Tetrahedron
Letters
ELSEVIER

Synthesis of (\pm)-aporphine utilizing Pictet-Spengler and intramolecular phenol ortho-arylation reactions

Gregory D. Cuny*
Laboratory for Drug Discovery in Neurodegeneration, Brigham \& Women's Hospital and Harvard Medical School, 65 Landsdowne St., Cambridge, MA 02139, USA

Received 21 January 2004; accepted 9 April 2004
Dedicated to the memory of Dr. John T. Shaw: mentor, scholar and friend

Abstract

A synthesis of the alkaloid (\pm)-aporphine is reported. The initial key step of the synthesis involves a Pictet-Spengler cyclization of N -tosyl tyramine with 2-bromophenylacetaldehyde in trifluoroacetic acid. This step was followed by the second strategic transformation a palladium-mediated intramolecular phenol ortho-arylation reaction utilizing tricyclohexylphosphine as co-catalysts in the presence of cesium carbonate. Finally, de-oxygenation of the phenol, removal of the tosyl group and methylation gave the desired alkaloid.

© 2004 Elsevier Ltd. All rights reserved.

Aporphines are a structurally diverse class of natural products. ${ }^{1}$ Many members of this class of alkaloids also demonstrate interesting and assorted biological activities. ${ }^{2}$ A common structural characteristic among many aporphine alkaloids is the presence of hydroxy or alkoxy groups at the 1 - and 2-positions of the 5,6,6a,7-tetra-hydro- $4 H$-dibenzo $[d e, g]$ quinoline ring system. For example, (\pm)-lirinidine, $\mathbf{1},{ }^{3}$ and nuciferine, 2,4 both contain this structural feature. Recently, syntheses of these two aporphine alkaloids were reported that took advantage of the oxygen functionality at the 1-position in the key synthetic transformation. ${ }^{5}$ A palladiummediated intramolecular phenol ortho-arylation was employed. ${ }^{6,7}$ However, other members of this alkaloid class do not contain oxygen functionality at the 1- or 2positions, for example, (\pm)-aporphine, 3, and (\pm)apocodeine, 4. Herein is reported a synthesis of $\mathbf{3}^{8}$ that utilizes a Pictet-Spengler cyclization for the construction of a crucial intermediate followed by an intramolecular phenol ortho-arylation reaction with subsequent removal of the oxygen functionality.

[^0]
$1 R=H$
$2 R=M e$

$3 \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{H}$
$4 \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{OMe}$

A retrosynthetic analysis of $\mathbf{3}$ is shown is Scheme 1. Disconnection of the methyl amine of $\mathbf{3}$ gives a protected nor-aporphine 5. This material was envisioned to arise from phenol 6 through a de-oxygenation reaction. The 1-hydroxyaporphine derivative 6 was anticipated to evolve from a benzyl tetrahydroisoquinoline derivative 7 employing an intramolecular phenol ortho-arylation reaction.

The initial task was the construction of the requisite benzyl tetrahydroisoquinoline derivative 7. In the syntheses of $\mathbf{1}$ and $\mathbf{2}$ similar compounds $\left(\mathrm{Pg}=\mathrm{CO}_{2} \mathrm{Me}\right)$ were prepared utilizing a Bischler-Napieralski cyclization followed by reduction of the resulting imine and conversion of the amine to a methyl carbamate. ${ }^{5}$ However, with Bischler-Napieralski substrate 8 that lacks an alkoxy group para to the site of cyclization, the reaction

Scheme 1.
failed $\left(\mathrm{POCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 65^{\circ} \mathrm{C}\right)$ to give imine 9. Therefore, an alternative route was pursued.

Barn et al. has recently shown that tetrahydroisoquinolines that lack electron-donating groups on the aryl ring could be prepared utilizing a Pictet-Spengler reaction between phenethylamine sulfonamides and aliphatic aldehydes in warm trifluoroacetic acid (TFA). ${ }^{9}$ In pursuit of testing this strategy 4-methoxyphenethylamine, 10a, was readily converted to sulfonamide $\mathbf{1 1}$ in DMF and in the presence of $i-\operatorname{Pr}_{2} \mathrm{EtN}$ in excellent yield (Scheme 2). The sulfonamide was allowed to react with phenylacetaldehyde in TFA at $70^{\circ} \mathrm{C}$ for 5 h to give the tetrahydroisoquinoline derivative $\mathbf{1 5}$ in 69% yield, presumably through an intermediate such as $\mathbf{1 4}$. Having demonstrated the effectiveness of this strategy for the synthesis of benzyl tetrahydroisoquinolines it was next applied towards the synthesis of (\pm)-aporphine. Tyramine, 10b, was first converted to sulfonamides $\mathbf{1 2}$ and 13. These materials were allowed to react with 2-bromophenylacetaldehyde (generated at room temperature
from 2-bromophenethyl alcohol with PCC in dichloromethane for 1.5 h$)^{10}$ to give the tetrahydroisoquinoline derivatives $\mathbf{1 6}$ and $\mathbf{1 7}$ in moderate yields. ${ }^{11}$

An intramolecular phenol ortho-arylation reaction was attempted with sulfonamides $\mathbf{1 6}$ and $\mathbf{1 7}$ utilizing previously developed conditions, substoichiometric quantities of palladium acetate ($20 \mathrm{~mol} \%$) and tricyclohexylphosphine ($\mathrm{Cy}_{3} \mathrm{P} ; 40 \mathrm{~mol} \%$) in the presence of cesium carbonate (3.2 equiv) in dimethylacetamide (DMA) at $110^{\circ} \mathrm{C}$ for 24 h (Scheme 3)..5,12 In the case of $\mathbf{1 6}$ no isolatable product was obtained, apparently due to instability of the p-nitrosulfonamide to the basic reaction conditions. However, the tosylsulfonamide 17 readily cyclized to give the aporphine derivative $\mathbf{1 8}$ in moderate yield. ${ }^{13}$ The hydroxyl group was next converted quantitatively to the aryl triflate 19 in the presence of trifluoromethanesulfonic anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}\right)$ and 2,6-lutidine in dichloromethane. The aryl triflate was reduced using palladium acetate $(10 \mathrm{~mol} \%)$, a phosphine ligand ($10 \mathrm{~mol} \%$) and triethylammonium formate at $80^{\circ} \mathrm{C} .{ }^{14}$ Utilizing triphenylphosphine as ligand gave 20 in low yield (33%). However, with $1,1^{\prime}$-bis(diphenylphosphino)ferrocene (DPPF) as the ligand the yield of $\mathbf{2 0}$ was improved to 77%. The tosylamide $\mathbf{2 0}$ was reduced using sodium naphthalenide to give $\mathbf{2 1}$ in 89% yield. ${ }^{15}$ In this reaction, a solution of $\mathbf{2 0}$ in dimethoxyethane (DME) was titrated with a dark-green solution of sodium naphthalenide (prepared by stirring a mixture of sodium and naphthalene in DME at room temperature for 3 h)

Scheme 2. Reagents and conditions: (i) $4-\mathrm{R}-\mathrm{PhSO}_{2} \mathrm{Cl}\left(\mathrm{R}=\mathrm{NO}_{2}\right.$ or Me$), i-\mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{DMF}, \mathrm{rt}, 2 \mathrm{~h}, 93 \%$; (ii) $2-\mathrm{R}-\mathrm{PhCH} 2 \mathrm{CHO}(\mathrm{R}=\mathrm{H}$ or Br$), 70{ }^{\circ} \mathrm{C}$, $5 \mathrm{~h}, 51-69 \%$.

Scheme 3. Reagents and conditions: (i) $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cy}_{3} \mathrm{P}(40 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMA}, 110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 56 \%$; (ii) $\mathrm{Tf}_{2} \mathrm{O}, 2,6-\mathrm{lutidine}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 100 \%$; (iii) $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, DPPF ($10 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{HCO}_{2} \mathrm{H}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 77 \%$; (iv) $\mathrm{Na}, \mathrm{N} \mathrm{H}$, $\mathrm{DME},-56^{\circ} \mathrm{C},<5 \mathrm{~min}, 89^{\circ} \%$; (v) 37% aq $\mathrm{CH}_{2} \mathrm{O}, \mathrm{MeOH}$, rt, 30 min then $\mathrm{NaBH}_{4}, \mathrm{rt}, 1 \mathrm{~h}, 84 \%$.
at $-56^{\circ} \mathrm{C}$. After the endpoint was reached (indicted by a persistent green colour) the reaction mixture was immediately quenched with a saturated aqueous solution of sodium bicarbonate and the resulting mixture was allowed to quickly warm to room temperature. Finally, the amine 21 was converted to (\pm)-aporphine, 3, in 84% yield by reductive amination with 37% aqueous formaldehyde in the presence of sodium borohydride. ${ }^{16}$ The ${ }^{1} \mathrm{H}$ NMR spectra of the synthetic product was identical to that previously reported for the natural product. ${ }^{8 a}$

In conclusion, a strategy for synthesizing aporphine alkaloids that lack oxygen functionality at the 1 - or 2 positions of the 5,6,6a,7-tetrahydro- 4 H -dibenzo[de,g]quinoline ring system was described and applied to the synthesis of (\pm)-aporphine. A Pictet-Spengler cyclization of N-tosyl tyramine with 2-bromophenylacetaldehyde was utilized for assembling a vital benzyl tetrahydroisoquinoline intermediate. Next, a palladiummediated intramolecular phenol ortho-arylation reaction employing tricyclohexylphosphine as co-catalysts in the presence of cesium carbonate provided an aporphine precursor, which was readily converted to the natural product. Further applications of transition-metal mediated intramolecular phenol ortho-arylations for the synthesis of other aporphine alkaloids as well as other classes of natural and nonnatural compounds are underway.

Acknowledgements

Financial support was provided by the Harvard Center for Neurodegeneration and Repair (HCNR).

References and notes

1. Ríos, J. L.; Máñez, S.; Giner, R. M.; Recio, M. C. In The Alkaloids; Cordell, G. A., Ed.; Academic: New York, 2000; Vol. 53, pp 57-117.
2. Guinaudeau, H.; Lebœuf, M.; Cavé, A. J. Nat. Prod. 1994, 57(8), 1033-1135, and reference cited therein.
3. (a) Phillipson, J. D.; Thomas, O. O.; Gray, A. I.; Sariyar, G. Planta Med. 1981, 41(2), 105-118; (b) Ziyaev, R.; Abdusamatov, A.; Yunusov, S. Y. Chem. Nat. Prod. (Engl. Transl.) 1973, (6), 727-729; Khimiya Prirodnykh Soedinenii 1973, (6), 760-763.
4. Věžník, F.; Táborská, E.; Sedmera, P.; Dolejš, L.; Slavík, J. Collect. Czech. Chem. Commun. 1986, 51(8), 1752-1763.
5. Cuny, G. D. Tetrahedron Lett. 2003, 44(44), 8149-8152.
6. For examples of Pd-mediated ortho-arylation reactions see: (a) Kitamura, M.; Ohmori, K.; Kawase, T.; Suzuki, K. Angew. Chem., Int. Ed. 1999, 38(9), 1229-1232; (b) Satoh, T.; Inoh, J.; Kawamura, Y.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71(9), 2239-2246; (c) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 17401742; (d) Hennings, D. D.; Iwasa, S.; Rawal, V. J. Org. Chem. 1997, 62(1), 2-3; (e) Wiegand, S.; Schäfer, H. J. Tetrahedron 1995, 51(18), 5341-5350.
7. For examples of Rh -mediated ortho-arylation reactions see: (a) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68(22), 8669-8682; (b) Bedford, R. B.; Coles, S.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42(1), 112-114; (c) Oi, S.; Watanabe, S.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44(48), 8665-8668.
8. For other syntheses of aporphine see: (a) Hedberg, M. H.; Linnanen, T.; Jansen, J. M.; Nordvall, G.; Hjorth, S.; Unelius, L.; Johansson, A. M. J. Med. Chem. 1996, 39(18), 3503-3513; (b) Cannon, J. G.; Raghupathi, R.; Moe, S. T.; Johnson, A. K.; Long, J. P. J. Med. Chem. 1993, 36(10), 1316-1318; (c) Gadamer, J.; Oberlin, M.; Schoeler, A. Arch. Pharm. 1925, 263, 81-99.
9. Barn, D. R.; Caulfield, W. L.; Cottney, J.; McGurk, K.; Morphy, J. R.; Rankovic, Z.; Roberts, B. Bioorg. Med. Chem. 2001, 9(10), 2609-2624.
10. Hartman, G. D.; Phillips, B. T.; Halczenko, W. J. Org. Chem. 1985, 50(14), 2423-2427.
11. A mixture of $13(1.45 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 2-bromophenylacetaldehyde $(1.97 \mathrm{~g}, 10 \mathrm{mmol})^{10}$ in TFA $(8.5 \mathrm{~mL})$ was heated at $70^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was allowed to cool and then concentrated to a dark oil. The oil was suspended in water $(50 \mathrm{~mL})$ and solid sodium bicarbonate was carefully added (CAUTION: gas evolution!) in small portions until the mixture was neutralized. The mixture was extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$. The organic
extracts were combined, washed with brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product was purified by column chromatography on silica gel using hexane/ethyl acetate ($70: 30$) as eluant to give 1.31 g of $17(55 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.32(\mathrm{~s}, 3 \mathrm{H}) ; 2.56-2.60(\mathrm{~m}, 1 \mathrm{H})$; 2.69-2.76 (m, 1H); 3.11-3.22 (m, 2H); 3.57-3.63 (m, 1H); 3.88 (ddd, $1 \mathrm{H}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=2.0 \mathrm{~Hz}$); $4.65(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}) ; 5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}\right) ; 6.53$ (d, $\quad 1 \mathrm{H}, \quad J=3.0 \mathrm{~Hz}) ; \quad 6.62 \quad\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J_{1}=8.0 \mathrm{~Hz}\right.$, $\left.J_{2}=2.5 \mathrm{~Hz}\right) ; 6.86(\mathrm{~d}, 1 \mathrm{H}, \quad J=8.5 \mathrm{~Hz}) ; 7.03(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}) ; 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.20(\mathrm{dt}, 1 \mathrm{H}$, $\left.J_{1}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right) ; \quad 7.39 \quad\left(\mathrm{dd}, \quad 2 \mathrm{H}, ~ J_{1}=7.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right) ; \quad 7.47(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.69,26.38,39.50,43.55,56.18$, $113.63,114.79,125.31,125.47,127.31,127.52,128.58$, $129.52,130.33,132.34,132.91,137.13,137.28,143.05$, 153.77; HRESMS $[\mathrm{M}+\mathrm{Na}]^{+}$: 494.0396 (calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{3} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 494.0396). Compound 16 was prepared in a similar manner in 51% yield as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-acetone): $\delta 2.63-2.81$ (m, $2 \mathrm{H}) ; 3.15-3.26(\mathrm{~m}, 2 \mathrm{H}) ; 3.58-3.86(\mathrm{~m}, 1 \mathrm{H}) ; 4.01-4.06(\mathrm{~m}$, $1 \mathrm{H}) ; 5.33\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}\right) ; 6.66(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}\right) ; 6.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}) ; 6.87(\mathrm{~d}$, $1 \mathrm{H}, \quad J=8.4 \mathrm{~Hz}) ; 7.10-7.23(\mathrm{~m}, 3 \mathrm{H}) ; 7.47(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=7.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}\right) ; 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ; 8.14$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$); $8.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz , d_{6}-acetone): $\delta 26.94,40.19,43.48,57.17,113.76,115.70$, $124.35,124.87,125.34,128.43,128.97,129.50,130.98$, $133.26,133.44,137.59,138.08,147.17,150.52,156.45$. Compound 15 was prepared in a similar manner (eluent was hexane/ethyl acetate 85:15) in 69% yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34$ (s, 3 H); 2.42-2.47 $(\mathrm{m}, 1 \mathrm{H}) ; 2.59-2.66(\mathrm{~m}, 1 \mathrm{H}) ; 3.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=14.0 \mathrm{~Hz}\right.$, $\left.J_{2}=6.5 \mathrm{~Hz}\right) ; 3.19\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right)$; 3.39-3.45 (m, 1H); 3.56-3.60 (m, 1H); 3.61 (s, 3H); $5.16(\mathrm{t}$, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 6.23(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}) ; 6.67(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}\right) ; 6.87(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; 7.04-$
$7.06(\mathrm{~m}, 2 \mathrm{H}) ; 7.11(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}) ; 7.20-7.24(\mathrm{~m}, 3 \mathrm{H}) ;$ $7.49(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$.
12. For an example of a Pd-mediated intramolecular aniline ortho-arylation utilizing trialkylphosphines see: Harayama, T.; Hori, A.; Abe, H.; Takeuchi, Y. Heterocycles 2003, $60(11), 2429-2434$.
13. A mixture of $\mathbf{1 7}(271 \mathrm{mg}, 0.576 \mathrm{mmol})$, tricyclohexylphosphine ($69 \mathrm{mg}, 0.246 \mathrm{mmol}$), anhydrous cesium carbonate ($600 \mathrm{mg}, 1.84 \mathrm{mmol}$, finely ground powder) and palladium acetate ($28 \mathrm{mg}, 0.123 \mathrm{mmol}$) in DMA (10 mL) under an argon atmosphere was heated at $110^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool and then carefully diluted with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$. The reaction mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The organic extracts were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane/ethyl acetate (60:35:5) as eluant to give 125 mg of $18(56 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.31-2.36(\mathrm{~m}, 1 \mathrm{H}) ; 2.38(\mathrm{~s}, 3 \mathrm{H})$; 2.44-2.47(m, 1H); $3.03(\mathrm{t}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}) ; 3.16(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=14.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}\right) ; 3.24\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=12.8 \mathrm{~Hz}\right.$, $\left.J_{2}=2.5 \mathrm{~Hz}\right) ; \quad 4.07-4.12(\mathrm{~m}, 1 \mathrm{H}) ; 4.66(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=14.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}\right) ; 5.31(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}) ; 6.75(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}) ; 6.85(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.23-7.29(\mathrm{~m}, 3 \mathrm{H})$; $7.34-7.37(\mathrm{~m}, 2 \mathrm{H}) ; 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.0) ; 8.15(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.70$, 28.24, 37.65, 41.25, 53.72, 116.15, 121.10, 125.86, 127.11, $127.19,127.39,127.92,128.94,129.16,130.07,131.58$, 134.20, 136.68, 138.16, 143.54, 151.44; HRESMS $[\mathrm{M}+\mathrm{Na}]^{+}: 414.1127$ (calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 414.1134).
14. Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1986, 27(45), 5541-5544.
15. Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54(7), 1548-1562.
16. Bick, I. R. C.; Sevenet, T.; Sinchai, W.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1981, 34(1), 195-207.

[^0]: Keywords: Pictet-Spengler; Palladium; ortho-Arylation; Phenol; Aporphine.

 * Tel.: +1-617-768-8640; fax: +1-617-768-8606; e-mail: gcuny@rics. bwh.harvard.edu

