

10.1002/ejoc.201700902

# Triethylsiloxymethyl-*N*-*N*-dimethylamine, Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub>: A new dimethylaminomethylation (Mannich) reagent for O-H, S-H, P-H and aromatic C-H systems

Paulina E. Gonzalez, Hemant K. Sharma, Sanchita Chakrabarty, Alejandro Metta-Magaña, Keith H. Pannell<sup>\*</sup>

The Department of Chemistry, University of Texas at El Paso, El Paso, TX. 79968-0513, USA

Keywords: Siloxymethylamine; Amination; Mannich; imminium

#### Abstract

Triethylsiloxymethylamine, Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub>, readily synthesized in high yield by the hydrosilylation reaction between Et<sub>3</sub>SiH and DMF, is an excellent (*N*,*N*-dimethylamino)methyl transfer agent to a representative range of aliphatic alcohol, thiol and Ph<sub>2</sub>PH (E-H) materials. The reactions are almost instantaneous at room temperature in inert solvents and require no activating agents to produce E-CH<sub>2</sub>NMe<sub>2</sub> products in high yield and illustrate the title compound as an excellent addition to the family of organic reagents. For aromatic alcohols electrophilic substitution of the aromatic ring occurs in high yield. Crystal structures of new materials such as the cholesteryl  $-CH_2NMe_2$ derivative, 2-4-[bis(*N*,*N*-dimethylamino)methyl]-1-naphthol, and the phosphine oxide derived from Ph<sub>2</sub>PCH<sub>2</sub>NMe<sub>2</sub> are reported.

#### Introduction

We recently reported that when catalyzed by  $(Me_3N)Mo(CO)_5$  (M), the organosilane  $(R_3SiH)$  reduction of amides,<sup>1</sup> (leading to the formation of Me<sub>3</sub>N and the corresponding disiloxane),<sup>2,3</sup> involved the intermediacy of siloxymethyldimethylamines, R<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub>, **1**, eq. 1, R = Et (**1a**).<sup>4</sup>

$$Me \xrightarrow[]{} Me \xrightarrow[]{} Me \xrightarrow[]{} Me \xrightarrow[]{} OSiEt_3 \xrightarrow{[M]} Me_3N + Et_3SiOSiEt_3 \xrightarrow{(1)} Me_4N \xrightarrow{(1)} M$$

We were able to observe, isolate in good yield, characterize, and study the chemistry of these intermediates.<sup>4</sup> The degree to which this is a generally applicable mechanism is, however, unclear and probably, depending upon both catalyst and substrate, other reaction pathways are operative.<sup>5</sup>

The discovery that **1a** could undergo a facile reaction with the active  $R_3Si^{\delta+}-H^{\delta-}$  and  $R_3Si^{\delta+}-Cl^{\delta-}$  bonds, resulting in the formation of Me<sub>3</sub>N (or ClCH<sub>2</sub>NMe<sub>2</sub>) and R<sub>3</sub>SiOSiR<sub>3</sub>,<sup>6,7</sup> respectively, suggests that **1**, which can be termed O-silylated aminol ethers, are masked analogs of Eschenmoser's salt,<sup>8</sup> eq. 2, and thereby act as aminomethyl transfer agents (Mannich reagents).

$$R_3SiO-CH_2NMe_2 \implies [R_3SiO]^-[CH_2=NMe_2]^+ \qquad (2)$$

Aminol ethers and aminals are reported to function best in the presence of an activating species, e.g. SO<sub>2</sub>, chlorosilanes, acetyl chloride, trifluoroacetic acid, trimethylamine oxide etc., and thus facilitating the Mannich reaction in convenient non-protic solvents is a useful new synthetic tool.<sup>9</sup> We previously reported the utility of **1a** to react with amines, R<sub>2</sub>NH, in benzene, to form new diaminomethanes, R<sub>2</sub>NCH<sub>2</sub>NMe<sub>2</sub>, and bis-(dimethylamino)amines (Me<sub>2</sub>NCH<sub>2</sub>)<sub>2</sub>NPh which possess interesting lability properties.<sup>10</sup> We now report the reactions of **1a** with a representative group of element-hydrogen bonds, E-H (E = O, S, N, P), and aromatic C-H bonds, which illustrate that **1a** is a general, useful and reliable [CH<sub>2</sub>NMe<sub>2</sub>] transfer reagent requiring no activating co-reactants, occurs at room temperature and gives high yields.

# **Results and Discussion**

It is well-established that Mannich reagents can react with E-H (E = O, S) bonded compounds;<sup>9a</sup> thus, our initial studies concentrated upon the reactions of **1a** with simple alcohols and thiols to form the corresponding E-CH<sub>2</sub>NMe<sub>2</sub> products. In each case there is a very rapid reaction involving transfer the aminomethyl group with concomitant formation of R<sub>3</sub>SiOH. As previously known, the Mannich reaction products with alcohols depend upon the nature of the R group attached to O, aliphatic or aromatic;<sup>9</sup> this is not the case for thio-alcohols.<sup>11</sup> For the aliphatic alcohols studied, MeOH, EtOH, <sup>*i*</sup>PrOH and cholesterol, the products are the corresponding aminol ethers, Me<sub>2</sub>NCH<sub>2</sub>OR',**2**, formed in good yields, Scheme 1 (routes A and B). Similar chemistry was observed for the reactions with both aliphatic and aromatic thiols, Scheme 1 (routes C-F).



Scheme 1. Reactions of **1a** with aliphatic alcohols (route A, R' = Me (**2a**), Et (**2b**),  ${}^{i}$ Pr (**2c**)), -thiols (route C, R" = Et (**3a**), Pr (**3b**), Bu (**3c**)), aromatic thiols (routes D-F), and cholesterol (route B).

The structure of the aminomethyl cholesterol derivative, a previously unknown material, is illustrated in Figure 1.



Figure 1: Structure of cholesteromethyl(dimethyl)amine, **2d**, CCDC # 1428932

With respect to the structure, the most reported cholesterol derivatives are those with modifications in the aliphatic chain;<sup>12a</sup> however, there are also some with the alcohol functionalized.<sup>12b</sup> The substitution of the alcohol in the compound **2d** has no effect in the C-O bond distance, neither on the cholesterol conformation.

For the aromatic alcohols investigated, phenol, 2,6-dimethylphenol, and  $\alpha$ - and  $\beta$ naphthol, simple aromatic electrophilic substitution reactions take preference,<sup>9f</sup> with no indication
of substitution of the OH group, Scheme 2.<sup>9b</sup> *O*-aminomethylphenols, e.g. **5**, have recently been
used for *o*-quinone methide synthesis, species with an important and interesting chemistry.<sup>9e</sup>



Scheme 2. Reactions of 1a with aromatic alcohols.

### This article is protected by copyright. All rights reserved.

The initial substitution is very selective and always *ortho* with respect to the OH group on the aromatic core when possible, as is well-established.<sup>9b</sup> However, if this position is blocked, as in 2,6-dimethylphenol, *para* substitution occurs. The same *ortho*-(*N*,*N*-dimethylamino)methylation of phenol has been achieved using both Eschenmoser's salt<sup>9g</sup> and bis-(*N*,*N*-dimethylamino)methane;<sup>9d</sup> however, the experimental conditions involved required an activation system involving two or more equivalents of MgCl<sub>2</sub>-Et<sub>3</sub>N or SO<sub>2</sub>, respectively.

The structures of 4-[(N,N-dimethylamino)methyl]-2,6-dimethyl-phenol, 6, and <math>1-[(N,N-dimethyl-phenol, 6)]dimethylamino)methyl]-2--naphthalenol, 7, are illustrated in Figure 2. For 7, the anticipated formation of an intramolecular HB [r(OH...N) = 1.56(3)] can be observed, which is statistically similar the interaction found and studied 4,5-dimethyl-2-[(*N*,*N*to for dimethylaminomethyl)phenol 3,5,6-trimethyl-2-(*N*,*N*-dimethylamino)methyl]phenol and  $[r(OH.N) = 1.73(6) \text{ and } 1.73(3) \text{ Å respectively.}^{13a}$ 



Figure 2: Structure of 1-[*N*,*N*-dimethylamino)methyl-2--naphthalenol. **7**, CCDC # 1428933; and 2,5-dimethyl-4-(*N*,*N*-dimethylamino)methyl]-phenol, **6**, CCDC # 1428937.

When the stoichiometry of the phenol + **1a** reaction is changed from 1:1 to 1:2 the reaction leads to the di-substituted product, 2,6-bis-[(*N*,*N*-dimethylamino)methyl]phenol, **5a**, *via* the intermediacy of **5**; however, at that stoichiometry a mixture of the two products was obtained. With a larger excess of **1a** (1:4 equivalents) product **5a** can be obtained pure when the reaction is performed at room temperature. Using at least a 1:3 ratio of reactants, the tri-substituted material 2,4,6-tris-[(*N*,*N*-dimethylamino)methyl)]phenol, **5b**, can be readily formed in high yield when the reaction is performed at 80 °C, eq. 3a. Thus **1a** is a simple and effective reagent to form all three (*N*,*N*-dimethylamino)methyl in high yields under the appropriate conditions. It is of interest that the reported reaction of phenol with Me<sub>2</sub>NCH<sub>2</sub>NMe<sub>2</sub>, using SO<sub>2</sub> as an activator, produced primarily **5** and smaller amounts of the 2,4-bis[(*N*,*N*-dimethylamino)methyl]phenol, a product we did not observe.<sup>9d</sup> Both the bis-and tris-[(*N*,*N*-dimethylamino)methyl]phenols are well-established materials;<sup>13c</sup> <sup>13</sup>C and <sup>1</sup>H NMR spectra were in accord with expectation.<sup>13d</sup>

Similar chemistry occurs during the reaction of 1a with  $\alpha$ -naphthol; initial rapid formation of the ortho-substituion product with a slower secondary reaction leading to the di-substituted *ortho* and *para* product, eq. 3b.



We could find only a single previous report on 9 in the literature, and its single crystal structure is presented in Figure 3.<sup>13b</sup>



Figure 3. Structure of 2,4-dimethylaminomethyl-1-naphthol, 9, CCDC # 1535575

As expected, the crystal structure involves formation of an intramolecular HB between the amino and the alcohol function as in **7**,  $[r(OH\dots N) = 1.83(2)]$ . This HB is longer in 9 because of the introduction of a second amino group, and results in a the less dense packing, 1.172 g/cm<sup>3</sup> for **9** vs 1.215 g/cm<sup>3</sup> for **7**.

Initial studies on the reaction between **1a** and Ph<sub>2</sub>PH illustrated that no reaction was occurring, even at temperatures considerably elevated compared to those of the OH and SH reactions reported above (70 °C cf. 25 °C) and the reactions with NH compounds.<sup>10</sup> However, addition of ~5% of ( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)Mo(CO)<sub>3</sub>Me to a reaction mixture in C<sub>6</sub>D<sub>6</sub> at 30 °C, resulted in a transformation to the expected dimethylaminomethyl transfer species, Ph<sub>2</sub>PCH<sub>2</sub>NMe<sub>2</sub> (**10**). This is a previously reported species, obtained from the reaction of Ph<sub>2</sub>PLi and ClCH<sub>2</sub>NMe<sub>2</sub>,<sup>14a</sup> or from the acid catalyzed reaction of Ph<sub>2</sub>PH with tetramethyldiaminomethane.<sup>14b</sup> The <sup>31</sup>P NMR chemical shift of our product appears at -26.6 ppm, consistent with the <sup>31</sup>P NMR chemical shift reported for diphenylphosphino group of diphenylphosphino(dimethylphoshino)methane, Ph<sub>2</sub>PCH<sub>2</sub>PMe<sub>2</sub>, at ~ -22.8 ppm.<sup>15</sup> However, our value is significantly at variance with a reported literature value of

27.5 ppm ppm,<sup>14b</sup> but in accord with another literature value of -25.3 ppm.<sup>14c</sup> Studies on our sample illustrated that upon mild exposure to air it rapidly transforms to the corresponding phosphine oxide, Ph<sub>2</sub>P(O)CH<sub>2</sub>NMe<sub>2</sub> (**11**) which indeed exhibits a <sup>31</sup>P NMR resonance at 26.9 ppm! This latter value is comparable with the <sup>31</sup>P NMR chemical shift of the Ph<sub>2</sub>P=O group of Ph<sub>2</sub>P(O)CH<sub>2</sub>PPh<sub>2</sub> at 27.6 ppm,<sup>16</sup> thus we conclude that one of the original reports of Ph<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> resulted in the isolation of the phosphine oxide derivative **11**.<sup>14b</sup> This is a crystalline material and we have been able to determine its single crystal structure, Figure 4, hence proving the suggested formulation.



Figure 4: Structure of [Ph<sub>2</sub>P(O)CH<sub>2</sub>NMe<sub>2</sub>], 11, CCDC # 1535574

The space group for this molecule is Pbca, a centrosymmetric structure with two orthogonal H-bonding motifs. One network is associated with the N lone pair and an aromatic *para*-C-H, Figure 5 (left). The other, a chain like pattern is formed *via* three P=O<sup>…</sup>H bonds, two *ortho*-C-H units and a single H-bond with a methylene H atom, Figure 5 (right).



Figure 5. HB chain of **11** formed by interaction of the amino group with one C-H from the aromatic ring on the phosphine [2.724 Å], left; and a chain formed by a triple HB to the phosphine oxygen with the following distances 2.301, 2.312 and 2.473 Å, right.

The sulfur analog, Ph<sub>2</sub>P(S)CH<sub>2</sub>NMe<sub>2</sub>, has been obtained from the Mannich reaction of Ph<sub>2</sub>P(S)H with DMF.<sup>17</sup>

Initial attempts to obtain transition metal derivatives of this bidentate PC<sub>1</sub>N ligand Ph<sub>2</sub>PCH<sub>2</sub>NMe<sub>2</sub>, a member of the interesting class of hemilabile ligands, PC<sub>n</sub>N,<sup>18</sup> have not been successful. Given the ready formation of R'<sub>2</sub>NCH<sub>2</sub>NR<sub>2</sub> complexes,<sup>10</sup> this is surprising, but a search of the literature reveals a handful of such complexes; a dimeric palladium complex where each ligand atom binds a separate metal centre;<sup>19</sup> and three complexes of bis(tris(*N*-piperidinomethyl)phosphine oxide)- with zinc and cadmium dinitrate, and zinc dichloride.<sup>20</sup>

# Conclusions

We have demonstrated that triethylsiloxymethyl-*N*-*N*-dimethylamine, Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub>, **1a**, readily formed in high yield from the reaction of Et<sub>3</sub>SiH and DMF, is an excellent new Mannich reagent and transfers Me<sub>2</sub>NCH<sub>2</sub> group to reactive E-H bonds (E = O, S, N, P, and aromatic C-H) in high yields. The reagent is soluble in most organic solvents permitting homogeneous reaction conditions which also involve relatively low temperatures and short reaction times, and, in general

10.1002/ejoc.201700902

for E = O, S and N, useful in the absence of any activating reagents or catalysts. Where appropriate the side product,  $Et_3SiOH$ , can be readily removed under vacuum at 60 °C, thus facilitating product purification for all but low boiling materials.

# Experimental

All manipulations were carried out under Argon atmosphere using Schlenk or vacuum line techniques. THF was distilled under nitrogen from benzophenone ketyl prior to use. Other solvents, hexanes, benzene and toluene were dried over sodium metal and distilled before use. All alcohols and thiols, were purchased from Sigma-Aldrich. NMR spectra were recorded on either a JEOL 600 MHz or Bruker 300 MHz spectrometer in either CDCl<sub>3</sub> or C<sub>6</sub>D<sub>6</sub> and recorded in ppm. Column chromatography was performed on small columns (5 x 60 mm) of Silica Gel (Aldrich), 70-230 mesh, 60 Å, Pore Volume 0.75 cm<sup>3</sup>/g.

Single crystal X-ray diffraction. Crystals of compounds 2d, 6, 7, 9, and 11, were each mounted on a glass fiber in a random orientation using paratone oil. The X-ray intensity data were collected with APEX2 suite [APEX2 v2010.7-0 Bruker AXS 2005-2010] on a Bruker APEX CCD diffractometer with monochromatized MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å) at room temperature.

# Synthesis of Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub>, 1a.<sup>4b</sup>

A 25 mL Schlenk tube with a HI-VAC valve was charged with 3.64 g (31.4 mmol) of Et<sub>3</sub>SiH, 2.3 g (31.5 mmol) DMF and 2 mole % of the Mo(CO)<sub>6</sub> as a catalyst. The tube was sealed under vacuum and heated at 60 °C for 12 h. The tube was opened under Ar and the catalyst was removed by repeatedly freezing the tube in liquid N<sub>2</sub> and decanting the liquid into another flask. The crude product was distilled at 60-62 °C at 20 mm/Hg. Yield: 4.45g (76 %). <sup>1</sup>H NMR: 0.55 (q, 6 H, CH<sub>2</sub>), 0.97( t, 9H, CH<sub>3</sub>), 2.31, (s, 6 H, Me<sub>2</sub>N), 4.28 (s, 2 H, CH<sub>2</sub>). <sup>13</sup>C NMR: 5.03, 7.15 (Et), 41.1 (Me<sub>2</sub>N), 82.3 (CH<sub>2</sub>). <sup>29</sup>Si NMR: 15.3 ppm; HRMS(ESI): Calcd. for C<sub>9</sub>H<sub>22</sub>SiNO: (M<sup>+</sup>-

10

1): 188.1470, Found 188.1445. Anal. Calcd. for C<sub>9</sub>H<sub>23</sub>NOSi: C, 57.1; H, 12.2. Found: C, 55.9; H, 12.2.

#### Reactions of Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub> with alcohols and thiols, 2-3.

In a typical experiment, a Pyrex NMR tube or 15-mL round-bottom flask was charged with a 10% excess of **1a**, and R'EH (E = O, R' = Me, Et, *t*-Bu, Ph, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, cholesterol; E = S, R'' = Et, 1-Pr, 1-Bu, Ph, 2,6-Me<sub>2</sub>Ph) and 0.5 mL of C<sub>6</sub>D<sub>6</sub> or CDCl<sub>3</sub> and sealed under vacuum or under inert atmosphere. The reactions were performed at room temperature and progress was monitored by  $^{13}$ C,  $^{29}$ Si NMR spectroscopy; however, the formation of the products was essentially instantaneous. The products were purified by distillation or in the case of **4c** and **2d**, simply washed with cold hexanes and recrystallized.

**MeO-CH<sub>2</sub>NMe<sub>2</sub>**, **2a.**<sup>21</sup> Yield 53%, b.p. 25 °C/30 mm Hg. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 2.31 (s, 6 H, (Me<sub>2</sub>N), 3.15 (s, 3 H, Me), 3.85 (CH<sub>2</sub>). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 41.50 (Me<sub>2</sub>N), 55.57 (Me), 90.82 (CH<sub>2</sub>).

**EtO-CH<sub>2</sub>NMe<sub>2</sub>**, **2b.**<sup>22</sup> Yield: 62%, b.p. 30 °C/25 mm Hg. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 1.52 (t, 3 H, -CH<sub>2</sub>*Me*), 2.68 (s, 6 H, Me<sub>2</sub>N), 3.82 (q, 2 H, -*CH*<sub>2</sub>Me), 4.31 (CH<sub>2</sub>). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 15.1, 63.4 (Et), 41.2 (Me<sub>2</sub>N), 89.1 (CH<sub>2</sub>).

<sup>*i*</sup>**PrO-CH<sub>2</sub>NMe<sub>2</sub>**, **2c.**<sup>22</sup> Yield 67%, b.p. 24 °C/30 mm Hg. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 1.04 (d, 6 H, CH(*Me*)<sub>2</sub>), 2.23 (s, 6 H, Me<sub>2</sub>N), 3.52 (sept, 1 H, *CH*Me<sub>2</sub>), 3.89 (s, 2 H, CH<sub>2</sub>) ppm. <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 22.5 (CH(*Me*)<sub>2</sub>), 41.5 (Me<sub>2</sub>N), 69.2 (*CH*Me<sub>2</sub>), 87.3 (CH<sub>2</sub>).

#### Reaction of Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub> with cholesterol to form 2d.

In a typical experiment, a 15-mL round-bottom flask was charged with cholesterol (1.78 g (4.60 mmol) dissolved in 2 mL of benzene, and **1a** (1.0 g (5.28 mmol) under an inert atmosphere at room temperature. The reaction was monitoring by NMR spectroscopy using  $C_6D_6$  or CDCl<sub>3</sub> as

10.1002/ejoc.201700902

solvent and once the reaction finished, the benzene was evaporated, the solid was washed with cold hexanes and recrystallized to yield the product.

**Cholesteromethyl**(*N*,*N*-**dimethyl**)**amine**, **2d**: yield: 73%, m.p. 103-105 °C, white crystals. <sup>13</sup>C NMR (CDCl<sub>3</sub>, 300 MHz): 12.07, 19.03, 13.54, 21.44, 22.76, 23.00, 24.34, 24.60, 28.39, 28.62, 29.33, 32.23, 32.38, 36.20, 36.67, 37.13, 37.72, 39.92, 40.16, 40.20, 41.68, 42.60, 50.67, 56.56, 57.03, 77.12, 87.46, 121.55, 141.39 ppm; Calcd. for C<sub>30</sub>H<sub>53</sub>ON: C, 81.19; H, 12.05; Found: C, 81.72; H, 12.67

EtSCH<sub>2</sub>NMe<sub>2</sub>, **3a.**<sup>23</sup> Yield: 67%, b.p. 44-45 °C/25 mm Hg. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 1.66 (t, 3 H, -CH<sub>2</sub>Me), 2.68 (s, 6 H, Me<sub>2</sub>N), 3.03 (q, 2 H, -*CH*<sub>2</sub>Me), 4.27 (CH<sub>2</sub>). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 16.1, 27.6 (Et), 43.2 (Me<sub>2</sub>N), 64.5 (CH<sub>2</sub>).

**PrSCH**<sub>2</sub>**NMe**<sub>2</sub>, **3b**. Yield: 75%, b.p. 48-50 °C/20 mm Hg. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 1.37 (t, 3 H, -CH<sub>2</sub>CH<sub>2</sub>*Me*, 2.00 (sext, 2 H, -CH<sub>2</sub>*CH*<sub>2</sub>*Me*), 2.64 (s, 6 H, Me<sub>2</sub>N), 2.93 (t, 2 H, -*CH*<sub>2</sub>CH<sub>2</sub>Me), 4.24 (s, 2 H, CH<sub>2</sub>). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 13.9, 24.4, 35.9 (Pr), 43.1 (Me<sub>2</sub>N), 65.0 (CH<sub>2</sub>). **BuSCH**<sub>2</sub>**NMe**<sub>2</sub>, **3c**.<sup>24</sup> Yield: 80%, b.p. 34-35 °C/3 mm Hg. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 1.29 (t, 3 H, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>*Me*), 1.79 (sext, 2 H, -CH<sub>2</sub>CH<sub>2</sub>*CH*<sub>2</sub>*Me*), 1.93 (quint, 2 H, -CH<sub>2</sub>*CH*<sub>2</sub>*CH*<sub>2</sub>*Me*), 2.63 (s, 6 H, Me<sub>2</sub>N), 2.93 (t, 2 H, -*CH*<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Me), 4.22 (s, 2 H, CH<sub>2</sub>). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 14.2, 22.60, 33.3, 33.5 (Bu), 43.1 (Me<sub>2</sub>N), 64.9 (CH<sub>2</sub>). HRMS (DART), Calcd. for C<sub>7</sub>H<sub>18</sub>NS, M+1, 148.11599, Found 148.1143.

[(*N*,*N*-dimethylamino)methyl]thio-benzene, 4a.<sup>24</sup> Yield: 79%, b.p. 97 °C/3 mm Hg. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz): 2.32 (s, 6 H, Me<sub>2</sub>N), 4.52 (s, 2 H, CH<sub>2</sub>), 7.17 (t, 1 H, CH), 7.26 (t, 2 H, CH), 7.55 (d, 2 H, CH). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 300 MHz): 40.0 (Me<sub>2</sub>N), 68.2 (CH<sub>2</sub>), 125.7, 128.4, 131.1, 137.9 (Ph).

Synthesis of 2-[(*N*,*N*-dimethylamino)methyl]thio-napthalene, 4b.<sup>27</sup> 2-Naphthalene thiol, 0.2 g (1.25 mmol) was dissolved in 1 ml of benzene and 0.24 g of 1a (1.26 mmol) was added to the solution. After evaporation of solvent the crude mixture was left under vacuum at 60 °C for 2 h to remove Et<sub>3</sub>SiOH and the oily product was isolated in 61 % yield.

<sup>1</sup>H (300 MHz, CDCl<sub>3</sub>) 2.4 (s, 6H), 4.6 (s, 2H), 7.4-8.1 (Ar-H, complex, 7H) <sup>13</sup>C (75, CDCl<sub>3</sub>) 42.8, 69.0, 125.8, 126.5, 127.2, 127.7, 128. 5, 129.5, 130.0, 132.0, 134.0, 135.7; Anal. Calcd. for C<sub>13</sub>H<sub>15</sub>NS: C, 71.84; H, 6.96; Found: C, 71.71; H, 7.25.

1- [(*N*,*N*-dimethylamino)methyl]thio-2,6-dimethylbenzene, 4c. Yield: 74%, b.p. 105-108 °C/3 mm Hg. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz): 2.39 (s, 6 H, Me<sub>2</sub>N), 2.65 (s, 6 H, Me<sub>2</sub>), 4.30 (s, 2 H, CH<sub>2</sub>), 7.11 (s, 3 H, Ph). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 600 MHz): 22.4 (Me), 42.6 (Me<sub>2</sub>N), 69.3 (CH<sub>2</sub>), 127.6, 128.3, 135.9, 142.2 (Ph). HRMS (DART), Calcd. for C<sub>11</sub>H<sub>18</sub>NS, M+1, 196.11599, Found 196.1193.

**2-**[(*N*,*N*-dimethylamino)methyl]-phenol, **5**.<sup>25</sup> Yield: 51%, b.p. 75 °C/3 mm Hg. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz): 2.26 (s, 6 H, Me<sub>2</sub>N), 3.58 (s, 2 H, CH<sub>2</sub>), 6.75 (t, 1 H, C-4), 6.83 (d, 1 H, C-6), 6.93 (d, 1 H, C-3), 7.15 (t, 1 H, C-5), 11.00 (s, 1 H, OH). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 300 MHz): 44.13 (Me<sub>2</sub>N), 62.6 (CH<sub>2</sub>), 115.8, 118.7, 121.8, 128.1, 128.5, 158.06 (Ph).

**2,6**-*bis*-[(*N*,*N*-dimethylamino)methyl]-phenol, **5a**.<sup>13d</sup> Yield: 75%, <sup>1</sup>H NMR: 1.97 (s, 12 H, ((CH<sub>3</sub>)<sub>2</sub>N), 3.38 (s, 4 H, CH<sub>2</sub>), 6.69 (t, 1H), 6.98 (d, 2H), Ph. <sup>13</sup>C NMR: 44.5 ((CH<sub>3</sub>)<sub>2</sub>N), 59.9 (CH<sub>2</sub>), 118.7, 123.4, 129.1, 157.1 (Ph).

**2,4,6**-*tris*-[(*N*,*N*-dimethylamino)methyl]-phenol, **5b**.<sup>13d</sup> Yield: 90%, <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 2.00 (s, 12 H, *p*-Me<sub>2</sub>N), 2.13 (s, 6 H, *o*-Me<sub>2</sub>N), 3.30 (s, 2 H, CH<sub>2</sub>), 3.47 (s, 4 H, CH<sub>2</sub>), 7.23 (s, 2H (Ph). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): 44.8 (*o*-(CH<sub>3</sub>)<sub>2</sub>N), 45.4 (*p*-Me<sub>2</sub>N), 60.2 (*o*-CH<sub>2</sub>), 64.4 (*p*-CH<sub>2</sub>), 123.7, 129.3, 129.6, 156.0 (Ph).

**4-**[(*N*,*N*-**dimethylamino**)**methyl]-2,6-dimethylphenol**, **6.**<sup>25c, 9d</sup> Yield 78%, m.p. 116-117 °C, colorless crystals. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz): 2.17 (s, 6 H, Me<sub>2</sub>), 2.21 (s, 6 H, Me<sub>2</sub>N), 3.29 (s, 2 H, CH<sub>2</sub>), 6.87 (s, 2 H, Ph). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 600 MHz): 16.13 (Me<sub>2</sub>), 45.3 (Me<sub>2</sub>N), 63.9 (CH<sub>2</sub>), 123.7, 129.6, 129.9, 151.7 (Ph).

#### Reactions of Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub> with 1- and 2-Naphthol

**1-**[(*N*,*N*-**dimethylamino**)**methyl]-2-naphthalenol**, **7**,<sup>25</sup> 2-Naphthol (0.3 g, 2.08 mmol) and **1a** (0.4 g, 2.1 mmol) were dissolved in 2 mL of benzene. After 10 minutes the solvent was removed under vacuum and the residual oil was dissolved in small amount of hexane and left at 5 °C overnight. The yellow-brown crystals formed were washed with cold hexane to remove any residual silanol. The final yield of the product was 63%, m.p. 71-72 °C; NMR, <sup>1</sup>H (C<sub>6</sub>D<sub>6</sub>): 1.9 (s, 6H), 3.7 (s, 2H), 7.3-7.9 (Ar-H, complex, 6H), 12.1 (s, 1H).<sup>13</sup>C (C<sub>6</sub>D<sub>6</sub>): 44.0 (Me<sub>2</sub>N), 57.8 (CH<sub>2</sub>-N), 111.7, 119.8, 121.2, 122.4, 126.4, 129.0, 129.3, 129.6, 133.3, 157.7.

**2-[**(*N*,*N*-dimethylamino)methyl]-1-naphthalenol, 8.<sup>26</sup> 1-Naphthol (0.3 g, 2.08 mmol) and 1a (0.4 g, 2.1 mmol) were dissolved in 2 mL of benzene. After 10 minutes the solvent was removed under vacuum, and the residue was passed through a small silica gel column. The column was eluded with hexane followed by (1:2) hexane-THF mixture. The final yield of the product was 57%. NMR, <sup>1</sup>H (C<sub>6</sub>D<sub>6</sub>): 1.8 (s, 6H), 3.3 (s, 2H), 6.9-7.9 (Ar-H, complex, 6H), 8.9 (1H).<sup>13</sup>C (CDCl<sub>3</sub>): 44.6 (Me<sub>2</sub>N), 63.2 (CH<sub>2</sub>-N), 114.4, 118.2, 122.2, 124.9, 125.1, 126.1, 126.5, 127.4, 134.1, 153.9.

**2,4-bis**[(*N*,*N*-dimethylamino)methyl]-1-naphthalenol, 9.<sup>26</sup> In a typical experiment, a 15-mL round-bottom flask was charged with 1-naphthol (0.5g, 0.35 mmol) and 1a (1.31g, 0.73 mmol) dissolved in 4 mL of benzene, under an inert atmosphere at room temperature. The reaction was agitated and monitored by NMR spectroscopy and when the reaction was finished, the solvent was

evaporated and the residual solid washed with cold hexanes, and recrystallized to yield the product. Yield: 73%, m.p. 75-77 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz): 2.28 (s, 6 H, Me<sub>2</sub>N), 2.37 (s, 6 H, Me<sub>2</sub>N), 3.71 (s, 2 H, CH<sub>2</sub>), 3.77 (s, 2 H, CH<sub>2</sub>), 6.99 (s, 1 H, aromat. H), 7.43-7.46 (t, 1 H, aromat. H), 7.48-7.50 (t, 1 H, aromat. H), 8.11-8.12 (d, 1 H, aromat. H), 8.26-8.27 (d, 1 H, aromat. H) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>, 600 MHz): 44.7 (Me<sub>2</sub>N), 45.6 (Me<sub>2</sub>N), 62.0 (CH<sub>2</sub>), 63.0 (CH<sub>2</sub>), 113.3, 122.4, 124.1, 124.6, 125.4, 126.2, 128.2, 132.8, 153.6 (aromat.).

**Synthesis of** [(*N*,*N*-dimethylamino)methyl)]-diphenylphosphine, **10.** A 5 mm Pyrex NMR tube was charged with 0.1 g (0.53 mmol) of Et<sub>3</sub>SiOCH<sub>2</sub>NMe<sub>2</sub>, 0.1 g (0.53 mmol) of Ph<sub>2</sub>PH, and 0.5 mL of C<sub>6</sub>D<sub>6</sub> and 5 mole% of ( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)Mo(CO)<sub>3</sub>-Me as a catalyst. The tube was sealed under vacuum and the NMR monitoring after 15 h of the reaction by <sup>1</sup>H, <sup>29</sup>Si and <sup>13</sup>C NMR spectroscopy showed the formation of Ph<sub>2</sub>PCH<sub>2</sub>NMe<sub>2</sub> and Et<sub>3</sub>SiOH. Et<sub>3</sub>SiOH was removed leaving the reaction mixture under vacuum at 70 °C for 2 hrs. An oil of pure Ph<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>, **12**, was obtained in 85% yield. <sup>1</sup>H NMR: 2.23 (s, 6 H, Me<sub>2</sub>N), 2.97, (d, 2 H, (<sup>2</sup>*J*<sub>P-H</sub>=4 Hz, CH<sub>2</sub>), 7.04, 7.42-7.47 (m, 10 H, Ph). <sup>13</sup>C NMR: 46.8 (d, <sup>3</sup>*J*<sub>P-C</sub>=9 Hz, Me<sub>2</sub>N), 63.4 (d, <sup>1</sup>*J*<sub>P-C</sub>=2.3 Hz, CH<sub>2</sub>) 128.6 (d) 128.6, (s), 133.3 (d), 139.4 (d); <sup>31</sup>P NMR: -26.6.

Synthesis of [(*N*,*N*-dimethylamino)methyl]-diphenylphosphine oxide, 11. A sample of pure Ph<sub>2</sub>PCH<sub>2</sub>NMe<sub>2</sub> exposed to air for 2 minutes immediately forms a white solid Ph<sub>2</sub>P(O)CH<sub>2</sub>NMe<sub>2</sub>, which was recrystallized from CH<sub>2</sub>Cl<sub>2</sub>/hexane mixture. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 2.38 (s, 6 H, Me<sub>2</sub>N), 3.12, (d, 2 H, (<sup>2</sup>*J*<sub>P-H</sub> = 6 Hz, CH<sub>2</sub>), 7.44-7.48,7.74-7.78 (m, 10 H, Ph). <sup>13</sup>C NMR:  $\delta$  ppm, 48.1 (d, <sup>3</sup>*J*<sub>P-C</sub> = 9 Hz, NMe), 59.5 (d, <sup>1</sup>*J*<sub>P-C</sub> = 88 Hz, CH<sub>2</sub>) 128.5 (d) 131.1 (d),131.8 (s), 133.1 (d); <sup>31</sup>P NMR: 26.9.

#### Acknowledgements

Support of this research by the Welch Foundation (Grant # AH-0546) is gratefully acknowledged.

Support for the upkeep of the NMR instrumentation by an endowment from the Kresge Foundation

is gratefully acknowledged.

#### **Supplementary Material**

<sup>1</sup>H and <sup>13</sup>C NMR data for materials; cif data for CCDC-1428932 for **2d**, 1428937 for **6**, 1428933

for 7, 1535575 for 9 and 1535574 for 11 which can be obtained free of charge from The Cambridge

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

#### References

- G. L. Larson, J. L. Fry, *Ionic and Organometallic-Catalyzed Organosilane Reductions*. 2010, J. Wiley & Sons Inc. Hoboken, NJ, USA. (b) Larson, G. L. *Chimica Oggi*, 2013, 31, 36-39.
- 2 L. I.Kopylova, N. D. Ivanova, M. G. Voronkov, Zhur. Obshch. Khim. 1985, 55, 1649-51.
- (a) Y. Motoyama, K. Mitsui, T. Ishida, H. Nagashima, J. Am. Chem. Soc. 2005, 127, 13150-13151. (b) S. Hanada, Y. Motoyama, H. Nagashima, Tetrahedron. Lett. 2006, 47, 6173-6177. (c) K. Matsubara, T. Iura, T. Maki, H. Nagashima, J. Org. Chem. 2002, 67, 4985-4988. (d) S. Zhou, K. Junge, D. Adis, S. Das, M. Beller, Angew. Chem. Int. Ed. 2009, 48, 9507-9510. (e) S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010, 132, 1770-1771. (f) S. Das, D. Addis, K. Junge, M. Beller, Chem. Eur. J. 2011, 17, 12186-12192. (g) D. Miles, J. Ward, D. A. Foucher, Macromolecules, 2009, 42, 9199-9203. (h) S. Park, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 640-653. (i) C. Cheng, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 640-653. (i) C. Cheng, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 640-653. (i) C. Cheng, M. Brookhart, J. Am. Chem. Soc. 2013, 11, 2066-2070. (l) A. Volkov, E. Buitrago, H. Adolfsson, Eur. J. Org. Chem. 2013, 11, 2066-2070. (l) A. Volkov, F. Tinnis, T. Slagbrand, I. Pershagen, H. Adolfsson, Chem. Commun. 2014, 50, 14508-14511.
- 4 (a) H. K. Sharma, K. H. Pannell, *Angew. Chem., Int. Ed.* 2009, 48, 7052-7054. (b) R. Arias-Ugarte, H. K. Sharma, A. L. C. Morris, K. H. Pannell, *J. Am. Chem. Soc.* 2012, 134, 848-851.
- 5 J. Martinez, H. K. Sharma, R. Arias-Ugarte, K. H. Pannell, *Organometallics*, **2014**, *33*, 2964-2967.
- H. K. Sharma, R. Arias-Ugarte, D. Tomlinson, R. Gappa, A. J. Metta-Magaña, H. Ito, K. H. Pannell, *Organometallics*, 2013, *32*, 3788-3794.
- 7 V. P. Kozyukov, V. F. Mironov, Zhur. Obshch. Khim. 1983, 53, 156-159.
- 8 J. Schreiber, H. Maag, N. Hashimoto, A. Eschenmoser, Angew. Chem., Int. Ed. 1971, 10, 330-331.
- 9 (a) M. Tramontini, Synthesis, 1973, 703-775. (b) M. Tramontini, L. Angiolini, Tetrahedron, 1990, 46, 1791-1837. (c) H. Heaney, G. Papageorgiou, R. F. Wilkins, J. Chem. Soc., Chem. Commun. 1988, 1161-1163. (d) H. Heaney, G. Papageorgiou, R. F. Wilkins, Tetrahedron, 1997, 53, 13361-13372. (e) M. Fujiwara, M. Sakamoto, K. Komeyama, H. Yoshida, K. Takaki J. Heterocyclic Chem. 2015, 52, 59-66. (f) E. W.

Payne, J. Chem. Ed. **1992**, 69, A40-41. (g) H. F. Anwar, L. Skattebol, T. V. Hansen, *Tetrahedron*, **2007**, 63, 9997-10002.

- 10 H. K. Sharma, P. E. Gonzalez, A. L. Craig, S. Chakrabarty, A. J. Metta-Magaña, K. H. Pannell, *Chemistry A European Journal*, **2016**, 22, 7363-7366.
- 11 J. M. Roper, C. R. Everly, J. Org. Chem. 1988, 53, 2639-2642.
- 12 (a) N. C. O. Tomkinson, T. M. Willson, T. A. Spencer, J. S. Russel, T. A. Spencer, J. Org. Chem., 1998, 63, 9919-9923. (b) S. Ikonen, O. Jurcek, Z. Wimmer, P. Drasar, E. Kolehmainen, J. Mol. Struct., 2012, 1011, 25-33.
- 13 (a) A. Filarowski, A. Szemik-Hojniak, T. Glowiak, A. Koll, J. Mol. Struct. 1997, 404, 67-74. (b) H. Moehrle, K. Troester, Archiv swe Pharmazie 1982, 315, 397-405. (c) H. A. Bruson, C. W. MacMullen, J. Am. Chem. Soc. 1941, 63, 270-2. (d) Spectral Database for Organic Compounds; http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, July 2017).
- 14 (a) A. M. Aguiar, K. C. Hansen, J. T. Mague, J. Org. Chem. 1967, 32, 2383-2387. (b) K. Kellner, B. Seidel, A. Tzschalsh, J. Organomet. Chem. 1978, 149, 167-176. (c) C. Abu-Gnim, I. Amer, J. Chem. Soc. Chem. Commun. 1994, 115-117.
- 15 S. O. Grim, J. D. Mitchell, Inorg. Chem. 1977, 16, 1770-1776.
- 16 J. W. Faller, T. Friss, J. Parr, J. Organomet. Chem. 2010, 695, 2644-2650.
- 17 Y. Hashioto, P. Yan, Tetrahedron Lett. 2006, 47, 3467-3469.
- 18 J. Pfeiffer, G. Kickelbick, U. Schubert, Organometallics, 2000, 19, 62-71.
- 19 T. Suzuki, J. Fujita, Chem. Lett. 1992, 1067-1068.
- 20 P. Vojtisek, I. Cisarova, Collect. Czech. Chem. Commun. 1996, 61, 1321-1324.
- 21 (a) S. V. Baires, V. B. Ivanov, B. E. Ivanov, S. S. Krokhina, Y. Y. Efremov, R. L. Korshunov, *Izvestiya Akademii Nauk SSSR, Seriya Kimicheskaya*. 1984, *1*, 220-223. b)
  O. G. Nabiev, Z. O. Nabizade, R. G. Kostyanovsky, *Mendeleev Commun.* 2009, *19*, 281-283.
- 22 H. Heaney, G. Papageorgiou, R. F. Wilkins, Tetrahedron. 1997, 53, 2941-2958.
- 23 W. M. Webb, USP 2823515, 19580218, 1958.
- 24 R. R. Khairullina, B. F. Akmanov, T. V. Tyumkina, R. V. Kunakova, A. G. Ibragimov, *Russ. J. Org. Chem.* 2012, 48, 175-179.
- (a) G. Pochini, G. Puglia, R. Ungaro, *Synthesis*. 1983, 11, 906-907. (b) R. A. Fairhurst, H. Heaney, G. Papageorgiou, R. F. Wilkins, *Tetrahedron Lett*. 1988, 29, 5801-5804. c) W. Sun, H. Lin, W. Zhou, Z. Li, *RSC Advances*. 2014, 4, 7491. (d) J. Matsumoto, M. Ishizu, R. Kawano, D. Hesaka, S. Tsutomu, Y. Hayashi, T. Yamashita, M. Yasuda, *Tetrahedron*, 2005, 61, 5735–5740.
- 26 (a) A. Blade-Font, T. De Mas Rocabayera, J. Chem. Soc., Perkin Trans. 1 1982, 841-848
  (b) N. Assimomytis, Y. Sariyannis, G. Stavropoulos, P. G. Tsoungas, G. Varvounis, P. Cordopatis, Synlett, 2009, 17, 2777-2782.
- 27 R. R. Khairullina, B. F. Akmanov, T. V. Tyumkina, R. V. Kunakova, A. G. Ibragimov, *Russ. J. Org. Chem.* **2012**, *48*, 175-179.

# **Graphical Abstract**

