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EFFICIENT DIMERIC ESTERIFICATION OF ALCOHOLS
WITH NBS IN WATER USING L-PROLINE AS CATALYST

Xiuhong Liu, Jun Wu, and Zhicai Shang
Department of Chemistry, Zhejiang University, Hangzhou, China

GRAPHICAL ABSTRACT

Abstract The L-proline-catalyzed oxidation of aliphatic primary alcohols withN-bromosuc-

cimide (NBS) in water at room temperature to afford the corresponding dimeric esters in

good to excellent yields was described. This pathway of dimeric esterification was proved to

be very simple and environmentally friendly.

Keywords Aliphatic primary alcohols; dimeric esterification; L-proline; NBS; water

INTRODUCTION

Extensive studies on the dimeric esterification of primary alcohols have been
carried out over the past 20 years, and numerous methods have been developed.
For example, dimeric esterification could be successfully promoted by metal
complexes [Ru3(CO)12,

[1] RuH2(Ph3P)4,
[2,3] PdCl2,

[4,5] Pd(OAc)2,
[6] PhCH2N

þ

Me3Br
�
4 MoO [7] and [IrCl(coe)2]2

[8]], chromic acids (Na2Cr2O7=H2SO4
[9] and PCC=

Al2O3
[10]), oxoammonium salt in combination with pyridine,[11] molecular iodine,[12]

and brominated reagents [Br2=KBrO3,
[13] NaBrO2=CH3COOH,[14] NaBrO3=HBr,[15]

pyridinium hydrobromide perbromide (PHPB)[16] and others.[17–20]]. However, most
of these pathways still have several drawbacks from both environmental and oper-
ational points of view, such as employment of toxic and expensive metal complexes
as catalysts, use of volatile organic compounds as solvents, poor yields, and require-
ments for an anhydrous environment, strong oxidative conditions, high temperature,
long reaction times or inert gases. Thus there is still demand for simple and clean
oxidation procedures.

As the use of N-bromosuccinimide (NBS) is more convenient and safe in
organic synthesis than bromine, NBS is typically used for bromination.[21–23] In
addition, NBS=additives have received considerable attention for oxidation of
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alcohols to the corresponding aldehydes or ketones, such as NBS=b-cyclodextrin,[24]

NBS=cobalt(II) acetylacetonate,[25] NBS=NH4Cl,
[26] NBS=H2O2,

[27] and so on.
However, NBS used for the dimeric esterification of primary alcohols has rarely been
described. Therefore, it is meaningful to develop dimeric esterification of primary
alcohols using NBS as an effective oxidizing agent, which is a simple and green
procedure.

Recently, organocatalysis using small molecules has generated great interest in
organic synthesis.[28–31] Among many organocatalysts, L-proline is very important
because it is commercially available and inexpensive and could serve as an efficient
catalyst for a range of quintessential reactions, such as the asymmetric Aldol,[32,33]

Mannich,[34,35] Michael,[36,37] a-oxidation,[38–40] Diels–Alder,[41,42] multicomponent
Biginelli,[43,44] and Knoevenagel-type reactions.[45–48] Herein, to establish more sim-
ple and safe reaction conditions, we have used NBS in the dimeric esterification. To
the best of our knowledge, this is the first successful example of efficient dimeric
esterification of aliphatic primary alcohols in water with NBS as oxidant and
L-proline as catalyst (Scheme 1).

Initially, the esterification of n-pentanol (2mmol) was carried out with NBS
(1 equiv.) in the presence of L-proline (0.8mmol) in water (4ml) at room tempera-
ture, and the corresponding pentyl pentanoate was obtained in 67% yield in 2 h
(Table 1, entry 1). This reaction was used as a model to evaluate the effect of catalyst
and oxidant loading on the reaction. The results were described in Table 1. In
Table 1, it was exciting to observed that when 0.2mmol L-proline was used as cata-
lyst and 2 equiv. NBS was used as oxidant, in 1 h the corresponding dimeric ester
could be obtained in 97% yield (Table 1, entry 10). Based on those experimental
results in Table 1, we could conclude that both the concentration of Br2, which
was generated from NBS, and the reaction time have effects on the yields of the pro-
ducts. Moreover, different organic solvents were further tested as reaction media,
and the results showed that no reaction took place in solvents such as Et2O,
dimethylsulfoxide (DMSO), and CH3CH2OH, while poor yields of dimeric ester
were obtained in CH3COCH3, CH2Cl2, and CH3CN. Obviously, water was the best
solvent for the reaction.

The efficiency of the L-proline reagent compared to various primary or second-
ary amines catalysts was also examined (Table 2). This study found that the corre-
sponding dimeric ester could be obtained in good yield in the presence of any
catalyst in Table 2. However, L-proline was a more efficient and superior catalyst
(entry 4) than other catalysts with respect to yield of the desired ester in comparison.
To show the effect of L-proline for esterification, the reaction was carried out with-
out L-proline and no reaction took place (Table 2, entry 1). L-Proline was conse-
quently ascertained to be essential for the esterification of n-pentanol with NBS in
water.

Scheme 1. Dimeric esterification of aliphatic primary alcohols with NBS using L-proline as catalyst.
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Based on these optimized conditions, several aliphatic primary alcohols with
NBS utilizing L-proline in water at room temperature were examined. All reactions
were completed within 1–3 h, as indicated in Table 3. From the results in Table 3, we
could see that higher aliphatic primary alcohols underwent oxidation smoothly to
give the corresponding dimeric esters in excellent yields and high purity without

Table 1. L-Proline catalyzed oxidation of n-pentanol

Entry NBS (equiv.) L-proline (mol%) Solvent Time (h) Yielda (%)

1 1.0 20 H2O 2.0 67

2 0.5 20 H2O 2.0 31

3 1.5 20 H2O 2.0 84

4 2.0 20 H2O 2.0 93

5 2.5 20 H2O 2.0 93

6 2.0 0 H2O 2.0 0

7 2.0 5 H2O 2.0 89

8 2.0 10 H2O 2.0 95

9 2.0 40 H2O 2.0 88

10 2.0 60 H2O 2.0 90

11 2.0 10 H2O 0.5 92

12 2.0 10 H2O 1.0 97

13 2.0 10 H2O 1.5 95

14 2.0 10 H2O 2.5 95

15 2.0 10 Et2O 4.0 0

16 2.0 10 CH3COCH3 4.0 7b

17 2.0 10 CH2Cl2 4.0 18b

18 2.0 10 CH3CN 4.0 38b

19 2.0 10 DMSO 4.0 0

20 2.0 10 CH3CH2OH 4.0 0

Note. Reaction conditions: n-pentanol, 2mmol; solvent, 4ml; at room tempera-

ture. A variety of conditions to get pentyl pentanoate were investigated including

the reaction times, solvents, and L-proline and NBS loading.
aIsolated yield.
bYield determined by GC.

Table 2. Effect of catalysts on pentyl pentanoate yield

Entry Catalyst Yielda (%)

1 No catalyst 0

2 Pyrrolidine 79

3 Piperidine 88

4 L-proline 97

5 L-alanine 83

6 D-valine 86

7 L-lysine 90

8 L-aspartic acid 87

9 L-cystine 86

Note. Reaction conditions: n-pentanol, 2mmol; NBS, 4mmol; catalyst,

0.2mmol; water, 4ml; at room temperature; and 1 h.
aIsolated yield.
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further purification by column chromatography (Table 3, entries 2 and 5–9).
1-Hexadecanol, however, could not react very well for a long time, which may be
because the 1-hexadecanol was solid and totally insoluble in water, and thus could
not be brought into contact with the reaction medium very well (Table 3, entry 10).

Table 3. L-Proline-catalyzed oxidation of alcohols using NBS as oxidant

Entry Reagent Product Time (h) Yielda (%)

1 3.0 90

2 1.0 97

3 2.0 85

4 3.0 92

5 1.0 94

6 1.0 95

7 1.0 97

8 3.0 94

9 3.0 99

10 — 24 —

11 2.0 Trace

2.0 83

12 2.0 84

13 4.0 91

14 1.0 83

15 1.0 91

Note. Reaction conditions: alcohols, 2.0mmol; NBS, 4.0mmol; L-proline, 0.2mmol; water, 4ml; and at

room temperature.
aIsolated yield.
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Moreover, branched aliphatic primary alcohols such as 3-methyl-1-butanol and
2-methyl-1-butanol were also oxidatively dimerized to the corresponding esters in
good yields accompanied by a small amount of free fatty acids (Table 3, entries 3
and 4). However, oxidation of benzyl alcohol gave a negligible extent of benzyl ben-
zoate under identical conditions; instead, the corresponding benzaldehyde and some
monobromo benzaldehydes were obtained (Table 3, entries 11).[14] On the other hand,
secondary alcohols could also participate in the reaction to afford good yields of the
corresponding carbonyl compounds, which were in accordance with previous reports
(Table 3, entries 12–15).[4,16,18]

In conclusion, we have developed a green and efficient method for the dimeric
esterification of various primary alcohols with NBS using a catalytic amount of
L-proline as catalyst in water at room temperature. The important advantages of this
procedure are as follows: (a) operational simplicity, (b) eliminating toxic organic sol-
vents as reaction medium, (c) mild reaction conditions, (d) short reaction time, (e)
good to excellent yields without further purification by column chromatography,
and (f) employment of a catalytic amount of inexpensive and easily accessible
catalyst.

EXPERIMENTAL

Most of the organic chemical substrates are commercially available and pur-
chased from Alfa Aesar. Infrared radiation (IR) spectra were recorded on an Nexus
470 Fourier transform (FT)–IR spectrophotometer, and 1H NMR data were
recorded on an Advance DMX 500-MHz spectrometer in CDCl3 solution using
tetramethylsilane (TMS) as internal standard.

General Reaction Protocol

In a typical experiment, alcohol (2mmol), NBS (4mmol), and water were
(4ml) added a round-bottomed flask (25ml). Then, L-proline (0.2mmol) was added,
and the reaction mixture was stirred at room temperature. After the reaction was
completed, the mixture was quenched with 0.5M aqueous Na2S2O3 (3–5ml) and
extracted with Et2O three times (3� 5ml). The organic layer was washed with brine
and dried over Na2SO4. After removal of the solvent in vacuo, the product was
purified by column chromatography if necessary (n-hexane=ethyl acetate).

Spectral (IR and 1H NMR) Data of Some Representative Compounds

Butyl butyrate (Table 3, Entry 1). IR: 1473, 1724 cm�1. 1H NMR (500MHz,
CDCl3, 25

�C, TMS): d¼ 0.9 [t, J(H,H)¼ 7.2Hz, 6H, �CH3], 1.3 (m, 2H, �CH2), 1.4
(m, 2H, �CH2), 1.6 (m, 2H, �CH2), 2.3 [t, J(H, H)¼ 7.3Hz, 2H, �CH2], 4.1 ppm
[t, J(H,H)¼ 6.6Hz, 2H, �CH2].

Pentyl pentanoate (Table 3, Entry 2). IR: 1467, 1739 cm�1. 1H NMR
(500MHz, CDCl3, 25 �C, TMS): d¼ 0.9 [t, J(H,H)¼ 6.4Hz, 6H, �CH3], 1.3
(m, 6H, �CH2), 1.6 (m, 4H, �CH2), 2.3 [t, J(H, H)¼ 7.5Hz, 2H, �CH2], 4.0 ppm
[t, J(H,H)¼ 6.8Hz, 2H, �CH2].
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3-Methyl-1-butyl 3-methylbutanoate (Table 3, Entry 3). IR: 1467,
1738 cm�1. 1H NMR (500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 (m, 12H, �CH3),
1.1 (m, 2H, �CH2), 1.5 (m, 1H, �CH2), 1.6 (m, 1H, �CH), 2.1 [d, 2H, J(H,
H)¼ 3.5Hz, �CH2], 4.1 ppm [t, J(H, H)¼ 6.9Hz, 2H, �CH2].

2-Methyl-1-butyl 2-methylbutanoate (Table 3, Entry 4). IR: 1463,
1737 cm�1. 1H NMR (500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 (m, 9H, �CH3), 1.2
(m, 5H, �CH2 and �CH3), 1.5 (m, 2H, �CH2), 1.7 (m, 1H, �CH2), 2.4 (m, 1H,
�CH2), 3.9 (m, 1H, �CH2), 4.0 ppm (m, 1H, �CH2).

Hexyl hexanoate (Table 3, Entry 5). IR: 1467, 1739 cm�1. 1H NMR
(500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 [t, J(H, H)¼ 7.9Hz, 6H, �CH3], 1.3 (m,
10H, �CH2), 1.6 (m, 4H, �CH2), 2.3 [t, J(H, H)¼ 7.5Hz, 2H, �CH2], 4.1 ppm [t,
J(H, H)¼ 6.7Hz, 2H, �CH2].

2-Ethylhexyl 2-ethylhexanoate (Table 3, Entry 6). IR: 1462, 1735 cm�1.
1H NMR (500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 (m, 12H, �CH3), 1.3 (m, 12H,
�CH2), 1.4 (m, 4H, �CH2), 1.6 (m, 1H, �CH), 2.3 (m, 1H, �CH), 4.0 ppm [d,
J(H, H)¼ 5.70Hz, 2H, �CH2].

Heptyl heptanoate (Table 3, Entry 7). IR: 1467, 1739 cm�1. 1H NMR
(500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 [t, J(H, H)¼ 6.7Hz, 6H, �CH3], 1.3 (m,
14H, �CH2), 1.6 (m, 4H, �CH2), 2.3 [t, J(H, H)¼ 7.5Hz, 2H, �CH2], 4.1 ppm [t,
J(H, H)¼ 6.7Hz, 2H, �CH2].

Octyl octanoate (Table 3, Entry 8). IR: 1467, 1739 cm�1. 1H NMR
(500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 (t, J(H, H)¼ 6.4Hz, 6H, �CH3), 1.3 (m,
18H, �CH2), 1.6 (m, 4H, �CH2), 2.3 [t, J(H, H)¼ 7.5Hz, 2H, �CH2], 4.1 ppm [t,
J(H, H)¼ 6.7Hz, 2H, �CH2].

Dodecyl dodecanoate (Table 3, Entry 9). IR: 1466, 1740 cm�1. 1H NMR
(500MHz, CDCl3, 25

�C, TMS): d¼ 0.9 [t, J(H, H)¼ 6.9Hz, 6H, �CH3], 1.3 (m,
34H, �CH2), 1.6 (m, 4H, �CH2), 2.3 [t, J(H, H)¼ 7.5Hz, 2H, �CH2], 4.1 ppm [t,
J(H, H)¼ 6.7Hz, 2H, �CH2].
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