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ABSTRACT: As alcohols are ubiquitous throughout chemical
science, this functional group represents a highly attractive starting
material for forging new C−C bonds. Here, we demonstrate that
the combination of anodic preparation of the alkoxy triphenyl-
phosphonium ion and nickel-catalyzed cathodic reductive cross-
coupling provides an efficient method to construct C(sp2)−C(sp3)
bonds, in which free alcohols and aryl bromidesboth readily
available chemicalscan be directly used as coupling partners.
This nickel-catalyzed paired electrolysis reaction features a broad
substrate scope bearing a wide gamut of functionalities, which was
illustrated by the late-stage arylation of several structurally complex natural products and pharmaceuticals.

1. INTRODUCTION

Developing efficient and practical methods to forge connections
between sp2- and sp3-hybridized carbons has been and remains a
central topic in synthetic chemistry.1 In recent years, the use of
transition-metal-catalyzed reductive cross-couplings between
two electrophiles has emerged as a powerful strategy for
C(sp2)−C(sp3) bond formation2−11 because these trans-
formations can circumvent the preparation and usage of
organometallic reagents, resulting in simple reaction setups
and high functional group compatibility. While the seminal
contributions in this arena have focused on the use of alkyl
halides as C(sp3) coupling partners (Figure 1A, left),12−25 the
scope has since expanded to include epoxides,26,27 azir-
idines,28,29 alkyl carboxylic acid derivatives (activated es-
ters),30,31 alkylamine derivatives (pyridinium salts, iminiums,
and ammonium salts),32−38 and alkyl sulfones.39

The ubiquity of alcohols across most classes of molecules
makes them attractive as potential C(sp3) coupling partners.
However, on account of the relatively strong bond dissociation
energy of the C−O bond and low leaving ability of the OH−

group,40 alcohols are seldom directly employed as alkylating
agents in cross-couplings,41−43 with a notable exception being π-
activated allylic and benzylic alcohols.44−52 Although many
alcohol derivatives have been wildly studied in reductive cross-
coupling reactions, including alkyl acetates,53,54 tosylates,55−58

xanthate esters,59 mesylates,60 pivalates,61 oxalates,62−64 phos-
phates,60 methyl ethers,65 and chloroformates66 (Figure 1A,
right), such derivatives require preparation step(s) from their
alcohol precursors, and the substrate scope is often limited to
allylic and benzylic alcohol derivatives. Therefore, it would be
synthetically appealing to develop a reaction which can directly
harness free alcohols to construct C(sp2)−C(sp3) bonds, ideally

supporting both π-activated alcohols and alkyl alcohols as
starting materials.
Electrosynthesis has been identified as a viable technique for

discovery of novel chemical transformations by unconventional
mechanistic pathways.67−74 In 1980, the Ohmori group initially
reported that alkoxy triphenylphosphonium ionsthe key
intermediate of Mitsunobu reactioncould be readily gen-
erated by anodic oxidation of triphenylphosphine (PPh3) with
alcohols (Figure 1B),75 and these alkoxy derivatives could be
further used as alkylating agents to form C−X bonds (X = O, N,
S, Br, F, etc.),76−80 with Ph3PO serving as a leaving group
(Figure 1B).81,82 Considering that two electron equivalents
must be donated to the anode during alkoxy triphenylphospho-
nium ion formation and that two electron equivalents are
needed for such cross-electrophile coupling, we explored the
idea that the electrochemical oxidation and reductive cross-
coupling could be merged as a paired electrolysis reaction to
create a novel catalytic platform to achieve direct dehydrox-
ylative cross-coupling (Figure 1C). However, we realized that
this proposed paired electrolysis approach for C(sp2)−C(sp3)
bond formation would pose at least two major challenges:83−89

(i) the requirement to properly match the innate redox
properties of the paired reaction partners and (ii) coordinating
the reaction rates for anodic oxidation, cathodic reduction, and
the metal catalytic cycle.
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2. RESULTS AND DISCUSSION
Reaction Optimization. With these considerations in

mind, we first examined the proposed cross-coupling by using
4-phenyl-2-butanol (1), bromobenzene (2), PPh3, and a wide
range of ligated nickel catalysts under various electrochemical
conditions. Owing to mechanistic and practical considerations,
all of the screening reactions were conducted at room
temperature in an undivided cell, and the use of expensive
electrode materials was consciously avoided. Table 1 illustrates
the optimal reaction parameters alongside an abbreviated
picture of the optimization process for these reactions (see the
Supporting Information for further details).
Direct control experiments revealed that the coupling reaction

did not proceed in the absence of an electric current, nickel
catalyst, ligand, or PPh3 (entries 1−4). We performed a broad
evaluation of electric conditions (including electrodes, currents,
and electrolytes) and to our delight found that the best yield was
provided with an easily available graphite anode and a nickel
foam cathode (entry 5). This result has mechanistic significance
because to date most reactions for electrochemical formation of
C(sp2)−C(sp3) bonds utilize sacrificial anodes or reductants to
avoid the competitive oxidation of low-valent nickel cata-
lyst.90−95 In addition, these materials are consistent with our
proposed convergent paired electrolysis: they should support a
net-redox-neutral transformation. Working at a 0.2 mmol scale,
and keeping the total amount of electron equivalent constant,
currents ranging from 2 to 4 mA were found to be equally
effective (1.1−2.3 mA/cm2 of graphite, entry 6); increasing the
current beyond 4 mA led to lower yields (entry 7). The
electrolyte LiClO4 and Et4NBr could be used in place of LiBr
with only a marginal decrease in yields (entries 8 and 9), while
other tested electrolytes performed sluggishly.

The inexpensive combination of NiBr2 and bipyridyl ligands
(L1) provided the most effective catalyst system for this
electrochemical dehydroxylative arylation. Notably, using Ni-
(COD)2 in lieu of NiBr2 resulted in a comparable yield (entry
10), indicating an in situ cathodic reduction of Ni(II) to the
active catalyst Ni(0) (vide inf ra), with excess PPh3 likely
working as the sacrificial reductant on the anode. Moreover,
coupling products were still obtained in satisfactory yields with
alternative bipyridine ligands, such as L2 and L3 (entries 11 and
12). The presence of a base was essential to neutralize the
byproduct HBr, which was detrimental to the yield (entry 13)
and would corrode the nickel foam cathode. Of all bases
surveyed, DIPEA provided the highest yield. Although 7 equiv of
PPh3 was needed on substrate 1, note that (i) using 3 equiv of
PPh3 could also produce the desired coupling product 3 in good
yield (70%, entry 14); (ii) for many additional substrates, 3
equiv of PPh3 was used (see Table 2); and (iii) PPh3 is a
nontoxic, air-stable, and low-cost feedstock. Additionally, no
improvements in reaction efficiency were obtained via fine-
tuning of electron density using various substitutional groups on
PPh3’s aryl ring (entries 15 and 16). Of all solvents screened,
NMP provided the best yield, although use of DMA also resulted
in excellent yields (entry 17). When 2 equiv of PhBr was used, a
comparable yield was also obtained (entry 18). Finally, our
screening showed that PhOTf and PhI are also viable coupling
partners (entries 19 and 20).

Substrate Scope. Having established the optimal con-
ditions for this nickel-catalyzed paired electrolysis, the reaction
scope was investigated as shown in Table 2. A range of alkyl
primary and secondary alcohols bearing a variety of function-
alities, including a phthalimide (6), a pyridine (7), a ketone (8),
a carbamate (9), a 1,4-dioxane (11), a cyano (12), ethers (13,
14, 17), an indane (15), and esters (16, 18), were all well
accommodated. Moreover, a poly-PEG motif could be
successfully incorporated into the aromatic ring (19). Addi-
tionally, π-activated alcohols including benzylic alcohols (20−

Figure 1. (A) Overview of the alkyl counterparts in reductive cross-
electrophile couplings. (B) Electrochemical preparation of alkoxy
triphenylphosphonium ions. (C) Nickel-catalyzed electrochemical
dehydroxylative arylation.

Table 1. Optimization of the Electrochemical
Dehydroxylative Arylationa

aReactions were conducted at a 0.2 mmol scale in 3 mL of NMP.
bYields were determined by GC/MS with dodecane as the internal
standard. cIsolated yield.
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23), an allylic alcohol (27), and α-hydroxycarbonyl compounds
(24−26) also function in this dehydroxylative arylation with
high efficiency. One general trend worth noting is that relatively
less sterically hindered alcohols (e.g., 16 and 20) tended to be
more reactive than more sterically hindered alcohols (e.g., 18
and 21), and tertiary alcohols were not accommodated in the

tested reaction context. The result of a competition experiment
with differently substituted aliphatic alcohols was also consistent
with our observations (Figure 2A).
Hydroxy groups are prevalent in structurally complex drugs

and natural products. Accordingly, we further examined this
dehydroxylative arylation within various densely functionalized

Table 2. Scope of Electrochemical Dehydroxylative Cross-Coupling of Alcohols with Aryl Bromidesa,b

aReactions were conducted on a 0.2 mmol scale. bIsolated yield. c7 equiv of PPh3 was used.
d3 equiv of PPh3 was used.

e10 equiv of PPh3 was used.
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architectures. As shown in Table 2C, pharmaceuticals and
repellents such as ospemifene (28), bucetin (29), simvastatin
(30), and icaridin (33) were amenable to this reaction,
demonstrating the viability of this electrochemical dehydrox-
ylative arylation for late-stage modifications of bioactive
molecules. Naturally occurring alcohols such as epiandrosterone
(31), citronellol (32), phytol (34), and perillol (35) were also
competent substrates, enabling access to the desired adducts in
synthetically useful yields. Notably, the primary alcohol in the
steroid hormone derivative drug cortisone could react smoothly
with bromobenzene without disturbing the innate tertiary
alcohol, and the structure of product 36 was confirmed by X-ray
crystallographic analysis.
We subsequently examined the substrate scope for aryl

bromide coupling partners. First, aryl rings that contain
functional groups as diverse as a trifluoromethyl group (37),
ethers (38, 42), an ester (39), an amine (40), a 1,3-dioxole (41),
and an extended aromatic ring (43) were demonstrated to be
viable coupling partners. Second, a series of medicinally relevant
and structurally distinct heterocycles including a pyridine (44), a
dibenzofuran (45), an indole (46), a benzofuran (47), a
carbazole (48), a benzo[d]oxazole (49), an indazole (50), and a
benzo[d]imidazole (51) were examined as well, and the desired
coupling products were successfully afforded in moderate-to-
good yields. Of particular note, (i) a vinyl bromide (52) was
viable in this reaction, and (ii) the free indole (46) and free
carbazole (48) could be used in this cross-coupling directly

without protecting the nitrogens, supporting their use as
nucleophilic centers for further modifications.

Mechanistic Studies. Interestingly, our substrate scope
explorations revealed two losses of stereochemistry at the
reaction sites (Table 2, 30 and 31), a radical ring-opening
reaction,96 and an enantiopurity erosion phenomenon (Figure
2B), which together mechanistically suggested that the alkyl
radials were generated though this dehydroxylative arylation
process. Given that the C−OH bond did not readily undergo
direct homolysis, two potential pathways for the generation of
alkyl radicals seem probable: (i) the alkoxy triphenylphospho-
nium ion may be reduced directly by the low-valent nickel
catalyst or perhaps at the cathode through single-electron
transfer (SET), potentially generating Ph3PO and the alkyl
radical; (ii) the alkoxy triphenylphosphonium ion may further
react with bromide ionsderived from the electrolyte LiBr or
the catalyst NiBr2to form alkyl bromide.97 Such an in situ
generated alkyl bromide could undergo single-electron reduc-
tion to produce an alkyl radical.
Five lines of experimental evidence added weight to the

second pathway: First, given that aryl bromide, NiBr2, and LiBr
can be respectively replaced by aryl triflate, Ni(COD)2, and
LiClO4 without causing significant yield declines (Table 1,
entries 19, 10, and 8), a control experiment was performed in the
absence of any bromide source (Figure 2C, entry 1):
informatively, no desired coupling product 3 was produced.
Second, when using NiBr2 (0.2 equiv of Br−) in lieu of

Figure 2. (A) Competitive experiment. (B) Mechanistic studies on the generation of alkyl radicals. (C) Investigating the roles of bromide ions. (D)
Function of bromide ion equivalent on the yield of 3. (E) Proposed mechanism for the convergent paired electrolysis. aReactions were conducted at a
0.2 mmol scale. bNMR yield. cGC yield. dWith 1 equiv of H2O and 2.2 equiv of DIPEA.
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Ni(COD)2, 3 was produced in 50% yield (entry 2), and using
LiBr as an electrolyte (1 equiv of Br−) or PhBr as a coupling
partner largely rescued the yield of 3 (entries 3 and 4). Third, a
detailed experiment also revealed that the yield of 3 was highly
dependent on the equivalent of bromide ion used (entry 5 and
Figure 2D). Fourth, when the alkyl bromide was used directly
(entry 6, 1 equiv of H2O was used for the anodic oxidation of
PPh3), the desired coupling product 3 could also be produced,
albeit in 21% yield. This relatively low yield was ascribed to the
β-elimination of alkyl bromide in the reaction conditions.
Finally, the alkyl bromides derived from the alcohols were
observed as the major byproducts for some substrates (see the
Supporting Information).
Given that the bromide ion was essential for this

dehydroxylative arylation, we turned our attention to the anodic
oxidation process, since the bromide ion, PPh3, and the alcohol
are all prone to be oxidized on the anode, and the detailed
mechanism for the anodic formation of alkoxy triphenylphos-
phonium bromide remains elusive.76,79 Interestingly, our cyclic
voltammogram investigations revealed that the bromide ion
could be oxidized more easily than PPh3 and alcohol 1 in NMP
(oxidative potential: 1.1 , 1.7, and >2.0 V for LiBr, PPh3, alcohol
1, respectively, versus Ag/AgCl; see the Supporting Information
for details), which demonstrated that Br2 could be generated
first on the anode. Based on the mechanism of the Appel
reaction, Br2 can react with PPh3 rapidly to produce PPh3Br2,
which can further couple with an alcohol to generate the alkoxy
triphenylphosphonium bromide.
Although further mechanistic studies are clearly warranted,

our initial mechanistic investigations, in combination with
Weix’s elegant demonstration of nickel-catalyzed reductive
coupling,98 lend support for the following proposed mechanism
(Figure 2E). The alkyl bromide (IV), in situ generated from the
alcohol via an anodic Appel reaction, can be reduced by Ni(I)
complex V via a single-electron transfer, thus generating Ni(II)
complex VI and alkyl radical VII. Subsequently, the Ni(II)
complex VI withdraws two electrons from the cathode to
balance the electrochemical equilibrium, producing the Ni(0)
complex VIII. This Ni(0) complex can diffuse into the reaction
solution. Notably, this reductive process also releases two
bromide ions, which can be reused in the anodic oxidation,
enabling a catalytic Appel reaction. Direct oxidative addition of
VIII to aryl bromide IX can produce the Ni(II) aryl complex X.
At this point, combination of the alkyl radicalVII andNi(II) aryl
complex X can generate the Ni(III) adduct XI that after
reductive elimination can afford the desired coupling product
XII and Ni(I) complex V.
An alternative pathway for the generation of the alkyl radical

VII cannot be fully ruled out: perhaps the alkyl bromide is
reduced directly at the cathode via SET,99−101 and the resulting
alkyl radical may be trapped by the Ni(II) complex X, a scenario
which would ultimately generate the same Ni(III) adduct XI (as
shown in Figure 2E). Nevertheless, given that (i) the Ni(II)
complex could be reduced more readily than the alkyl bromide
in reductive cross-couplings and (ii) the possibility that the
short-lived alkyl radical generated on the cathode diffuses into
the reaction solution to combine with the catalytic amount of
Ni(II) complex is low, our current thinking favors the
mechanism outlined in Figure 2E. Moreover, since PPh3 was
present in superstoichiometric amounts in this dehydroxylative
arylation, a stoichiometric reaction of Ni(II) complex VI with
Ph3P in NMP was performed. Interestingly, no ligand exchange

between L1 and PPh3 was observed by 31P NMR analysis (see
the Supporting Information for further details).102

3. CONCLUSION
In summary, by merging anodic Appel reaction and nickel-
catalyzed cathodic cross-electrophile reaction in an undivided
electrochemical cell, we achieved direct arylation of readily
available free alcohols. Besides the exceptional substrate
generality and functional group compatibility, this one-step
paired electrolysis can avoid the use of stoichiometric hazardous
CBr4 or Br2 in Appel reaction, the isolation of frequently toxic
alkyl halides, and the use of stoichiometric Zn orMn in reductive
cross-couplings. Moreover, we anticipate that this cross-
coupling reaction is likely to find wide application because of
the ubiquity of its building blocks: free alcohols and aryl
bromides. Notably, the capacity for electrochemically enabled
direct dehydroxylative cross-couplingusing ubiquitous alco-
hols as C(sp3) coupling partnersshould considerably expand
the synthetic utility of organic electrosynthesis. Both the further
development and practical application of this reaction, as well as
detailed mechanistic studies, are currently underway in our
laboratory.
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