 5.94\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.21\left(t, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.45\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.97(m$, $\left.\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.66\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.51\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 2.14\left(t, \mathrm{CH}_{2}\right) ; 1.47\left(m, \mathrm{CH}_{2}\right) ; 1.22\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right) ; 0.84$ (t, Me). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{4}$ (504.7): C 61.88, H 8.79, N 16.65; found: C 62.09, H 8.85, N 16.07.
11. 3'-Deoxy-3'-(hexadecanoylamino)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (18). A suspension of $\mathbf{1 7}(182 \mathrm{mg}, 0.36 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{ml})$ was stirred for 20 min at r.t. Then, 1-(trimethylsilyl)- 1 H imidazole ($268 \mathrm{mg}, 1.91 \mathrm{mmol}$) was added. After 20 min of vigorous stirring, the mixture cleared, and after another 10 min , the soln. was evaporated. The residue was taken up in abs. toluene $(50 \mathrm{ml})$ and washed twice with $1 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ soln. ($30 \mathrm{ml}, \mathrm{pH} 4.55$). The org. phase was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. For N^{6}-acylation, the residue was taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), and 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazol-3-ium chloride [33] ($170 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added. After stirring at r.t. over night, the soln. was separated from the unsoluble reagent by suction. The residual sirup was dissolved in pyridine $(4 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was added, and the emulsion was stirred at r.t. for 24 h , evaporated, and coevaporated with toluene $(3 \times 20 \mathrm{ml})$ to remove pyridine. The residue was crystallized from $\mathrm{MeOH}(10 \mathrm{ml})$: $220 \mathrm{mg}(87 \%)$ of colourless crystals. M.p. $167-169^{\circ}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.25 . \mathrm{UV}(\mathrm{MeOH}): 298(\mathrm{sh}$, 3.59), 272 (sh, 4.39), 267(4.42), 208 (sh, 4.49). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 10.61(\mathrm{~s}, \mathrm{NH}) ; 8.73(s, \mathrm{H}-\mathrm{C}(8)) ; 8.62$ $(s, \mathrm{H}-\mathrm{C}(2)) ; 8.16\left(d, 2 \mathrm{H} o\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.90\left(d, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right) ; 7.62\left(d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 6.05\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.03$ $\left(d, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.12\left(t, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.48\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.39\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 3.99\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $3.70\left(m, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.53\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.11\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 2.12\left(d t, \mathrm{CH}_{2}\right) ; 1.47\left(m, \mathrm{CH}_{2}\right) ; 1.22\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right)$; $0.83(t, \mathrm{Me})$. Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{8}$ (697.8): C 60.24, H 7.37, N 14.05; found: C 60.57, H 7.56, N 13.85.
12. 3'-Deoxy-3'-(hexadecanoylamino)- ${ }^{6}$-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine (18) and 3'-Deoxy-3^{\prime}-(hexadecanoylamino) $-\mathrm{N}^{6}$-(methoxycarbonyl)-adenosine (19). As described for 18, with 17 (252 mg , 0.5 mmol), 1-(trimethylsilyl)- 1 H -imidazole ($383 \mathrm{mg}, 2.73 \mathrm{mmol}$) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), 30 \mathrm{~min}$, r.t., extraction with toluene $(80 \mathrm{ml})$ and $1 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ soln. $(\mathrm{pH} 4.55 ; 2 \times 100 \mathrm{ml})$, evaporation. N^{6}-Acylation, with 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1 H -imidazol-3-ium chloride [33] ($234 \mathrm{mg}, 0.75 \mathrm{mmol}$) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml}), 18 \mathrm{~h}$, r.t., filtration by suction, evaporation. For desilylation, the residue was dissolved in MeOH $(15 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{ml})$ added, the mixture stirred for 3 h at r.t. and then evaporated, and the residue crystallized from $\mathrm{MeOH}(20 \mathrm{ml}): \mathbf{1 8}(202 \mathrm{mg}, 58 \%)$. The mother liquor was evaporated, purified by FC (silica gel, $5 \times 2 \mathrm{~cm}$, CHCl_{3} and $1-2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$), and crystallized from $\mathrm{MeOH}: 18$ (total $266 \mathrm{mg}, 76 \%$) and 19 ($10 \mathrm{mg}, 4 \%$). Colourless crystals.

Data of 19: M.p. 202-204 . TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.17$. UV (MeOH): 272 (sh, 4.21), $266(4.27)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 10.59(s, \mathrm{NH}) ; 8.73(s, \mathrm{H}-\mathrm{C}(8)) ; 8.63(\mathrm{~s}, \mathrm{H}-\mathrm{C}(2)) ; 7.90\left(d, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right) ; 6.05$ (m, $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; \quad 6.02\left(d, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; \quad 5.13\left(t, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.48\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \quad \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.00\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $3.70(s, \mathrm{MeO}) ; 3.56-3.40\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 2.14\left(t, \mathrm{CH}_{2}\right) ; 1.48\left(m, \mathrm{CH}_{2}\right) ; 1.22\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{12}\right) ; 0.84(t$, Me). Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{6}$ (562.7): C 59.77, H 8.24, N 14.94; found: C 59.43, H 8.03, N 14.56.
13. 3'-Deoxy-3'-(hexadecanoylamino)-5'-O-(monomethoxytrityl)- $\mathrm{N}^{6}-[2-(4-$ nitrophenyl) ethoxycarbonyl]adenosine (20). To a soln. of $\mathbf{1 8}(520 \mathrm{mg}, 0.745 \mathrm{mmol}$; co-evaporated 3 times with abs. pyridine (15 ml)) in abs. pyridine $(12 \mathrm{ml})$, monomethoxytrityl chloride $(\mathrm{MeOTrCl})(414 \mathrm{mg}, 1.34 \mathrm{mmol})$ was added and kept at r.t. for 19 h . The mixture was diluted with $\mathrm{CHCl}_{3}(100 \mathrm{ml})$, washed with phosphate buffer ($\mathrm{pH} 6.88 ; 2 \times 80 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. After co-evaporation with toluene $(3 \times 30 \mathrm{ml})$, the residue was taken up in little
CHCl_{3} and purified by FC (silica gel, $11 \times 2.5 \mathrm{~cm}, \mathrm{CHCl}_{3}(150 \mathrm{ml}), 1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(500 \mathrm{ml})$): $638 \mathrm{mg}(88 \%)$ of 20. Amorphous solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.54$. UV (MeOH): 296(sh, 3.62), $272(\mathrm{sh}, 4.42)$, 267(4.46), 234(4.30). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.69(s, \mathrm{H}-\mathrm{C}(8)) ; 8.20(s, \mathrm{H}-\mathrm{C}(2)) ; 8.16\left(d, 2 \mathrm{H} o\right.$ to $\left.\mathrm{NO}_{2}\right) ; 8.13$ $(s, \mathrm{NH}) ; 7.42\left(d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.31-7.16(m, 12 \mathrm{H}, \mathrm{MeO} T r) ; 6.75(d, 2 \mathrm{H} m$ to MeO$) ; 6.20\left(d, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right)$; $6.00\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; \quad 5.14\left(d, \mathrm{OH}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.89\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.56\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.52\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2} ; 4.42\right.$ $\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.75(s, \mathrm{MeO}) ; 3.46\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.14\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 2.19\left(t, \mathrm{CH}_{2}\right) ; 1.57\left(m, \mathrm{CH}_{2}\right) ; 1.23$ $\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right)$; $0.85(t, \mathrm{Me})$. Anal. calc. for $\mathrm{C}_{55} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{9}$ (970.2): C 68.09, H 6.96, N 10.11; found: C 67.94, H 7.03, N 10.02.
14. 2'-O-[(tert-Butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)-5'-O-(monomethoxytrityl)- ${ }^{6}$ - $[2-(4-$ nitrophenyl)ethoxycarbonyl]adenosine (21). In abs. pyridine (20 ml), $\mathbf{2 0}(560 \mathrm{mg}, 0.577 \mathrm{mmol})$ was dried by 2 co-evaporations. The residue was dissolved in abs. pyridine $(15 \mathrm{ml}),(t-\mathrm{Bu}) \mathrm{Me}_{2} \mathrm{SiCl}(1.04 \mathrm{~g}, 6.92 \mathrm{mmol}$; 12-fold excess) and 1 H -imidazole ($943 \mathrm{mg}, 13.85 \mathrm{mmol}, 20$-fold excess) were added, and after stirring at r.t. for 2 days, the mixture was partitioned between $\mathrm{CHCl}_{3}(80 \mathrm{ml})$ and phosphate buffer ($\mathrm{pH} 7,100 \mathrm{ml}$). The aq. layer was washed with $\mathrm{CHCl}_{3}(3 \times 60 \mathrm{ml})$, the combined org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and co-evaporated with toluene $(3 \times 40 \mathrm{ml})$, and the residue purified by $\mathrm{FC}\left(15 \times 2.5 \mathrm{~cm}, \mathrm{CHCl}_{3}(250 \mathrm{ml})\right): \mathbf{2 1}(592 \mathrm{mg}, 95 \%)$. Colourless foam. TLC (toluene/AcOEt 1:1): $R_{\mathrm{f}} 0.42$. UV (MeOH): 294 (sh, 3.65), 272 (sh, 4.42), 267 (4.46). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.69(s, \mathrm{H}-\mathrm{C}(8)) ; 8.22(s, \mathrm{H}-\mathrm{C}(2)) ; 8.17\left(d, 2 \mathrm{H} o\right.$ to $\left.\mathrm{NO}_{2}\right) ; 8.05(s, \mathrm{NH}) ; 7.46-7.17(m, 14$ $\mathrm{H}, 2 \mathrm{H} m$ to $\left.\mathrm{NO}_{2}, \mathrm{MeOTr}\right) ; 6.80(d, 2 \mathrm{H} o$ to MeO$) ; 6.06\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.75\left(d, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right) ; 4.72-4.67$ $\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.52\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 4.18\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.76(s, \mathrm{MeO}) ; 3.49\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$; $3.14\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 2.12\left(t, \mathrm{CH}_{2}\right) ; 1.54\left(m, \mathrm{CH}_{2}\right) ; 1.23\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right) ; 0.89(s, t-\mathrm{BuSi}) ; 0.85(t, \mathrm{Me}) ; 0.10(s, \mathrm{MeSi})$; $0.06(s, \mathrm{MeSi})$. Anal. calc. for $\mathrm{C}_{61} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{Si}(1084.4)$: C 67.56, H 7.53, N 9.04; found: C 67.36, H 7.64, N 8.80 .
15. 2'-O-[(tert-Butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyljadenosine (22). Compound $21(592 \mathrm{mg}, 0.546 \mathrm{mmol})$ and $2 \% \mathrm{TsOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$ (12 ml) were stirred at r.t. After 30 min , the mixture was diluted with $\mathrm{CHCl}_{3}(80 \mathrm{ml})$, washed with phosphate buffer $(\mathrm{pH} 6.88$; $150 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue submitted to $\mathrm{FC}\left(15 \times 2.5 \mathrm{~cm}, \mathrm{CHCl}_{3}(200 \mathrm{ml}), 1 \%\right.$ $\left.\mathrm{MeOH} / \mathrm{CHCl}_{3}(400 \mathrm{ml})\right): 396 \mathrm{mg}(89 \%)$ of 22. Colourless foam. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.52$. UV (MeOH): $286(\mathrm{sh}, 3.92), 271(\mathrm{sh}, 4.41), 267(4.44), 212(\mathrm{sh}, 4.51) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.72(\mathrm{~s}, \mathrm{H}-\mathrm{C}(8)) ; 8.29$ (br. $s, \mathrm{NH}) ; 8.28(s, \mathrm{H}-\mathrm{C}(2)) ; 8.16\left(d, 2 \mathrm{H} o\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.42\left(d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 6.09\left(d, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right) ; 5.90$ $\left(d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 4.81\left(m, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right), \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.52\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 4.46\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.26$ ($\left.m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $3.91\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; \quad 3.14\left(t, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; \quad 2.22\left(t, \mathrm{CH}_{2}\right) ; \quad 1.64\left(t, \mathrm{CH}_{2}\right) ; \quad 1.23\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right) ; \quad 0.86(s, t-\mathrm{Bu})$; $0.83(t, \mathrm{Me}) ;-0.01(s, \mathrm{MeSiC}) ;-0.04(s, \mathrm{MeSi})$. Anal. calc. for $\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{Si}$ (812.1): C 60.64, H 8.07, N 12.07 ; found: C 60.92 , H 8.30, N 11.83 .
16. 3'-Deoxy-5'-O-(monomethoxytrityl)- $\mathrm{N}^{6}-\left[2-(4-n i t r o p h e n y l)\right.$ ethoxycarbonyl]adenylyl- $\left\{2^{\prime}-\left\{\mathrm{O}^{P}-[2-(4-\right.\right.$ nitro-phenyl)ethyl]\}-5']-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl ladenosine $\left((\mathrm{MeOTr})(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{3}} \varphi(\text { npeoc })^{6} \mathrm{~A}_{\mathrm{d}^{3}} \text { (} \mathrm{NHpalm}\right)^{3}$ (tbdms) $)^{2}$; 25). A soln. (4 ml) of abs. $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3, \mathbf{2 2}(200 \mathrm{mg}, 0.246 \mathrm{mmol}), 3^{\prime}$-deoxy-5'-O-(monomethoxytrityl)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine 2'-[2-(4-nitrophenyl)ethyl diisopropylphosphoramidite] (23) [6] (448 $\mathrm{mg}, 0.442 \mathrm{mmol}$) and 1 H -tetrazole ($62 \mathrm{mg}, 0.884 \mathrm{mmol}$) under N_{2} was stirred for 2.75 h . Then $\mathrm{I}_{2} / \mathrm{H}_{2} \mathrm{O} /$ pyridine $\left(0.5 \mathrm{~g}\right.$ of I_{2} in 5 ml of pyridine $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1: 1$) was added dropwise until the brown colour persisted. The mixture was stirred for further 10 min , diluted with $\mathrm{CHCl}_{3}(80 \mathrm{ml})$, washed twice with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaCl}$ soln. $(80 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and co-evaporated with toluene ($3 \times 20 \mathrm{ml}$). Purification by FC (silica gel, $10 \times 1.5 \mathrm{~cm}, \mathrm{CHCl}_{3}, 1 \%$ $\mathrm{MeOH} / \mathrm{CHCl}_{3} 2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$) gave colourless amorphous $25(428 \mathrm{mg}, 100 \%)$. $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right)$: R_{f} 0.63. UV (MeOH): 299(sh, 4.01), 272(sh, 4.76), 267(4.80), $237($ sh, 4.49$) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.71$ $(s, \mathrm{H}-\mathrm{C}(8)) ; 8.64,8.59(2 s, \mathrm{H}-\mathrm{C}(8)) ; 8.22-8.01\left(m, 10 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{C}(2), 2 \mathrm{NH}, 3 \times 2 \mathrm{Ho}\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.47-$ $7.19\left(m, 18 \mathrm{H}, 3 \times 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}, \mathrm{MeO} T r\right) ; 6.79\left(m, \mathrm{H}-\mathrm{N}\left(3^{\prime}\right), 2 \mathrm{H} o\right.$ to MeO$) ; 6.30,6.20\left(2 s, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $5.98\left(s, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.91\left(t, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.56,5.47\left(2 t, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.68-4.18\left(m, 11 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ (npeoc), $\left.\mathrm{POCH}_{2} \mathrm{CH}_{2}, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \times 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.78(s, \mathrm{MeO}) ; 3.38\left(m, 2 \times 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.13(m, 2$ $\mathrm{OCH}_{2} \mathrm{CH}_{2}$ (npeoc), $\left.\mathrm{POCH}_{2} \mathrm{CH}_{2}\right) ; 2.61-2.08\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{CH}_{2}\right) ; 1.51\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; 1.23\left(2 \mathrm{~s},\left(\mathrm{CH}_{2}\right)_{12}\right) ; 0.92(\mathrm{~s}, t-$ $\mathrm{Bu}) ; 0.87(s, \mathrm{Me}) ; 0.12(2 s, \mathrm{MeSi}) ; 0.08(s, \mathrm{MeSi})$. Anal. calc. for $\mathrm{C}_{88} \mathrm{H}_{107} \mathrm{~N}_{14} \mathrm{O}_{20} \mathrm{PSi}$ (1740.0): C 60.75, H 6.20, N 11.27; found: C 60.81, H 6.19, N 10.98.
17. 3'-O-[(tert-Butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)- ${ }^{6}$-[2-(4-nitrophenyl)ethoxycarbonyl]ade-nylyl-\{2'-\{($\mathrm{O}^{\mathrm{P}}-[2-(4-$ nitrophenyl) ethyl $\left.]\}-5^{\prime}\right\}-2^{\prime}-\mathrm{O}-[($ tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)-$\mathrm{N}^{6}-\left[2-(4-n i t r o p h e n y l)\right.$ ethoxycarbonyl]adenosine $\quad\left((\mathrm{MeOTr})(\mathrm{npeoc})^{6} \mathrm{~A}(\mathrm{tbdms})^{3^{3}} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{3}}(\mathrm{NHpalm})^{3^{3}}\right.$ (tbdms $)^{2^{\prime}}$; 26). As described for 25, with $22(250 \mathrm{mg}, 0.308 \mathrm{mmol})$, abs. $\mathrm{MeCN}(3.1 \mathrm{ml})$, abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{ml})$, $1 H$-tetrazole ($78 \mathrm{mg}, 1.108 \mathrm{mmol}$), and $3^{\prime}-O-\left[(\right.$ tert-butyl)dimethylsilyl $]-5^{\prime}-O-($ monomethoxytrityl $)-N^{6}-[2-(4-$ nitrophenyl)ethoxycarbonyl]adenosine 2'-[2-(4-nitrophenyl)ethyl diisopropylphosphoramidite] (24) [6]
($633 \mathrm{mg}, 0.554 \mathrm{mmol}$) under N_{2} for 2.25 h at r.t. Oxidation with $\mathrm{I}_{2} /$ pyridine $/ \mathrm{H}_{2} \mathrm{O}$, extraction with CHCl_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaCl}$ soln., drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, purification by FC (silica gel, $11 \times 1.5 \mathrm{~cm}, \mathrm{CHCl}_{3}(100 \mathrm{ml}) 1 \% \mathrm{MeOH} /$ $\left.\mathrm{CHCl}_{3}(200 \mathrm{ml})\right)$ gave $571 \mathrm{mg}(99 \%)$ of 26. Colourless foam. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.56$. UV $(\mathrm{MeOH}): 285(\mathrm{sh}, 4.40), 273(\mathrm{sh}, 4.73), 267(4.77), 240(\mathrm{sh}, 4.47), 212(\mathrm{sh}, 4.94) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.71-$ $8.63(m, 2 \times \mathrm{H}-\mathrm{C}(8)) ; 8.39-7.90\left(m, 10 \mathrm{H}, 3 \times 2 \mathrm{H} o\right.$ to $\left.\mathrm{NO}_{2}, 2 \times \mathrm{H}-\mathrm{C}(2), 2 \mathrm{NH}\right) ; 7.46-7.07(m, 18 \mathrm{H}, 3 \times$ 2 H m to NO_{2}, MeOTr $) ; 6.75(2 d, 2 \mathrm{H} o$ to MeO$) ; 6.32 ; 6.22\left(2 d, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.93-5.80\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$, $\left.\mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right) ; 5.65\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.79-3.84\left(m, 13 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ (npeoc), $\mathrm{POCH}_{2} \mathrm{CH}_{2}, 2 \times$ $\left.\mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \times 1 \mathrm{H} \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \times 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.74,3.73(2 s, \mathrm{MeO}) ; 3.52-2.52\left(m, 8 \mathrm{H}, 2 \times 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), 2\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$ (npeoc), $\left.\mathrm{POCH}_{2} \mathrm{CH}_{2}\right) ; 2.09\left(m, \mathrm{CH}_{2}\right) ; 1.53\left(m, \mathrm{CH}_{2}\right) ; 1.21\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right) ; 0.88(2 s, t-\mathrm{Bu}) ; 0.84(s, \mathrm{Me})$; $0.79(2 s, t-\mathrm{Bu})$; 0.07 to $0.03(m, 2 \mathrm{MeSi})$. Anal. calc. for $\mathrm{C}_{94} \mathrm{H}_{121} \mathrm{~N}_{14} \mathrm{O}_{21} \mathrm{PSi}_{2}$ (1870.2): C 60.37, H 6.52, N 10.48 ; found: C 60.60, H 6.66, N 10.11 .
18. 3'-Deoxy- ${ }^{6}-[2-(4-n i t r o p h e n y l) e t h o x y c a r b o n y l] a d e n y l y l-\left\{2^{\prime}-\left\{\mathrm{O}^{\mathrm{P}}-[2-(4-n i t r o p h e n y l)\right.\right.$ ethyl $\left.\left.]\right\}-5^{\prime}\right\}-2^{\prime}-\mathrm{O}-$ [(tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine $\left((\text { npeoc })^{6} \mathrm{~A}_{\mathrm{d}^{3}} \varphi(\text { npeoc })^{6} \mathrm{~A}_{\mathrm{d}^{3}}(\mathrm{NHpalm})^{3^{3}}(\text { tbdms })^{2} ; \mathbf{2 7}\right)$. Compound $25(369 \mathrm{mg}, 0.212 \mathrm{mmol})$ was stirred at r.t. in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1(4.5 \mathrm{ml})$ containing 2% of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ for 20 min . Then, the mixture was diluted with CHCl_{3} $(40 \mathrm{ml})$ and washed with phosphate buffer $(\mathrm{pH} 6.8 ; 2 \times 50 \mathrm{ml})$, the aq. phase re-extracted with $\mathrm{CHCl}_{3}(3 \times$ 40 ml), the combined org. layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue purified by FC (silica gel, $11 \times$ $1.5 \mathrm{~cm}, \mathrm{CHCl}_{3}(50 \mathrm{ml}), 1 \% \mathrm{MeOH}$ and $2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ (each 200 ml$)$): $283 \mathrm{mg}(91 \%)$ of 27. Amorphous solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right): R_{\mathrm{f}} 0.44$. UV (MeOH): 297 (sh, 4.08), 271 (sh, 4.77), 267 (4.80), 208 (sh, 4.87). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.78-8.69(m, 2 \times \mathrm{H}-\mathrm{C}(8)) ; 8.49-8.03\left(m, 10 \mathrm{H}, 3 \times 2 \mathrm{H} o\right.$ to $\left.\mathrm{NO}_{2}, 2 \times \mathrm{H}-\mathrm{C}(2), 2 \mathrm{NH}\right)$; $7.46\left(d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.45\left(d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.29\left(d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 6.13-5.85\left(m, 2 \times \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right)$; $5.42\left(m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 5.18,4.84\left(2 m, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.72-3.97\left(m, 12 \mathrm{H}, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right), 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ (npeoc), $\left.\mathrm{POCH}_{2} \mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \times 1 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \times 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.61\left(m, 2 \times 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.18\left(m, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ (npeoc)); $2.94\left(m, \mathrm{POCH}_{2} \mathrm{CH}_{2}\right) ; 2.70,2.36\left(2 m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.16\left(m, \mathrm{CH}_{2}\right) ; 1.59\left(m, \mathrm{CH}_{2}\right) ; 1.24\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right)$; $0.94(2 s, t-\mathrm{Bu}) ; 0.87(t, \mathrm{Me}) ; 0.20(s, \mathrm{MeSi}) ; 0.15(s, \mathrm{MeSi}) ; 0.14(s, \mathrm{MeSi}) ; 0.10(s, \mathrm{MeSi}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $-1.58 ;-1.75$. Anal. calc. for $\mathrm{C}_{68} \mathrm{H}_{91} \mathrm{~N}_{14} \mathrm{O}_{19} \mathrm{PSi}$ (1467.6): C 55.65, H 6.25, N 13.36; found: C 55.50, H 6.27, N 13.19.
19. 3'-O-[(tert-Butyl)dimethylsilyl]- $\mathrm{N}^{6}-\left[2-(4-n i t r o p h e n y l)\right.$ ethoxycarbonyl]adenylyl-\{2'-\{ $\mathrm{O}^{\mathrm{P}}-[2-(4-n i t r o-$ phenyl)ethyl]\}-5'\}-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl Jadenosine $\left((\mathrm{npeoc})^{6} \mathrm{~A}(\mathrm{tbdms})^{3^{3}} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{3}}(\mathrm{NHpalm})^{3^{\prime}}(\mathrm{tbdns})^{2} ; 28\right)$. As described for 27, with 26 ($528 \mathrm{mg}, 0.282 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1(6 \mathrm{ml})$ containing 2% of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. After stirring for 20 min at r.t. and workup with $\mathrm{CHCl}_{3}(80 \mathrm{ml})$ and phosphate buffer $(\mathrm{pH} 6.8,2 \times 50 \mathrm{ml})$, FC (silica gel, $11 \times 1.5 \mathrm{~cm}, \mathrm{CHCl}_{3}$ $\left.(100 \mathrm{ml}), 1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(200 \mathrm{ml})\right)$ gave $28(392 \mathrm{mg}, 87 \%)$. Amorphous solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1\right)$: $R_{\mathrm{f}} 0.45$. UV (MeOH): $285(\mathrm{sh}, 4.37), 270(\mathrm{sh}, 4.77), 267(4.79) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.87-7.94(\mathrm{~m}, 12 \mathrm{H}, 2 \times$ $\mathrm{H}-\mathrm{C}(8), 2 \times \mathrm{H}-\mathrm{C}(2), 2 \mathrm{NH}, 3 \times 2 \mathrm{H} o$ to $\left.\mathrm{NO}_{2}\right) ; 7.44\left(m, 2 \times 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ; 7.20,7.09\left(2 d, 2 \mathrm{H} m\right.$ to $\left.\mathrm{NO}_{2}\right) ;$ $6.15-5.49\left(m, 4 \mathrm{H}, 2 \times \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{N}\left(3^{\prime}\right)\right) ; 4.70-3.66\left(m, 16 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), 2 \times \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ (npeoc), $\left.\mathrm{POCH}_{2} \mathrm{CH}_{2}, 2 \times \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \times 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.15\left(q, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 2.81-2.08$ (m, $\left.\mathrm{POCH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2}\right) ; 1.58\left(m, \mathrm{CH}_{2}\right) ; 1.22\left(s,\left(\mathrm{CH}_{2}\right)_{12}\right) ; 0.93-0.82(m, 21 \mathrm{H}, 2 t-\mathrm{Bu}, \mathrm{Me}) ; 0.20-0.03\left(m, 2 \mathrm{SiMe}_{2}\right)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):-0.96,-1.27$. Anal. calc. for $\mathrm{C}_{74} \mathrm{H}_{105} \mathrm{~N}_{14} \mathrm{O}_{20} \mathrm{PSi}_{2}$ (1597.9): C 55.62, H 6.62, N 12.27 ; found: C 55.53, H 6.75, N 12.11.
20. 3'-Deoxy-5'-O-(monomethoxytrityl)- ${ }^{6}-[2-(4-n i t r o p h e n y l) e t h o x y c a r b o n y l] a d e n y l y l-\left\{2^{\prime}-\left\{\mathrm{O}^{\mathrm{P}}-[2-(4-n i t r o-\right.\right.$ phenyl)ethyl $\left.]\}-5^{\prime}\right\}-3^{\prime}$-deoxy- $\mathrm{N}^{6}-\left[2-(4-n i t r o p h e n y l)\right.$ ethoxycarbonyl]adenylyl-\{2'-\{ $\mathrm{O}^{P}-[2-(4-n i t r o p h e n y l)$ ethyl $\left.\left.]\right\}-5^{\prime}\right\}-$ $2^{\prime}-\mathrm{O}-\left[\left(\right.\right.$ tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- $\mathrm{N}^{6}-[2-(4-$ nitrophenyl)ethoxycarbonyl $] a d e$ nosine $\left.\left((\mathrm{MeOTrO})(\text { npeoc })^{6} \mathrm{~A}_{\mathrm{d}^{3}} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{3}} \varphi(\text { npeoc })^{6} \mathrm{~A}_{\mathrm{d}^{3}}(\mathrm{Nhpalm})^{3^{3}} \text { (tbdms }\right)^{2} ; \mathbf{2 9}\right)$. To a soln. of 27 (100 mg, $0.068 \mathrm{mmol})$ in abs. $\mathrm{MeCN}(2 \mathrm{ml})$ and abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml}), 1 H$-tetrazole $(17 \mathrm{mg}, 0.244 \mathrm{mmol})$ and 23 [6] (124 mg, 0.122 mmol) were added under N_{2}. At r.t., the mixture was stirred for 3 h , oxidized with $\mathrm{I}_{2} / \mathrm{H}_{2} \mathrm{O} /$ pyridine (I_{2} $(0.5 \mathrm{~g})$ in pyridine $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1: 1(5 \mathrm{ml})$), then stirred for another 15 min , diluted with $\mathrm{CHCl}_{3}(60 \mathrm{ml})$, and washed twice with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaCl}$ soln. $(50 \mathrm{ml})$. The aq. phase was re-extracted with $\mathrm{CHCl}_{3}(3 \times 40 \mathrm{ml})$, the combined org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and co-evaporated with toluene ($3 \times 20 \mathrm{ml}$), and the residue purified by FC (silica gel, $9 \times 1.5 \mathrm{~cm}, \mathrm{CHCl}_{3}(50 \mathrm{ml}), 2 \% \mathrm{MeOH}^{2} / \mathrm{CHCl}_{3}(200 \mathrm{ml})$). The trimer fractions were evaporated and dried ($30^{\circ} /$ high vacuum): 157 mg (96%) of fully protected 29. TLC (toluene/AcOEt/MeOH $5: 4: 1$): $R_{\mathrm{f}} 0.36$. UV (MeOH): 285 (sh, 4.60), 271 (sh, 4.93), 267 (4.96), 243 (sh, 4.65), 209 (sh, 5.14). Anal. calc. for $\mathrm{C}_{115} \mathrm{H}_{133} \mathrm{~N}_{21} \mathrm{O}_{31} \mathrm{P}_{2} \mathrm{Si}$ (2395.5): C 57.66, H 5.60, N 12.28; found: C 57.46, H 5.63, N 11.85.
21. 3'-O-[(tert-Butyl)dimethylsilyl]-5'-O-(monomethoxytrityl)- ${ }^{6}$-[2-(4-nitrophenyl) ethoxycarbonyl]ade-nylyl-\{2'-\{ $\mathrm{O}^{\mathrm{P}}-[2-(4-n i t r o p h e n y l)$ ethyl $\left.\left.]\right\}-5^{\prime}\right\}-3^{\prime}-$ deoxy $-\mathrm{N}^{6}-\left[2-(4-n i t r o p h e n y l)\right.$ ethoxycarbonyl]adenylyl- $\left\{2^{\prime}-\left\{\mathrm{O}^{\mathrm{P}}-[2-\right.\right.$ (4-nitrophenyl)ethyl]]-5')-2'-O-[(tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- N^{6}-[2-(4-nitrophe-
nyl)ethoxycarbonyl]adenosine ((MeOTr)(npeoc) $)^{6} \mathrm{~A}(\mathrm{tbdms})^{3} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{5}} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{5}}(\mathrm{NHpalm})^{3}$ (tbdms) $)^{2}$; 30). As described for $\mathbf{2 9}$, with $27(100 \mathrm{mg}, 0.068 \mathrm{mmol}), 24$ [6$]$ ($140 \mathrm{mg}, 0.122 \mathrm{mmol}$), and $1 H$-tetrazole ($17 \mathrm{mg}, 0.244 \mathrm{mmol}$) in a soln. (3 ml) of abs. $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ under $\mathrm{N}_{2}(3 \mathrm{~h}$, r.t.). FC (silica gel, $10 \times 1.5 \mathrm{~cm}$, $\mathrm{CHCl}_{3}(50 \mathrm{ml}), 2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(200 \mathrm{ml})$) gave $\mathbf{3 0}(157 \mathrm{mg}, 91 \%)$. TLC (toluene/AcOEt/MeOH $\left.5: 4: 1\right): R_{\mathrm{f}}$ 0.44. UV (MeOH): 286 (sh, 4.59), 271 (sh, 4.94), 267 (4.97), 243 (sh, 4.66). Anal. calc. for $\mathrm{C}_{121} \mathrm{H}_{147} \mathrm{~N}_{21} \mathrm{O}_{32} \mathrm{P}_{2} \mathrm{Si}_{2}$. $\mathrm{H}_{2} \mathrm{O}$ (2543.8): C 57.13, H 5.90, N 11.56 ; found: C 56.85, H 5.74, N 11.52.
22. $3^{\prime}-$ Deoxy-5' 5^{\prime} O-(monomethoxytrityl) $-\mathrm{N}^{6}-\left[2-\left(4-\right.\right.$ nitrophenyl) ethoxycarbonyl]adenylyl- $-2^{\prime}-\left\{\mathrm{O}^{\mathrm{P}}-[2-(4-\right.$ nitro-phenyl)ethyll]-5'\}-3'-O-[(tert-butyl)dimethylsilyl]- $\mathrm{N}^{6}-\left[2-\left(4-\right.\right.$ nitrophenyl)ethoxycarbonyl]adenylyl-\{2'-\{[$\mathrm{O}^{\mathrm{P}}-[2-$ (4-nitrophenyl) ethyl]]-5']-2'-O-[(tert-butyl) dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)- $\mathrm{N}^{6}-[2-(4-$ nitrophenyl)ethoxycarbonyl]adenosine $\left((\mathrm{MeOTr})(\mathrm{npeoc})^{6} \mathrm{~A}_{d^{8}} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}(\mathrm{tbdms})^{3} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}_{\mathrm{d}^{8}}(\mathrm{NHpalm})^{3}(\mathrm{tbdns})^{2}\right.$; 31). As described for 29, with 28 ($120 \mathrm{mg}, 0.075 \mathrm{mmol}$), 23 [6] ($137 \mathrm{mg}, 0.135 \mathrm{mmol}$), and $1 H$-tetrazole (19 mg , $0.27 \mathrm{mmol})$ in abs. $\mathrm{MeCN}(2.4 \mathrm{ml})$ and abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{ml})$ for 3 h at r.t. $\left(\mathrm{N}_{2}\right)$. Oxidation with $\mathrm{I}_{2} /$ pyridine $/ \mathrm{H}_{2} \mathrm{O}$, and workup with $\mathrm{CHCl}_{3}(80 \mathrm{ml})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaCl}$ soln. $(2 \times 60 \mathrm{ml})$. FC (silica gel, $10 \times 1.5 \mathrm{~cm}$), CHCl_{3} $(50 \mathrm{ml}), 2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(200 \mathrm{ml})$) gave the fully protected $31(184 \mathrm{mg}, 97 \%)$. Amorphous solid. TLC (toluene/AcOEt/MeOH 5:4:1): $R_{\mathrm{f}} 0.52$. UV (MeOH): 285 (sh, 4.51), 272 (sh, 4.85), 267(4.88), 240 (sh, 4.53), 208 (sh, 5.06). Anal. calc. for $\mathrm{C}_{121} \mathrm{H}_{147} \mathrm{~N}_{21} \mathrm{O}_{32} \mathrm{P}_{2} \mathrm{Si}_{2}$ (2525.7): C 57.54, H 5.87, N 11.65; found: C 57.47, H 6.01, N 11.46 .
23. 3'-O-[(tert-Butyl) dimethylsilyl]-5'-O-(monomethoxytrityl)- N^{6}-[2-(4-nitrophenyl) ethoxycarbonyl]ade-nylyl-\{2 $2^{\prime}-\left[\mathrm{O}^{\mathrm{P}}-\left[2-(4-\right.\right.$ nitrophenyl) ethyll $\left.]-5^{\prime}\right]-3^{\prime}-\mathrm{O}-\left[\left(\right.\right.$ tert-butyl) dimethylsilyl] $-\mathrm{N}^{6}-[2-(4-$ nitrophenyl) ethoxycarbonyl]-adenylyl-\{2'-\{ $\mathrm{O}^{\mathrm{P}}-\left[2-(4-\right.$-nitrophenyl) ethyl] $\left.]-5^{\prime}\right\}-2^{\prime}-\mathrm{O}-[($ tert-butyl)dimethylsilyl]-3'-deoxy-3'-(hexadecanoylamino)-N^{6}-[2-(4-nitrophenyl)ethoxycarbonyl]adenosine $\left((\mathrm{MeOTr})(\mathrm{npeoc})^{6} \mathrm{~A}(\mathrm{tbdms})^{3} \varphi(\mathrm{npeoc})^{6} \mathrm{~A}(\mathrm{tbdms})^{3} \varphi(\mathrm{npeoc})^{6}-\right.$ $\left.\mathrm{A}_{\mathrm{d}^{3}}(\mathrm{NHpalm})^{3} 2^{\prime} \mathbf{3 2}\right)$. As described for 29, with $28(120 \mathrm{mg}, 0.075 \mathrm{mmol}), \mathbf{2 4}[6](154 \mathrm{mg}, 0.135 \mathrm{mmol})$, and $1 \mathrm{H}-$ tetrazole ($19 \mathrm{mg}, 0.27 \mathrm{mmol}$) in abs. $\mathrm{MeCN} /$ abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1(3.6 \mathrm{ml})$ under $\mathrm{N}_{2}\left(4.5 \mathrm{~h}\right.$, r.t.). Oxidation with $\mathrm{I}_{2} /$ pyridine $/ \mathrm{H}_{2} \mathrm{O}$, extraction with $\mathrm{CHCl}_{3}(80 \mathrm{ml})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaCl}$ soln. $(2 \times 60 \mathrm{ml})$, and purification by FC (silica gel, $11 \times 1.5 \mathrm{~cm} \mathrm{CHCl} 3$ (100 ml), $2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}(150 \mathrm{ml})$) gave $32(188 \mathrm{mg}, 94 \%)$. Colorless foam. TLC (toluene/AcOEt/ MeOH 5:4:1): $R_{\mathrm{f}} 0.61 . \mathrm{UV}(\mathrm{MeOH}): 286(\mathrm{sh}, 4.52), 271$ (sh, 4.89), 267 (4.92), 242 (sh, 4.61), 208 (sh, 5.11). Anal. calc. for $\mathrm{C}_{127} \mathrm{H}_{161} \mathrm{~N}_{21} \mathrm{O}_{33} \mathrm{P}_{2} \mathrm{Si}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (2674.0): C 57.05, H 6.14, N 11.00; found: C 56.82, H 6.24, N 11.01 .
24. 3^{\prime}-Deoxyadenylyl-($\left.2^{\prime}-5^{\prime}\right)$-3'-deoxyadenylyl-($\left.2^{\prime}-5^{\prime}\right)-3^{\prime}$-deoxy- 3^{\prime}-(hexadecanoylamino) adenosine $\left(\mathrm{A}_{\mathrm{d}^{3}}\right.$ -$\left.\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{\mathrm{d}^{s}}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{\mathrm{d}^{s}}(\mathrm{NHpalm})^{3} ; \mathbf{3 3}\right)$. At r.t., the soln. of $29(70 \mathrm{mg}, 29 \mathrm{mmol})$ in $0.5 \mathrm{M} \mathrm{DBU} / \mathrm{MeCN}(5.8 \mathrm{ml})$ was stirred for 24 h , then neutralized with 1 MAcOH in $\mathrm{MeCN}(2.9 \mathrm{ml})$, stirred for another 15 min , and finally diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ to dissolve the precipitate. TLC (silica gel, Polygam plates, $\mathrm{AcOEt} /\left(\mathrm{i}-\mathrm{PrOH} / \mathrm{NH}_{3} /\right.$ $\left.\mathrm{H}_{2} \mathrm{O} 7: 1: 2\right) 1: 1$): $R_{\mathrm{f}} 0.31$. To split off the (tert-butyl)dimethylsilyl groups, the soln. was evaporated, $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3$ $\mathrm{H}_{2} \mathrm{O}(316 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (1 ml) added, and the mixture stirred for 41 h at r.t. and evaporated. TLC (cellulose, $\mathrm{i}-\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1$): $R_{\mathrm{f}} 0.68$. The residue was washed several times with MeCN and lyophilized from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ 1:1 $(20 \mathrm{ml})$. The $(\mathrm{MeOTr}) \mathrm{A}_{\mathrm{d}^{8}}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{\mathrm{d}^{8}}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{d^{8}}(\mathrm{NHpalm})^{3}$ was then detritylated with $\mathrm{AcOH}(4 \mathrm{ml})$ in $\mathrm{MeOH}(0.5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ for 24 h at r.t., the mixture evaporated, and co-evaporated with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(8 \times 5 \mathrm{ml})$, and the residue lyophilized from dioxane $/ \mathrm{H}_{2} \mathrm{O} 2: 1$, then washed several times with MeCN , and lyophilized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}: 33(8.6 \mathrm{mg})$. Colourless powder. TLC (cellulose, i-PrOH/ $\mathrm{NH}_{3} /$ $\mathrm{H}_{2} \mathrm{O}$ 8:1:1): $R_{\mathrm{f}} 0.56 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right):-1.52$. HPLC: $t_{\mathrm{R}} 32.17 \mathrm{~min}$ (Fig. 1): FAB-MS $1154[M+\mathrm{H}+$ $\mathrm{Na}]^{+}$.
25. Adenylyl-(2' $\left.2^{\prime}-5^{\prime}\right)-3^{\prime}-$ deoxyadenylyl-($\left.2^{\prime}-5^{\prime}\right)-3^{\prime}$-deoxy- 3^{\prime}-(hexadecanoylamino) adenosine $\left(\mathrm{A}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{d^{d}}\left(2^{\prime}-5^{\prime}\right)\right.$ $\left.\mathrm{A}_{\mathrm{d}^{8}}(\mathrm{NHpalm})^{3} ; \mathbf{3 4}\right)$. As described for $\mathbf{3 3}$, with $\mathbf{3 0}(70 \mathrm{mg}, 27.7 \mathrm{mmol}), 0.5 \mathrm{~m} \mathrm{DBU} / \mathrm{MeCN}(5.5 \mathrm{ml})$, r.t., $25 \mathrm{~h}, 1 \mathrm{~m}$ $\mathrm{AcOH} / \mathrm{MeCN}(2.75 \mathrm{ml}), 30 \mathrm{~min}$. TLC (silica gel, Polygam plates, $\left.\mathrm{AcOEt} /\left(\mathrm{i}-\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 7: 1: 2\right) 1: 1\right): R_{\mathrm{f}}$ $0.41 . \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(631 \mathrm{mg}, 2 \mathrm{mmol})$ in THF $(3 \mathrm{ml}), 28 \mathrm{~h}$ at $\mathrm{r} . \mathrm{t}$. and 2 d at 8°. Then, the mixture was diluted with $\mathrm{CHCl}_{3}(25 \mathrm{ml})$ and washed with sat. NaCl soln. $(25 \mathrm{ml})$. The aq. phase was washed with $\mathrm{CHCl}_{3}(2 \times 20 \mathrm{ml})$. The combined org. layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was digested with $\mathrm{MeCN}(10 \mathrm{ml})$ and centrifuged ($3000 \mathrm{r} / \mathrm{min}, 15 \mathrm{~min}$) and the soln. decanted. The powder was washed twice with MeCN (centrifugation) and finally dissolved in $\mathrm{MeOH}(2 \mathrm{ml})$. TLC (cellulose, i- $\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$ 8:1:1): $R_{\mathrm{f}} 0.64$. $\mathrm{AcOH}(4 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ were added, the mixture was stirred at r.t. for 25 h , evaporated to $1 / 2$ of its volume, and co-evaporated with $\mathrm{MeOH}(3 \times 10 \mathrm{ml})$. The residue was treated with $\mathrm{MeCN}(10 \mathrm{ml})$, centrifuged $(15 \mathrm{~min}, 3000 \mathrm{r} / \mathrm{min})$, decanted and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml}): \mathbf{3 4}(10.8 \mathrm{mg})$ after drying ($40^{\circ} /$ high vacuum). Colourless powder. TLC (cellulose, $\mathrm{i}-\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1$): $R_{\mathrm{f}} 0.57$. $\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}} 32.69 \mathrm{~min}$. FAB-MS: $1169\left[M^{+} \mathrm{H}+\mathrm{Na}\right]^{+}$(see Fig. 2).
26. 3^{\prime}-Deoxyadenylyl- $\left(2^{\prime}-5^{\prime}\right)$-adenylyl- $\left(2^{\prime}-5^{\prime}\right)-3^{\prime}$-deoxy- 3^{\prime}-(hexadecanoylamino) adenosine $\left(\mathrm{A}_{d^{8}}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}\left(2^{\prime}-5^{\prime}\right)\right.$ $\left.\mathrm{A}_{\mathrm{d}^{3}}(\mathrm{NHpalm})^{3} ; \mathbf{3 5}\right)$. As described for $\mathbf{3 3}$, with $\mathbf{3 1}(70 \mathrm{mg}, 27.7 \mathrm{mmol}), 0.5 \mathrm{~m}$ DBU/MeCN (5.5 ml), r.t., $40 \mathrm{~h}, 1 \mathrm{~m}$
$\mathrm{AcOH} / \mathrm{MeCN}(2.75 \mathrm{ml}), 30 \mathrm{~min}$. TLC (silica gel, Polygam plates, $\left.\mathrm{AcOEt} /\left(\mathrm{i}-\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 7: 1: 2\right) 1: 1\right): R_{\mathrm{f}}$ $0.52 . \mathrm{Bu}_{4} \mathrm{~N} \cdot 3 \mathrm{H}_{2} \mathrm{O}(631 \mathrm{mg}, 2 \mathrm{mmol})$ in THF $(2 \mathrm{ml}), 4 \mathrm{~d}$ at r.t., final evaporation. The residue was extracted with $\mathrm{CHCl}_{3}(40 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$, the aq. phase washed with $\mathrm{CHCl}_{3}(2 \times 30 \mathrm{ml})$, and the combined org. phase evaporated. The sirupy residue was washed with $\mathrm{MeCN}(3 \times 2 \mathrm{ml})$ to give a colourless precipitate. TLC (cellulose, i- $\left.\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1\right): R_{\mathrm{f}} 0.79 . \mathrm{MeOH}(0.5 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ and $\mathrm{AcOH}(4 \mathrm{ml})$ were added, and the mixture was stirred at r.t. for 24 h and co-evaporated with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,5 \times 10 \mathrm{ml})$ and $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}(3 \times$ $5 \mathrm{ml})$. The residue was washed several times with EtOH and MeCN and lyophilized from $\mathrm{H}_{2} \mathrm{O}: \mathbf{3 5}(17 \mathrm{mg})$. Colourless powder. TLC (cellulose, $i-\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1$): $R_{\mathrm{f}} 0.54$. UV (MeOH): 259(4.55). HPLC: t_{R} 31.52 min. FAB-MS: $1147[M+\mathrm{H}]^{+}, 1169[M+\mathrm{Na}]^{+}$(Fig. 2).
27. Adenylyl-($\left.2^{\prime}-5^{\prime}\right)$-adenylyl-($\left.2^{\prime}-5^{\prime}\right)$-3'-deoxy-3'-(hexadecanoylamino)adenosine $\left(\mathrm{A}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}\left(2^{\prime}-5^{\prime}\right) \mathrm{A}_{\mathrm{d}^{3^{\prime}}}\right.$ (NHpalm) ${ }^{3}$; 36). As described for $\mathbf{3 3}$, with $32(70 \mathrm{mg}, 26.4 \mathrm{mmol}), 0.5 \mathrm{~m} \mathrm{DBU} / \mathrm{MeCN}(5.3 \mathrm{ml})$, r.t., $24 \mathrm{~h}, 1 \mathrm{~m}$ $\mathrm{AcOH} / \mathrm{MeCN}(2.65 \mathrm{ml}), 30 \mathrm{~min}$. TLC (silica gel, Polygam plates, $\left.\mathrm{AcOEt} /\left(\mathrm{i}-\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 7: 1: 2\right) 1: 1\right): R_{\mathrm{f}}$ $0.59 . \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(947 \mathrm{mg}, 3 \mathrm{mmol})$ in THF $(5 \mathrm{ml}), 3 \mathrm{~d}$ at r.t., final evaporation. TLC (cellulose; i-PrOH/ $\left.\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1\right): R_{\mathrm{f}} 0.77$. $\mathrm{MeOH}(0.5 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$, and $\mathrm{AcOH}(4 \mathrm{ml})$ were added, the mixture was stirred at r.t. for 23 h , evaporated, co-evaporated with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(4 \times 15 \mathrm{ml})$, and washed several times with EtOH . The residue was lyophilized from $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}: \mathbf{3 6}(8.5 \mathrm{mg})$. Colourless powder. TLC (cellulose, i $\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1$): $R_{\mathrm{f}} 0.48 . \mathrm{HPLC}: t_{\mathrm{R}} 32.14 \mathrm{~min}$ (Fig. 1). FAB-MS: $1164[M+\mathrm{H}]^{+}, 1185[M+\mathrm{Na}]^{+}$.

REFERENCES

[1] E. I. Kvasyuk, I. A. Mikhailopulo, J. W. Homan, K. T. Iacono, N. F. Muto, R. J. Suhadolnik, W. Pfleiderer, Helv. Chim. Acta 1999, 82, 19.
[2] M. C. Samano, M. J. Robins, Tetrahedron Lett. 1989, 30, 2329.
[3] M. Friedman, D. H. Metz, R. M. Esteban, D. R. Tovell, L. A. Ball, I. M. Kerr, J. Virol. 1972, 10, 1184; W. K. Roberts, A. G. Hovanessian, R. E. Brown, M. J. Clemens, J. M. Kerr, Nature (London) 1976, 264, 477; A. G. Hovanessian, R. E. Brown, J. M. Kerr, ibid. 1977, 268, 537.
[4] P. F. Torrence, in 'Biological Response Modifiers. New Approach to Disease Intervention', Academic Press, Orlando 1985, p. 77.
[5] R. Charubala, W. Pfleiderer, in 'Progress in Molecular and Subcellular Biology', Eds. W. E. G. Müller and H. C. Schröder, Springer Verlag, Berlin-Heidelberg 1994, Vol. 14, 114.
[6] H. Schirmeister, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 10.
[7] M. Wasner, E. E. Henderson, R. J. Suhadolnik, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 1757.
[8] M. Wasner, R. J. Suhadolnik, S. E. Horvath, M. E. Adelson, N. Kon, M.-X. Guan, E. E. Henderson, W. Pfleiderer, Helv. Chim. Acta 1996, 79, 609.
[9] M. Wasner, R. J. Suhadolnik, S. E. Horvath, M. E. Adelson, N. Kon, M.-X. Guan, E. E. Henderson, W. Pfleiderer, Helv. Chim. Acta 1996, 79, 619.
[10] C. Hörndler, W. Pfleiderer, Helv. Chim. Acta 1996, 79, 718.
[11] P. Herdewijn, K. Ruf, W. Pfleiderer, Helv. Chim. Acta 1991, 74, 7.
[12] W. Pfleiderer, F. Himmelsbach, R. Charubala, Bioorg. Med. Chem. Lett. 1994, 4, 1047.
[13] E. I. Kvasyuk, T. I. Kulak, I. A. Mikhailopulo, R. Charubala, W. Pfleiderer, Helv. Chim. Acta 1995, 78, 1777.
[14] S. L. Beaucage, R. P. Iyer, Tetrahedron 1993, 49, 1925 and ref. cit. therein.
[15] H. P. M. Fromageot, B. E. Griffin, C. B. Reese, J. E. Sulston, Tetrahedron 1967, 23, 2315.
[16] M. J. Robins, Y. Fouron, R. Mengel, J. Org. Chem. 1974, 39, 1565
[17] R. Mengel, H. Wiedner, Chem. Ber. 1976, 109, 433.
[18] L. Goodman, B. R. Baker, J. Org. Chem. 1960, 25, 1946; H. G. Fletcher Jr., J. Am. Chem. Soc. 1953, 75, 2624; B. R. Baker, K. Hewson, J. Org. Chem. 1957, 22, 966.
[19] M. Mohr, Diploma, Universität Konstanz, 1987; N. E. Poopeiko, E. I. Kvasyuk, I. A. Mikhailopulo, Synthesis 1985, 605; A. M. Ozols, A. V. Azhayev, N. B. Dyatkina, A. A. Krayevsky, ibid. 1980, 557; G. M. Visser, J. van Westrenen, C. A. A. van Boeckel, J. H. van Boom, Recl. Trav. Chim Pays-Bas 1986, 505, 528; T. Nishimura, I. Iwai, Chem. Pharm. Bull. 1964, 12, 352.
[20] M. J. Robins, S. D. Hawrelak, A. E. Hernández, S. F. Wnuk, Nucleosides Nucleotides 1992, 11, 821.
[21] S. Greenberg, J. G. Moffatt, J. Am. Chem. Soc. 1973, 95, 4016.
[22] A. F. Russell, S. Greenberg, J. G. Moffatt, J. Am. Chem. Soc. 1973, 95, 4025.
[23] M. J. Robins, F. Hansske, N. H. Low, J. I. Park, Tetrahedron Lett. 1984, 25, 367.
[24] F. Hansske, M. J. Robins, Tetrahedron Lett. 1985, 26, 4295.
[25] R. Mengel, H. Wiedner, Chem. Ber. 1976, 109, 1395.
[26] M. J. Robins, Y. Fouron, R. Mengel, J. Org. Chem. 1974, 39, 1564.
[27] C. Xi, Z. Jun-Dong, Z. Li-He, Synthesis 1989, 383.
[28] Y. Guindon, Ch. Yoakim, H. E. Morton, J. Org. Chem. 1984, 49, 3912.
[29] Y. Guindon, M. Therien, Y. Girard, Ch. Yoakim, J. Org. Chem. 1987, 52, 1680.
[30] H. Nörth, H. Vahrenkamp, J. Organomet. Chem. 1968, 11, 399.
[31] Y. Guindon, Ch. Yoakin, H. E. Morton, Tetrahedron Lett. 1983, 24, 2969.
[32] M. C. Samano, M. J. Robins, personal communication, 1992.
[33] F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, Tetrahedron 1984, 40, 59.
[34] H. Sigmund, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 1267.
[35] R. Charubala, E. Uhlmann, F. Himmelsbach, W. Pfleiderer, Helv. Chim. Acta 1987, 70, 2028.
[36] R. W. Sobol, E. E. Henderson, N. Kon, J. Shao, P. Hitzges, E. Mordechai, N. L. Reichenbach, R. Charubala, H. Schirmeister, W. Pfleiderer, R. J. Suhadolnik, J. Biol. Chem. 1995, 270, 5963.

[^0]: $\left.{ }^{1}\right)$ Part LVIII: [1]

[^1]: ${ }^{\text {a }}$) Inhibition of HIV-1 reverse transcription was measured by PCR amplification partial reverse transcripts. 100% indicates no amplification, 0% indicates amplification by one or more primer sets. Concentrations of 34 and 35 were $100 \mu \mathrm{M} .{ }^{\text {b }}$) HIV-1 Integrase assays were done by integration by the HIV-1 genome by endonucleolytic cleavage of two terminal nucleotides from the 3^{\prime}-ends of the viral DNA. 100% inhibition is based on a comparison to AZT 5^{\prime}-monophosphate; 0% indicates no inhibition of integrase activity. Concentrations of $\mathbf{3 4}$ and 35 were $1000 \mu \mathrm{M} .{ }^{\text {c }}$) Inhibition of expression of p24 antigen was determined by Western blotting. Concentrations of $\mathbf{3 4}$ and $\mathbf{3 5}$ were $300 \mu \mathrm{~m}$.

