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ABSTRACT: A general procedure of 1,2-dibromination of vicinal sp3

C−H bonds of arylethanes using N-bromosuccinimide as the bromide
reagent without an external initiator has been established. The
modulation of the strength of the intermolecular noncovalent
interactions between the solvent and arylethane ethanes, quantitatively
evaluated via quantum chemical calculations, allows us to circumvent
the fact that arylethane ethane cannot be dibrominated through
traditional methods. The mechanism was explored by both experiments and quantum chemical calculations, revealing a radical chain
with HAA process.

1,2-Dibromoarylethane derivatives are acknowledged as
significant intermediates in the field of fine chemical synthesis;
in particular, they are involved in the conversion to multiple
functionalized compounds, including alkenes,1 alkynes,2

azirines,3 azides,4 alcohols,5 ketones,5a,6 and epoxides.5a,b,7 A
great majority of approaches for the preparation of 1,2-
dibromoarylethanes through one step focus on the difunction-
alization of arylalkenes (Scheme 1a, eq 1).8 However,
arylalkenes usually must be prefunctionalized from the
corresponding arylalkanes, increasing the number of synthesis
stages and the cost of producing 1,2-dibromoarylethanes. For

instance, styrene is industrially produced by the oxidative
dehydrogenation of phenylethane, which is more expensive
than phenylethane ($1277 per ton vs $638 per ton). To save a
reaction step and production costs, the direct 1,2-dibromation
of phenylethane is the ideal transformation. Nevertheless, a few
examples report the synchronous introduction of two bromine
atoms into vicinal sp3 C−H bonds in one pot. The reactions
are limited to the dibromination reaction of 1,2-diarylethane
with N-bromosuccinimide (NBS) in the presence of an
external initiator, like peroxide or azodiisobutyronitrile, in
carbon tetrachloride (CCl4) during heating (Scheme 1a, eq
2).9 In these transformations, two benzyl radicals are
indispensable for the formation of 1,2-dibromoethane
compounds by quenching of two bromine radicals. To the
best of our knowledge, the 1,2-dibromination reaction of
ethanes separately bearing one aryl group and one non-aryl
group (e.g., proton, alkyl, or ester) at vicinal positions has not
been demonstrated to date. We initially considered this may be
due to the higher stability of the radical in position 2 compared
to that of the benzyl radical in the 1-aryl-2-non-aryl-substituted
ethanes (Scheme 1b). 1,2-Dibromination of phenylethane with
NBS performed by our group under the literature reaction
conditions gave no 1,2-dibromoethane product (Table S5,
entry 9). However, when DCE (1,2-dichloroethane), DCM
(dichloromethane), TCE (1,1,2,2-tetrachloroethane), or
chloroform was employed as the solvent in place of CCl4, in
the absence of any external initiator, unexpectedly, 60−65%
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Scheme 1. Traditional Method versus Our Method for
Synthesis of 1,2-Dibromoarylethane
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yields of 1,2-dibromoethane product were successfully attained
in the transformation (Table S5). This finding suggests that
not only the stability of radicals but also the interaction
between the arylethane and solvent molecules may represent
significant a reaction factor.
To reveal the type of interactions of phenylethane and 1,2-

diphenylethane with the solvent (CCl4, DCM, DCE, and
TCE), a series of quantum chemical calculations were
performed, accounting for several possible interaction geo-
metries (Scheme 1b; details in Table S11). The average values
of the Gibbs free energy of interaction between phenylethane
and a solvent molecule decrease in the following order: DCM
(∼0 kJ/mol) > DCE (−0.2 kJ/mol) > TCE (−6.3 kJ/mol) >
CCl4 (−13.2 kJ/mol). In the latter two environments, the
phenylethane molecules are therefore less available for the 1,2-
dibromination reaction because of strong interactions with the
solvation shell. A similar thing happens to 1,2-diphenylethane,
whose average ΔG values of interaction are −3.2 kJ/mol
(DCM), −5.1 kJ/mol (DCE), −6.7 kJ/mol (TCE), and −15.8
kJ/mol (CCl4); this may be why the introduction of an
external initiator is necessary in the 1,2-dibromination process
of 1,2-diphenylethane in CCl4. The computed values of
substrate−solvent interaction are consistent with the exper-
imentally determined reaction yields. The strength of the
intermolecular noncovalent interactions (NCIs) established
between the reactant and the solvent is also depicted in Figure
S9, where in the case of CCl4 strongly attractive NCIs are
shown between the Cl atoms of the solvent and the C atoms of
the reactant molecule. TCE also shows extended positive NCI
regions but less strongly attractive ones. In the case of DCM
and DCE, the NCIs are weakly attractive or even repulsive in
nature.
To further establish an available synthesis method for the

dibromination of vicinal sp3 C−H bonds, a new radical
initiator free 1,2-dibromination transformation of 1-arylethane
derivatives with NBS as the bromine source has been
developed, affording various 1,2-dibromo products with
efficiencies ranging from moderate to high. In this dibromi-
nation reaction, chloroalkanes other than CCl4 were used as
the solvent, and the reactivity was obviously enhanced under
thermal conditions. The high-value-added compounds (e.g.,
azides, alcohols, ketones, and epoxides) were readily
synthesized from 1,2-dibromophenylethane. A preliminary
mechanistic study was attempted, involving a set of possible
reactions, explored by means of quantum chemical calcu-
lations, and revealed feasible radical chain pathways with
hydrogen atom abstraction (HAA).
To refine the dibromination reaction, the treatment of

hexylbenzene 1a with NBS was performed at 100 °C for 6 h
(Table 1). CCl4 was initially employed as the solvent, and a
trace of dibromination product 2a was detected (entry 1). On
the contrary, when CCl4 was replaced with DCE, chloroform
(CHCl3), or dichloromethane (DCM), 2a was effortlessly
formed (entries 2−4). Solvent screening demonstrated that
DCM is the optimum, producing the highest yield (82%, entry
4). When the amount of NBS was decreased from 3.5 to 2.5
equiv, the conversion efficiency did not vary significantly
(entries 5 and 6). To further increase the yield, temperature
and time effects were also investigated, finally confirming 100
°C and 6 h as the optimized conditions (entries 7−11).
Exploiting the optimal reaction conditions to broaden the

scope of the investigated reaction, we tested a variety of
substrates, allowing the synthesis of arylethane derivatives 2a−

2u (Table 2). Benzenes with long chain alkyls 1a−1f readily
reacted with NBS to yield vicinal dibromoethanes 2a−2f with
high efficiencies. Interestingly, 1,2,3-tribromination product 2g
instead of a dibrominated or monobrominated compound10

was isolated via conversion of cyclopropylbenzene 1g.
Dibrominated compounds 2h−2j were easily obtained with
excellent diastereoselectivities by using 1-ester-2-phenylethanes
as the substrate. In particular, trans-2i was isolated and
characterized by X-ray single-crystal diffractometry, which
uncontroversially revealed the position of the two bromine
atoms lying almost on the same plane (Figure S8). Product 2k
was obtained in 54% yield by decreasing the reaction
temperature to 80 °C without any additive. 1l was successfully
transformed into the corresponding product 2l in modest yield
and high diastereoselectivity. For products 2a−2j and 2l, the
trans structure is primarily synthesized due to the higher
stability with respect to the other isomers, as shown by
quantum chemical calculations. The optimal reaction con-
ditions of 1,2-dibromination of phenylethane 1m were also
identified, with synthesis of 2m in 85% yield (Tables S5−S8).
The effects due to the presence of electron-withdrawing groups
in the aryl ring of phenylethanes were also inspected; upon 1,2-
dibromination, the desired products 2m−2r were effortlessly
obtained in 34−81% yields. The treatment of 4-methylphenyl-
ethane 1r with NBS provided 1,2-dibromo product 2r under
the standard reaction conditions.
With an increase in the amount of NBS to 3.5 equiv,

tribromination compound 2s could be isolated in moderate
yield. In addition to the methyl group, 2-methoxy and 2-
acetoxy groups in the aromatic ring were also compatible with
the investigated reaction, straightforwardly forming products 2t
and 2u, respectively.
To show the broadness of the synthetic applicability of 1,2-

dibromoethane derivatives, various compounds were formed
when 2m was used as a reactant (Scheme 2a). 1,2-
Dibromophenylethane 2m facilely reacted with NaN3 to
provide azides 4 and 5 in DMSO and DMF, respectively.4

1,2-Dihydroxyphenylethane 6 was produced from 2m under
basic conditions. When 2m was heated in acetone and H2O,

Table 1. Optimization of Reaction Conditionsa

entry solvent yield and drb

1 CCl4 trace
2 DCE 78%, dr = 69:31
3 CHCl3 81%, dr = 74:26
4 DCM 82%, dr = 75:25
5 DCM 62%,c dr = 80:20
6 DCM 82%d (79%),e dr = 75:25
7 DCM traced,f

8 DCM 76%,d,g dr = 75:25
9 DCM 77%,d,h dr = 75:25
10 DCM 67%,d,i dr = 75:25
11 DCM 82%,d,j dr = 75:25

aReaction conditions: 1a (0.5 mmol, 1 equiv), NBS (1.75 mmol, 3.5
equiv), solvent (2.0 mL), 100 °C, 6 h, N2.

bYield and dr value
determined by 1H NMR using the crude reaction. cNBS (1.0 mmol,
2.0 equiv). dNBS (1.25 mmol, 2.5 equiv). eIsolated yield. fAt 60 °C.
gAt 80 °C. hAt 120 °C. iFor 3 h. jFor 12 h.
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alcohol 7 could be easily obtained.5 Ketone 8 and epoxide 9
could be derived from 2m by a two-step procedure.6,7 In
particular, 9 was also readily synthesized from 2m via a
successive step (see the Supporting Information). Finally, a
gram-scale transformation was successfully subjected to the
optimal reaction conditions, forming 2m in 89% yield (1.37 g)
(Scheme 2b; details in the Supporting Information).
Furthermore, a series of preliminary experiments were

carried out to shed light on still unclarified aspects of the
mechanism of the dibromination reaction of arylethane
derivatives (Scheme 3). Product 2a was not detected with

the radical scavenger (2,2,6,6-tetramethylpiperidin-1-yl)oxy
(TEMPO) or 1,1-diphenylethene in the reaction of 1a with
NBS under the standard reaction conditions. These results
indicate that this reaction includes a radical process (Scheme
3a). To capture the intermediates in the dibromination process
of 2m with NBS, the reaction was tracked by in situ 1H NMR
experiments (Scheme 3b). The characteristic peak of (1-
bromoethyl)benzene 3 arises at 40 min, its intensity increasing
with a decrease in the amount of 1m. Simultaneously, the
increase in the amount of product 2m accompanies the
decreases in the amounts of 1m and 3. Furthermore, 3 could
react with NBS to give 2m in 56% yield using the optimal
conditions (Scheme 3c). Compound 3 may therefore be one of
the intermediates in the transformation. On the contrary, HBr
and Br2 could be detected by means of classical methods (e.g.,
AgNO3 and KI in a starch solution), which reveal that both
HBr and Br2 are intermediates (details in the Supporting
Information). The intermolecular kinetic isotope effect (KIE)
experiment was examined, giving a kH/kD value of 2.7. This
result implies that the C−H bond cleavage is possibly involved
in the rate-determining step (Figure S6). Hammett’s analysis
provided a ρ slope value of −0.219 through the competition

Table 2. Substrate Scope of Arylethane Derivativesa

aReaction conditions: 1 (0.5 mmol, 1 equiv), NBS (1.25 mmol, 2.5
equiv), DCM (2.0 mL), 100 °C, 6 h, N2, isolated yield, dr value
determined by 1H NMR using the crude reaction. bNBS (1.75 mmol,
3.5 equiv). cFor 12 h. dFor 24 h. eFor 48 h. fNBS (2.5 mmol, 5 equiv).
gDCE (2.0 mL). hMe4N

+I− (10 mol %). iAt 80 °C.

Scheme 2. Synthetic Application of 1,2-
Dibromophenylethane

Scheme 3. Preliminary Mechanistic Research
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experiments of NBS with para-substituted phenylethanes
(Figure S7). Although this result suggests that cationic species
are probably contained in the transition state, the radical
approach is still dominating, because the radical species were
shown to be largely more stable than the cationic ones on the
basis of quantum chemical calculations. Both the KIE and a
Hammett plot show that a HAA procedure is part of the 1,2-
dibromination reaction.
On the basis of both the experimental evidence and the

computed thermochemical data (Table S12), possible reaction
pathways for the 1,2-dibromination of aryl alkanes with NBS
were proposed (Scheme 4a). First, bromine and succinimide

radicals are rapidly achieved by thermal dissociation of NBS.
One way consists of steps 1−3, which starts with the extraction
of hydrogen from 1m by the succinimide radical (step 1).
Subsequently, a newly formed benzyl radical couples with the
bromine radical to form intermediate 3, which is successively
brominated by bromine to deliver product 2m via a radical
pathway (steps 2 and 3).9,11 We consider that step 3 is a radical
process because the radical capture experiment of 3 with
TEMPO was carried out under the standard reaction
conditions, and a detailed probable pathway also was presented
(see the Supporting Information). In addition, other pathways
cannot be totally excluded according to the literature.12

Alternatively, a benzyl radical may be produced by the
single-electron transfer of the bromine radical with 1m,
generating HBr that then reacts with NBS to give Br2 by an

ionic reaction (step 1′). Br2 then reacts with a benzyl radical to
afford 3 (step 2′), which is oxidized by the succinimide radical
to provide a benzyl radical that can react with the bromine
radical to give 2m (steps 3′ and 4′). Quantum chemical
calculations were also conducted to compare the reaction
pathways, including steps 1−3 and 1′−4′. The process
including stages 1−3 was established as the most probable
way on the basis of the thermochemical data (Scheme 4b). For
the two pathways, the most probable structures of transient
states were also determined (see the Supporting Information).
The activation Gibbs free energies for 1,2-dibromination
reaction of 1,2-diphenylethane were shown to be slightly
higher than that of phenylethane. Furthermore, with regard to
the impact of the solvent interactions on the mechanism, we
are inclined to suppose that the reaction requires the substrate
to get free from the first solvation shell, especially in the
molecular fragment involved in the reaction; if the substrate−
solvent specific interactions are strong (as in the case of CCl4),
then the substrate does not get free and it is highly unlikely
that the reaction would occur. Weak interactions guarantee the
success of the reaction.
In conclusion, a simple method for 1,2-dibromination of

arylethane compounds was described for the first time under
heating conditions, in the absence of any external radical
initiator. Diverse 1,2-dibromoarylethane compounds were
easily derived in moderate to high yields when employing
chloroalkanes such as DCM, DCE, TCE, etc., except CCl4 as a
solvent. Additionally, highly valuable chemicals such as azides,
alcohols, ketones, and epoxides were facilely synthesized from
1,2-dibromophenylethane. A radical chain with HAA process
could be hypothesized through preliminary mechanistic
reactions and quantum chemical calculations. Furthermore,
calculations were employed to verify the intermolecular weak
noncovalent interactions between arylethane with chloroal-
kanes, which are responsible for the different reactivity of
reactants in different solvents.
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