Melanogenesis-Inhibitory and Cytotoxic Activities of Diarylheptanoids from Acer nikoense Bark and Their Derivatives

by Toshihiro Akihisa*, Ayano Takeda, Hiroyuki Akazawa, Takashi Kikuchi,
Satoru Yokokawa, Motohiko Ukiya, Makoto Fukatsu, and Kensuke Watanabe
College of Science and Technology, Nihon University; 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
(fax: +81-3-3293-7572; e-mail: akihisa.toshihiro@nihon-u.ac.jp)

Abstract

Nine cyclic diarylheptanoids, $\mathbf{1 - 9}$, including two new compounds, i.e., 9-oxoacerogenin $\mathrm{A}(\mathbf{8})$ and 9-$O-\beta$-D-glucopyranosylacerogenin $\mathrm{K}(9)$, along with three acyclic diarylheptanoids, 10-12, and four phenolic compounds, 13-16, were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K (17) and D-glucose. Two of the cyclic diarylheptanoids, acerogenin $\mathrm{A}(\mathbf{1})$ and (R)-acerogenin $\mathrm{B}(\mathbf{5})$, were converted to their ether and ester derivatives, $\mathbf{1 8}-\mathbf{2 4}$ and $\mathbf{2 7}-\mathbf{3 3}$, respectively, and to the dehydrated derivatives, $\mathbf{2 5}, \mathbf{2 6}, \mathbf{3 4}$, and $\mathbf{3 5}$. Upon evaluation of compounds $\mathbf{1 - 1 6}$ and $\mathbf{1 8}-\mathbf{3 5}$ for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone ($\alpha-\mathrm{MSH}$), eight natural glycosides, i.e., six diarylheptanoid glycosides, $\mathbf{2 - 4 , 6} \mathbf{6}$, and 12, and two phenolic glycosides, $\mathbf{1 5}$ and 16, exhibited inhibitory activities with $24-61 \%$ reduction of melanin content at $100 \mu \mathrm{M}$ concentration with no or almost no toxicity to the cells ($88-106 \%$ of cell viability at $100 \mu \mathrm{~m}$). In addition, when compounds $\mathbf{1}-\mathbf{1 6}$ and $\mathbf{1 8 - 3 5}$ were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, $\mathbf{1 0}$ and 11, ten ether and ester derivatives, $\mathbf{1 8}-\mathbf{2 2}$ and $\mathbf{2 7}-\mathbf{3 1}$, and two dehydrated derivatives, $\mathbf{3 4}$ and 35, exhibited potent cytotoxicities against HL60 human leukemia cell line ($I C_{50} 8.1-$ $19.3 \mu \mathrm{~m})$, and five compounds, $\mathbf{1 0}, \mathbf{1 1}, \mathbf{2 0}, \mathbf{2 9}$, and $\mathbf{3 0}$, against CRL1579 human melanoma cell line $\left(I C_{50}\right.$ $10.1-18.4 \mu \mathrm{M})$.

Introduction. - The bark of the Japanese maple tree, Acer nikoense Maxim. (Aceraceae; Japanese name, Megusurino-ki) has been used as a folk medicine for the treatment of hepatic disorders and eye disease [1]. The bark has been reported to contain various diarylheptanoids and phenolic compounds [2-4] possessing several biological properties including inhibitory effects on degranulation in RBL-2 H3 cells [5], on nitric-oxide (NO) production in lipopolysaccharide-activated macrophages [6], and on expression of Na^{+}-glucose co-transporter in COS-1 cells [7], as well as hepatoprotective effects [8]. In our search for potential bioactive compounds from natural sources, we have demonstrated that the diarylheptanoid and phenolic constituents of the extract of A. nikoense stem bark exhibited inhibitory effects against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice [9], against Epstein-Barr virus early antigen (EBV-EA) activation induced by TPA [9], and against melanogenesis in B16 melanoma cells [10][11], in addition to free radicalscavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical [10]. In a continuing study on the constituents of A. nikoense bark extract, we have isolated twelve diarylheptanoids, $\mathbf{1 - 1 2}$, including two new compounds, $\mathbf{8}$ and $\mathbf{9}$, along with four
phenolic compounds, 13-16, from the extract. In addition, we have prepared 18 derivatives, $\mathbf{1 8}-\mathbf{3 5}$, from two cyclic diarylheptanoids, acerogenin $\mathrm{A}(\mathbf{1})$ and (R)acerogenin $B(\mathbf{5})$. Here, we describe structure elucidation of the two new compounds, $\mathbf{8}$ and 9 , and evaluation of compounds $\mathbf{1 - 1 6}$ and $\mathbf{1 8 - 3 5}$ for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), and cytotoxic activities against two human cancer cell lines.

Results and Discussion. - Isolation, Identification, and Characterization. The MeOH extract of A. nikoense bark was fractionated into $\mathrm{AcOEt}, \mathrm{BuOH}$, and $\mathrm{H}_{2} \mathrm{O}-$ soluble fractions. Nine cyclic diarylheptanoids, $\mathbf{1 - 9}$, three acyclic diarylheptanoids, 10 12, and two phenolic compounds, $\mathbf{1 3}$ and $\mathbf{1 4}$, from the AcOEt-soluble fraction, and two phenolic glycosides, $\mathbf{1 5}$ and 16, from the BuOH -soluble fraction were isolated. Two compounds, 9 -oxoacerogenin $\mathrm{A}(\mathbf{8})$ and $9-O-\beta$-D-glucopyranosyl acerogenin K (9),

$1 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$
$2 R=G l c, R^{\prime}=H$
$3 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Apif}(1 \rightarrow 6) \mathrm{Glc}$
$4 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Glc}$

8

$5 \mathrm{R}=\mathrm{H}$
$6 \mathrm{R}=\mathrm{Glc}$

7

$9 \mathrm{R}=\mathrm{Glc}$
17 R = H

$11 R=H$
$12 \mathrm{R}=\mathrm{Glc}$

13

$14 \mathrm{R}=\mathrm{H}$
$15 \mathrm{R}=\operatorname{Apif}(1 \rightarrow 6) \mathrm{Glc}$

$16 \mathrm{R}=\mathrm{Apif}(1 \rightarrow 6) \mathrm{Glc}$

Apif

Glc
Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR, and HMBC Data (recorded in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) for Two Diarylheptanoids $\mathbf{8}$ and $\mathbf{9}$ from Acer nikoense. Atom numbering as given in the

Position	8			9		
	$\left.\delta(\mathrm{H})^{\mathrm{a}}\right)(500 \mathrm{MHz})$	$\delta(\mathrm{C})(125 \mathrm{MHz})$	$\operatorname{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$	$\left.\delta(\mathrm{H})^{\mathrm{a}}\right)(400 \mathrm{MHz})$	$\delta(\mathrm{C})(100 \mathrm{MHz})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)
1		150.6 (s)			128.7 (s)	
2		146.0 (s)			127.8 (s)	
3	7.14 ($d, J=8.1$)	117.4 (d)	1,2,5		152.6 (s)	
4	6.70 (br. $d, J=7.2$)	122.4 (d)	2, 6, 7	7.25 ($d, J=8.2$)	117.4 (d)	2,3
5		132.6 (s)		7.15 ($d d, J=1.8,8.2$)	130.0 (d)	3, 6, 7, 19
6	5.69 ($d, J=1.5$)	114.9 (d)	1, 2, 4, 7		130.8 (s)	
7	2.49 (d d, $J=10.1,17.1$)	27.2 (t)	4, 6, 8	2.48 (br. $t, J=13.8$)	30.2 (t)	6, 8, 19
	3.30 (d d, $J=11.9,16.0$)		5, 8, 9	2.91 (br. $d, J=18.4$)		5, 6, 8, 9
8	2.17 (dd-like, $J=8.0,16.3)$	41.9 (t)	7,9	1.72-1.79 (m)	26.9 (t)	6
	2.48 ($d d, J=10.1,17.1$)		5, 7, 9	1.99-2.08 (m)		7, 10
9		208.3 (s)		$4.29(t, J=9.2)$	67.4 (d)	8, 11, 1^{\prime}
10	$1.54(d, J=18.3)$	54.5 (t)	9,11	$1.85(t, J=13.3)$	40.2 (t)	9, 11, 12
	2.61-2.68 (m)		9, 12	1.95-2.04 (m)		9, 11, 12
11	4.43 ($t, J=8.6)$	65.2 (d)	9, 13	1.40 (sept., $J=6.4)$	22.9 (t)	9, 10, 13
				1.68 (tt, $J=11.4,11.4)$		9, 10, 13
12	1.92 (ddd-like, $J=4.9,8.0,13.2)$	39.1 (t)	10, 11, 13	1.88-1.95 (m)	35.2 (t)	13, 14
	2.18 ($d, J=16.3)$		11	2.36 (br. $t, J=13.9)$		11, 13
13	2.64-2.71 (m)	33.4 (t)	11, 14, 15, 19	2.96 (br. $d, J=18.4)$	27.3 (t)	11, 14, 15
	2.93 (dt, J=3.9, 13.0)		11, 12	3.23 (br.t, $J=13.8$)		14, 15, 18
14		138.6 (s)			133.0 (s)	
15	7.26 (dd, $\left.J=2.0,8.1)^{\mathrm{b}}\right)$	$130.7{ }^{\text {b }}$) (d)	13, 17, 19	7.09 (dd, $J=1.8,8.7)$	129.9 (d)	13, 16, 17, 18
16	$7.14(d d, J=2.5,8.1)^{\text {c }}$)	$123.9{ }^{\text {c }}$) (d)	14, 18	7.48 ($d, J=8.2$)	114.5 (d)	1, 14, 17
17		155.7 (s)			152.9 (s)	
18	$6.88(d d, J=2.5,8.1)^{\text {c }}$)	$124.2^{\text {c }}$) (d)	14, 16, 17	7.39 ($d, J=1.8$)	135.7 (d)	2, 13, 15, 17
19	$\left.7.17(d d, J=2.0,8.1)^{\mathrm{b}}\right)$	$132.0{ }^{\text {b }}$) (d)	13, 15, 17	$7.30(d, J=1.8)$	135.2 (d)	1, 3, 5, 7
$1{ }^{\prime}$				$5.78(d, J=7.8)$	101.6 (d)	$2^{\prime}, 3^{\prime}$
$2{ }^{\prime}$				4.26 ($t, J=8.7)$	74.4 (d)	$3 '$
$3{ }^{\prime}$				$4.34(t, J=8.7)$	78.1 (d)	$2^{\prime}, 4^{\prime}$
$4{ }^{\prime}$				$4.28(t, J=9.2)$	71.0 (d)	$5^{\prime}, 6^{\prime}$
$5{ }^{\prime}$				4.19 (ddd, $J=1.8,5.0,9.2)$	78.9 (d)	$4^{\prime}, 6^{\prime}$
6^{\prime}				4.41 (dd, $J=4.6,11.5$)	62.2 (t)	$4{ }^{\prime}$
				4.57 ($d d, J=1.8,11.9$)		4^{\prime}

${ }^{\text {a }}$) In parentheses, J values in $\mathrm{Hz} .{ }^{\text {b }}$), ${ }^{\text {c }}$) Values bearing the same superscript may be interchangeable within the same column.
among the 16 compounds were new ones, and their structures were elucidated on the basis of spectroscopic data and comparison with literature.

The molecular formula of $\mathbf{8}$ was determined as $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$ on the basis of its HR-ESIMS ($\mathrm{m} / \mathrm{z} 335.1303\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{4}^{+}\right.$; calc. 335.1259$)$). The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{8}$ (Table 1) exhibited 19 signals assignable to two benzene rings (five singlets and seven doublets), five CH_{2} groups, a $\mathrm{C}=\mathrm{O}$ group, and an $\mathrm{CH}-\mathrm{O} \mathrm{C}$-atom. These findings, in combination with its IR spectrum which showed absorption bands at 3403, 1705, 1504 , and $1055 \mathrm{~cm}^{-1}$ assignable to $\mathrm{OH}, \mathrm{C}=\mathrm{O}$, aromatic ring, and ether functions, and its UV spectrum which exhibited an absorption at $276 \mathrm{~nm}(\log \varepsilon 3.52)$, suggested that $\mathbf{8}$ is a diphenyl ether-type cyclic diarylheptanoid [2][3][9]. Compound 8 was shown to possess a β-ketol system at $\mathrm{C}(9)(\mathrm{C}(9)=\mathrm{O})$ and $\mathrm{C}(11)(\geq \mathrm{CHOH})$ in the heptyl chain based on the observation of ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ long-range couplings from $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(6)$ to $\mathrm{C}(7)$, from $\mathrm{H}-\mathrm{C}(7)$ to $\mathrm{C}(9)$, from $\mathrm{H}-\mathrm{C}(11)$ to $\mathrm{C}(9)$ and $\mathrm{C}(13)$, and from $\mathrm{H}-\mathrm{C}(13)$ to $\mathrm{C}(14)$ and $\mathrm{C}(15)$, in the HMBC spectrum (Table 1 and Fig.). Furthermore, the presence of a OH group at $\mathrm{C}(2)$ was evidenced by ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ long-range couplings from $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)$, and $\mathrm{H}-\mathrm{C}(6)$ to $\mathrm{C}(2)$ observed in the HMBC spectrum of $\mathbf{8}$. The above findings coupled with analysis of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ (Fig.), HMQC, and HMBC (Table 1, Fig.) data indicated that $\mathbf{8}$ possesses the structure of 4,12-dihydroxy-2oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexaen-10-one, which has been named 9oxoacerogenin A . The configuration at $\mathrm{C}(11)$ of compound $\mathbf{8}$ remained undetermined.

Figure. ${ }^{l} H,{ }^{l} H-C O S Y(-)$ and major $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlations for compounds $\mathbf{8}$ and $\mathbf{9}$

The molecular formula of $\mathbf{9}$ was determined as $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8}$, based on its HR-ESI-MS $\left(m / z 483.1984\left([M+N a]^{+}, \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}_{8}^{+} ;\right.\right.$calc. 483.1994)$)$. In the UV spectrum of 9 , absorption maxima were observed at 217,256 , and 297 nm , suggesting a biphenyl-type cyclic diarylheptanoid structure [2][4][12]. The IR spectrum of 9 showed absorption bands at 3397,1506 , and $1075 \mathrm{~cm}^{-1}$, ascribable to OH , aromatic ring, and ether functions [12]. Acid hydrolysis of $\mathbf{9}$ with $1 \mathrm{~m} \mathrm{HCl} / \mathrm{MeOH} 1: 1$ furnished compound $\mathbf{1 7}$ and D-glucose, of which the latter was identified by GLC analysis of its trimethylsilyl thiazolidine derivative [13]. The ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 9 evidenced the presence of two
benzene rings (six singlets and six doublets in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$), six CH_{2} groups (six triplets in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$), an $\mathrm{CH}-\mathrm{O}$ group ($\left.\delta(\mathrm{C}) 67.4(d), \delta(\mathrm{H}) 4.29(t)\right)$, and a β glucopyranosyl moiety ($\delta(\mathrm{H}) 5.78$ ($\left.d, J=7.8, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$) (Table 1). The NMR signals of aglycone moiety were very similar to those of acerogenin K (17) [4], suggesting that 9 possesses an acerogenin K structure as an aglycone moiety. The HMBC crosscorrelation observed for $\mathrm{H}-\mathrm{C}(9)$ with $\mathrm{C}\left(1^{\prime}\right)$ indicated that the sugar moiety is located at C(9) in 9 (Table 1 and Fig.). The above evidences, coupled with analysis of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-$ COSY, HMQC, and HMBC spectra, indicated that 9 has the structure 3,17dihydroxytricyclo[12.3.1.1 ${ }^{2,6}$]nonadeca-1(18),2,4,6(19),14,16-hexaen-9-yl β-D-glucopyranoside ($=9-O-\beta$-D-glucopyranosylacerogenin K). The configuration at $\mathrm{C}(9)$ of compounds 9 and 17 remained undetermined.

Identification of 14 known compounds, i.e., acerogenin A (1) [7][14], aceroside I (2) [9][14], aceroside III (3) [15], aceroside VI (4) [15], (R)-acerogenin B (5) [6][7], aceroside $\mathrm{B}_{1}(6)$ [6], acerogenin $\mathrm{I}(7)$ [4], acerogenin $\mathrm{G}(\mathbf{1 0})$ [16], (-)-centrolobol (11) [17], aceroside VIII (12) [17], raspberry ketone (13) [18], (+)-rhododendrol (14) [19], apiosylepirhododendrin (15) [20], and kelampayoside A (16) [21], was achieved by comparison of their MS and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data with those in the literature. Among these, compounds $\mathbf{1 0}$ and $\mathbf{1 6}$ were isolated from this plant for the first time in this study.

Preparation of Acerogenin $A(\mathbf{1})$ and (R)-Acerogenin B (5) Derivatives. Acerogenin $\mathrm{A}(\mathbf{1})$ and (R)-acerogenin $\mathrm{B}(\mathbf{5})$ were obtained from aceroside $\mathrm{I}(\mathbf{2})$ and aceroside B_{1} (6), respectively, by acid hydrolysis. Methylation of $\mathbf{1}$ with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ [14] yielded 2-Omethylacerogenin $\mathrm{A}(\mathbf{1 8})$. Acetylation of 1 and 18 with $\mathrm{Ac}_{2} \mathrm{O}$ gave 2,11-di-Oacetylacerogenin A (21) and 11- O-acetyl-2- O-methylacerogenin A (19), respectively. On the other hand, treatment of $\mathbf{1}$ with TsOH in AcOEt yielded 11-O-acetylacerogenin A (20), which was considered to be formed by transesterification with the solvent AcOEt. Esterification of $\mathbf{1}$ with crotonic acid and trans-cinnamic acid in the presence of $O, O-\mathrm{di}($ pyridin-2-yl)thiocarbonate (DPTC) and 4-(dimethylamino)pyridine (DMAP) [22] yielded 2,11-di- O-crotonylacerogenin A (22) and 2,11-di- O-cinnamoylacerogenin A (23), respectively. Esterification of 1 with succinic anhydride in the presence of DMAP gave 11- O-succinylacerogenin A (24). Dehydration of $\mathbf{1}$ with thionyl chloride $\left(\mathrm{SOCl}_{2}\right)$ [23] yielded ($10 E$)-10,11-dehydro-11-deoxyacerogenin $\mathrm{A}(\mathbf{2 5})$ and (11E)-11,12-dehydro-11-deoxyacerogenin A (26). Treatment of compound 5 with the reagents as described above yielded 2-O-methylacerogenin B (27), 9- O-acetyl-2-Omethylacerogenin B (28), 9- O-acetylacerogenin $\mathrm{B}(\mathbf{2 9}), 2,9$-di- O-acetylacerogenin B (30), 2,9-di- O-crotonylacerogenin B (31), 2,9-di- O-cinnamoylacerogenin B (32), 9- O succinylacerogenin $\mathrm{B} \mathbf{(3 3)}$, ($8 E$)-8,9-dehydro-9-deoxyacerogenin B (34), and (9E)-9,10-dehydro-9-deoxyacerogenin B ($\mathbf{3 5)}$, respectively. The structures of these derivatives were elucidated based on their ESI-MS, HR-ESI-MS, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data. In addition, the assigned structures of four dehydration products, $\mathbf{2 5}, \mathbf{2 6}, \mathbf{3 4}$, and $\mathbf{3 5}$, were confirmed by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY spectra.

Melanogenesis Inhibitory Activity. Sixteen compounds, 1-16, isolated from A. nikoense, and 18 derivatives, 18-35, synthesized from $\mathbf{1}$ and $\mathbf{5}$ were evaluated for their melanogenesis inhibitory activities on α-MSH-stimulated B16 melanoma cells [24], as well as their cytotoxic activities by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl2 H -tetrazolium bromide (MTT) assay (Table 2). At a concentration of $10 \mu \mathrm{~m}$, eleven natural compounds, $\mathbf{2 - 6}, \mathbf{8}, \mathbf{9}, \mathbf{1 2}$, and $\mathbf{1 4 - 1 6}$, from A. nikoense and three semi-

$18 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$
$19 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ac}$
$20 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ac}$
$21 R=R^{\prime}=A c$
$22 R=R^{\prime}=$ Cro
$23 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{C}$ in
$24 R=H, R^{\prime}=$ Suc

$27 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$
$28 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ac}$
$29 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ac}$
$30 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ac}$
$31 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Cro}$
$32 R=R^{\prime}=\mathrm{Cin}$
$33 R=H, R^{\prime}=$ Suc

Cin

25

34

35

Cro

Suc
synthesized compounds, $\mathbf{1 9}, \mathbf{2 7}$, and $\mathbf{3 3}$, showed inhibition of melanogenesis (melanin content $58.3-92.5 \%$) with no or almost no toxicity to the cells (cell viability $90.7-$ 111.2%). Their inhibitory activities against melanogenesis were superior to a known melanogenesis inhibitor, arbutin (melanin content 98.4% and cell viability 99.4% at the same concentration), which has been recognized as a useful depigmentation compound for skin whitening in the cosmetic industry [25]. Among the above, eight glycosides, i.e., five cyclic diarylheptanoid glycosides, $\mathbf{2}-\mathbf{4}, \mathbf{6}, \mathbf{9}$, one acyclic diarylheptanoid glycoside, $\mathbf{1 2}$, and two phenolic glycosides, $\mathbf{1 5}$ and 16, exhibited no or almost no toxicity to the cells (cell viability $87.9-106.2 \%$) even at a high concentration ($100 \mu \mathrm{~m}$), while these showed inhibition of melanogenesis (melanin content 39.4-76.2\%) almost equivalent to or more superior to reference arbutin (melanin content 73.6% and cell viability 88.9% at the same concentration). High melanogenesis inhibitory activity without significant effect on the cell proliferation of three diarylheptanoid glycosides, 2, 3, and 6, was observed also in our previous study, in which they were evaluated in B16 melanoma
cells without α-MSH-stimulation [10]. From the results of the anti-melanogenesis test in B16 melanoma cells in this and in our recent studies [10], it appears that some of the glycosidic diarylheptanoids and phenolic compounds from the bark of A. nikoense may be valuable as potential skin-whitening agents.

Cytotoxic Activity. The cytotoxic activities of compounds $\mathbf{1 - 1 6}$ and 18-35, and two reference chemotherapeutic drugs, cisplatin and 5 -fluorouracil, against two human cancer cell lines, HL60 (leukemia) and CRL1579 (melanoma), were determined by means of MTT assay, and the results are compiled in Table 2. Two acyclic diarylheptanoids, 10 and 11, from A. nikoense, and ten esters, 18-22 and 27-31, and two dehydroderivatives, $\mathbf{3 4}$ and $\mathbf{3 5}$, of compounds $\mathbf{1}$ and $\mathbf{5}$ exhibited cytotoxic activities with $I C_{50}$ values in the range of $8.1-19.3 \mu \mathrm{M}$, although these were less active than reference cisplatin ($I C_{50} 1.9 \mu \mathrm{~m}$) and 5-fluorouracil ($I C_{50} 9.5 \mu \mathrm{~m}$) against HL60. On the other hand, two acyclic diarylheptanoids, $\mathbf{1 0}$ and 11, and three esters derivatives, 20, 29, and 30, exhibited cytotoxicity against CRL1579 with $I C_{50}$ values in the range of $I C_{50} 10.1$ $18.4 \mu \mathrm{M}$, indicating higher activities than reference cisplatin ($I C_{50} 21.1 \mu \mathrm{M}$) and 5fluorouracil $\left(I C_{50}>100 \mu \mathrm{M}\right)$. On the basis of the results presented in Table 2, the following conclusions can be drawn about the structure-activity relationship of the compounds evaluated: i) Deglycosylation of cyclic diarylheptanoid glycosides, $\mathbf{1} v s$. 2-4 and 5 vs . 6, and acyclic diarylheptanoid glycoside, $\mathbf{1 1} \mathrm{vs}$. 12, increased the activity against both HL60 and CRL1579 cells, which is consistent with the observation of the cytotoxicity against B16 melanoma cells described above. ii) Acyclic diarylheptanoids (i.e., $\mathbf{1 0}$ and $\mathbf{1 1}$) are more cytotoxic than cyclic diarylheptanoids (i.e., $\mathbf{1}, \mathbf{5}, \mathbf{7}$, and $\mathbf{8}$). iii) Methylation of the phenolic OH group (i.e., 18, 19, 27, and 28), and acetylation and crotonylation of the phenolic (i.e., 21, 22, 30, and 31) and heptyl-chain OH groups (i.e., $\mathbf{2 0}-\mathbf{2 2}$ and 29-31) of cyclic diarylheptanoids (i.e., $\mathbf{1}$ and 5) increased the activity significantly. iv) Cinnamoylation on both the phenolic and heptyl-chain OH groups (i.e., 23 and 32) and succinylation on the heptyl-chain OH group (i.e., 24 and $\mathbf{3 3}$) of cyclic diarylheptanoids (i.e., $\mathbf{1}$ and 5) reduced or exerted almost no influence on the activity. v) Dehydration of the heptyl-chain OH group of $\mathbf{1}$ and $\mathbf{5}$ into $(E)-8,9-$ and (E) -9,10-dehydro derivatives 34 and 35 , respectively, increased the activity while that into (E)-10,11- and (E)-11,12-dehydro derivatives $\mathbf{2 5}$ and 26, respectively, exerted almost no influence or reduced the activity. It may be suggested that acyclic diarylheptanoids and structural modification of natural cyclic diarylheptanoids are useful to develop effective antitumor drugs.

Experimental Part

General. Column chromatography (CC): silica gel ($\mathrm{SiO}_{2}, 230-400$ mesh; Merck), Diaion HP-20 (Mitsubishi Chemical Co., Tokyo, Japan), and octadecyl silica gel (ODS; Chromatorex-ODS, 100-200 mesh; Fuji Silysia Chemical, Ltd., Aichi, Japan). Reversed-phase (RP) prep. HPLC was carried out on an ODS column (Pegasil ODS-II $5 \mu \mathrm{~m}$ column (Senshu Scientific Co., Ltd., Tokyo, Japan), $25 \mathrm{~cm} \times$ 10 mm i.d.) at 25° with $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 45: 55: 0.1$ (HPLC system I; flow rate $2.0 \mathrm{ml} / \mathrm{min}$), $\mathrm{MeOH} /$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 55: 45: 0.1$ (HPLC system $I I$; flow rate $2.0 \mathrm{ml} / \mathrm{min}$), or $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 20: 80: 0.1$ (HPLC system $I I I$) ; 30:70:0.1 (HPLC system $I V$), or $75: 25: 0.1$ (HPLC system V; flow rate $3.0 \mathrm{ml} / \mathrm{min}$) as mobile phase. Gas-liquid chromatography (GLC): Shimadzu GC-17A instrument on a $D B-17$ fused silica glass cap. column (Agilent Technologies, Inc., Santa Clara, CA, USA; $30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ i.d.; column temp. 200°; injection and detector temp. 270°; N_{2} flow rate $1.8 \mathrm{ml} / \mathrm{min}$; split ratio $1: 34$). Crystallizations
Table 2. Melanogenesis Inhibitory Activities and Cytotoxicities of Compounds Isolated from Acer nikoense and Their Derivatives

Compound		Melanogenesis inhibitory activity and cytotoxicity in B16 cells ${ }^{\text {a }}$)				Cytotoxicity ${ }^{\text {c }}$)	
		Mean \pm S.D. at $10 \mu \mathrm{~m}^{\mathrm{b}}$)		Mean \pm S.D. (\%) at $100 \mu \mathrm{~m}^{\mathrm{b}}$)		$\left.\underline{I C}{ }_{50}[\mu \mathrm{M}]^{\mathrm{d}}\right)$	
		Melanin content	Cell viability	Melanin content	Cell viability	HL60	CRL1579
	Control (100\% DMSO)	100.1 ± 1.9	99.3 ± 3.5	100.1 ± 1.9	99.3 ± 3.5		
1	Acerogenin A	$70.4 \pm .24$	83.1 ± 2.3	21.6 ± 2.0	37.0 ± 3.7	57.8 ± 1.3	>100
2	Aceroside I	89.1 ± 3.4	105.0 ± 3.6	64.8 ± 3.1	106.2 ± 3.6	> 100	> 100
3	Aceroside III	91.4 ± 0.7	97.2 ± 3.1	75.8 ± 2.7	91.5 ± 3.6	> 100	>100
4	Aceroside VI	70.9 ± 1.8	102.9 ± 3.0	39.4 ± 2.6	89.2 ± 3.3	> 100	>100
5	(R)-Acerogenin B	83.7 ± 2.6	94.5 ± 3.8	10.5 ± 0.5	26.6 ± 1.9	25.1 ± 1.6	>100
6	Aceroside B_{1}	85.4 ± 2.1	101.7 ± 1.3	76.2 ± 2.7	90.9 ± 2.8	> 100	> 100
7	Acerogenin I	61.7 ± 2.7	79.6 ± 2.4	32.6 ± 2.1	68.2 ± 3.5	> 100	>100
8	9-Oxoacerogenin A	83.4 ± 2.7	90.7 ± 3.1	17.6 ± 0.6	62.0 ± 0.7	> 100	>100
9	$9-O-\beta$-d-Glucopyranosylacerogenin K	67.5 ± 3.0	92.1 ± 1.8	55.8 ± 2.8	87.9 ± 2.4	> 100	> 100
10	Acerogenin G	82.2 ± 3.1	83.3 ± 3.2	8.3 ± 1.7	16.6 ± 1.6	10.2 ± 2.0	10.1 ± 5.7
11	(-)-Centrolobol	63.0 ± 2.5	79.1 ± 2.8	4.2 ± 0.9	14.9 ± 0.1	8.1 ± 0.7	18.4 ± 1.7
12	Aceroside VIII	90.9 ± 2.3	107.4 ± 3.4	54.7 ± 3.1	103.5 ± 3.9	> 100	> 100
13	Rasphberry ketone	38.9 ± 2.7	74.0 ± 2.0	13.8 ± 1.1	56.5 ± 2.0	> 100	>100
14	(+)-Rhododendrol	58.3 ± 1.9	96.2 ± 2.9	20.2 ± 0.5	71.4 ± 3.7	25.6 ± 2.2	>100
15	Apiosylepirhododendrin	83.2 ± 3.4	95.0 ± 3.1	64.4 ± 2.3	90.5 ± 3.7	> 100	>100
16	Kelampayoside A	85.0 ± 3.4	105.0 ± 3.4	65.8 ± 2.0	101.1 ± 3.0	> 100	> 100
18	2-O-Methyl acerogenin A	60.3 ± 1.6	70.2 ± 2.3	14.4 ± 1.3	29.2 ± 3.3	18.3 ± 1.7	76.4 ± 0.7
19	11-O-Acetyl-2-O-methylacerogenin A	92.5 ± 2.3	111.2 ± 2.3	15.5 ± 1.8	24.0 ± 0.7	11.2 ± 3.2	42.4 ± 3.2
20	11-O-Acetyl acerogenin A	64.6 ± 2.6	69.2 ± 2.1	1.7 ± 0.1	-0.1 ± 0.4	14.7 ± 4.7	13.1 ± 4.4
21	$2,11-\mathrm{Di}-O$-acetylacerogenin A	80.6 ± 3.4	84.6 ± 2.5	3.7 ± 1.2	0.6 ± 0.2	14.3 ± 1.4	27.8 ± 3.3
22	$2,11-\mathrm{Di}-O$-crotonylacerogenin A	49.2 ± 3.0	76.0 ± 6.4	9.2 ± 1.5	2.3 ± 0.3	18.7 ± 0.6	84.8 ± 1.0
23	2,11-Di- O-cinnamoylacerogenin A	65.5 ± 3.0	89.2 ± 2.8	19.8 ± 1.9	62.0 ± 2.3	> 100	> 100
24	11-O-Succinyl acerogenin A	58.1 ± 1.0	81.5 ± 2.7	34.3 ± 2.2	55.7 ± 5.2	40.0 ± 0.9	94.7 ± 2.8
25	(10E)-10,11-Dehydro-deoxyacerogenin A	44.3 ± 1.7	79.6 ± 2.5	14.6 ± 1.8	63.6 ± 1.5	53.3 ± 3.4	67.4 ± 2.7
26	(11E)-11,12-Dehydro-deoxyacerogenin A	52.2 ± 2.5	86.0 ± 2.2	49.9 ± 3.0	79.8 ± 1.2	> 100	> 100
27	2-O-Methylacerogenin B	71.7 ± 1.9	96.5 ± 2.2	18.4 ± 1.6	44.4 ± 1.0	13.9 ± 1.5	53.3 ± 1.1
28	9-O-Acetyl-2-O-methylacerogenin B	66.4 ± 0.4	89.1 ± 2.4	13.5 ± 0.5	35.9 ± 2.8	15.2 ± 4.7	> 100
29	$9-O$-Acetyl acerogenin B	54.0 ± 1.9	78.8 ± 3.9	8.7 ± 1.8	16.1 ± 2.0	16.1 ± 2.3	10.1 ± 0.7
30	2,9-Di-O-acetylacerogenin B	52.4 ± 2.1	87.6 ± 2.7	20.4 ± 0.3	39.2 ± 3.0	14.9 ± 5.8	11.6 ± 7.3

Table 2 (cont.)

Compound		Melanogenesis inhibitory activity and cytotoxicity in B16 cells ${ }^{\text {a }}$)				Cytotoxicity ${ }^{\text {c }}$)	
		Mean \pm S.D. at $10 \mu \mathrm{~m}^{\mathrm{b}}$)		$\underline{M e a n} \pm$ S.D. (\%) at $100 \mu \mathrm{~m}^{\text {b }}$)		$\left.\underline{I C}{ }_{50}[\mu \mathrm{~m}]^{\mathrm{d}}\right)$	
		Melanin content	Cell viability	Melanin content	Cell viability	HL60	CRL1579
31	2,9-Di-O-crotonylacerogenin B	47.3 ± 1.6	73.6 ± 3.1	0.3 ± 0.1	0.2 ± 0.1	14.6 ± 6.6	58.5 ± 3.9
32	2,9-Di- O-cinnamoylacerogenin B	59.1 ± 3.8	83.8 ± 0.2	45.4 ± 2.4	63.7 ± 2.5	> 100	>100
33	9-O-Succinylacerogenin B	68.6 ± 2.5	107.3 ± 1.9	33.6 ± 2.6	66.8 ± 3.1	85.7 ± 3.8	> 100
34	(8E)-8,9-Dehydro-9-deoxyacerogenin B	30.6 ± 0.9	64.1 ± 3.0	5.7 ± 1.9	16.7 ± 1.5	19.3 ± 1.9	64.3 ± 1.8
35	(9E)-9,10-Dehydro-9-deoxyacerogenin B	30.6 ± 0.9	70.2 ± 2.5	3.3 ± 1.7	0.6 ± 0.6	16.7 ± 2.8	67.1 ± 1.8
	Arbutin ${ }^{\text {e }}$)	98.4 ± 3.0	99.4 ± 2.3	73.6 ± 4.0	88.9 ± 3.6		
	Cisplatin ${ }^{\text {e }}$)					1.9 ± 0.2	21.1 ± 2.1
	5-Fluorouracil ${ }^{\text {e }}$)					9.5 ± 1.6	> 100

${ }^{\text {a }}$) Melanin content [\%] and cell viability [\%] were determined based on the absorbances at 405, and 570 (test wavelength)-630 (reference wavelength) nm, respectively, by comparison with those for DMSO (100\%). ${ }^{\text {b }}$) Each value represents the mean \pm S.D. of three determinations. Concentration of DMSO in the sample solution was $2 \mu \mathrm{l} / \mathrm{ml} .^{\text {c }}$) Cells were treated with compounds $\left(1 \times 10^{-4}\right.$ to $\left.1 \times 10^{-6} \mathrm{M}\right)$ for 48 h , and cell viability was analyzed by MTT assay. $\left.{ }^{\text {d }}\right) I C_{50}$ Value is the concentration of compound required to inhibit the growth of the cells by 50%. Each value represents the mean \pm S.D., obtained on the basis of triplicate assay results. ${ }^{\text {e }}$) Reference compounds.
were performed in MeOH. M.p.: Yanagimoto Micro Mp apparatus; uncorrected. Optical rotations: $J A S C O$ P-1020 digital polarimeter. UV Spectra: JASCO V-630Bio spectrophotometer; $\lambda_{\max }(\log \varepsilon)$ in nm .
 $\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100 \mathrm{MHz}\right)$ or $J E O L E C X-500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right)$ spectrometer at r.t.; $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ or CDCl_{3} soln.; δ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J in Hz. ESI-, and HR-ESI-MS: Agilent 1100 LC/MSD TOF (time-of-flight) system (positive-ionization mode, cap. voltage 3000 V , fragmentor voltage 225 V).

Chemicals and Materials. The stem bark obtained from a 25 -year-old tree of Acer nikoense in the summer of 2007 was purchased from Sirakami Fruit Park (Gunma, Japan). The plant was authenticated by Mr. Hiroshi Sato (Sirakami Fruit Park), and voucher specimen has been deposited with the authors' laboratory (Coll. Sci. Technol., Nihon Univ.). The chemicals were purchased as follows: 5-fluorouracil from Nacalai Tesque, Inc. (Kyoto, Japan), fetal bovine serum (FBS), RPMI-1640 medium, antibiotics (100 units $/ \mathrm{ml}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin), and non-essential amino acid (NEAA) from Invitrogen Co. (Carlsbad, CA, USA), Eagle's minimal essential medium (MEM), and MTT from SigmaAldrich Japan Co. (Tokyo, Japan), arbutin (4-hydroxyphenyl β-d-glucopyranoside), diazo(trimethylsilyl)methane $\left(\mathrm{Me}_{3} \mathrm{SiCHN}_{2} ; 10 \%\right.$ in hexane), $\mathrm{TsOH}, 4$-(dimethylamino)pyridine (DMAP), and $O, O-$ di (pyridin-2-yl)thiocarbonate (DPTC) from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), crotonic acid, (E)-cinnamic acid, succinic anhydride, cisplatin, l-glucose, and TMS-HT kit (hexamethyldisil-azane-trimethylchlorosilane (HMDS-TMCS) in anh. pyridine) from Wako Pure Chemical Industries Ltd. (Osaka, Japan), D-glucose, L-cysteine methyl ester hydrochloride, and molecular sieves ($3 \AA 1 / 16$) from Kanto Chemical Co., Inc. (Tokyo, Japan), and Amberlite MB-4 from Organo Co. (Tokyo, Japan). All other chemicals and reagents were of anal. grade.

Cell Cultures. Cell lines HL60 (leukemia), CRL1579 (melanoma), and B16 A45 (murine melanoma) were obtained from Riken Cell Bank (Tsukuba, Ibaraki, Japan). Two cell lines, HL60 and CRL1579, were grown in RPMI-1640 medium. The medium was supplemented with 10% FBS and antibiotics. B16 Cells were cultured in MEM supplemented with 5\% FBS and antibiotics. Cells were incubated at 37° in a 5% CO_{2} humidified incubator.

Extraction and Isolation. The dried stem bark of A. nikoense (1799 g) was finely cut and extracted with hexane (reflux, $3 \mathrm{~h}, 3 \times$) which yielded the extract (9.6 g) containing fatty constituents. The defatted residue was then extracted with MeOH (reflux, $3 \mathrm{~h}, 3 \times$) to give the extract (205.8 g), which was partitioned in an $\mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O}$ mixture. The aq. layer was extracted with BuOH , and removal of the solvent under reduced pressure from the $\mathrm{AcOEt}-$, $\mathrm{BuOH}-$, and $\mathrm{H}_{2} \mathrm{O}$-soluble portions yielded 78.2, 84.6, and 30.9 g of the residue, resp.

CC on $\mathrm{SiO}_{2}(990 \mathrm{~g})$ of a portion $(57.7 \mathrm{~g})$ of the AcOEt-soluble fraction eluted with hexane/AcOEt 1:1, AcOEt, and then with AcOEt/MeOH 7:3 gave eight fractions, Frs. $1(1.14 \mathrm{~g}), 2(4.02 \mathrm{~g}), 3(0.26 \mathrm{~g}), 4$ $(1.06 \mathrm{~g}), 5(8.13 \mathrm{~g}), 6(1.71 \mathrm{~g}), 7(28.55 \mathrm{~g})$, and $8(7.78 \mathrm{~g})$. A portion $(1.00 \mathrm{~g})$ of $F r .2$ was further separated by $\mathrm{CC}\left(\mathrm{SiO}_{2}(100 \mathrm{~g})\right.$; hexane/AcOEt gradient $\left.1: 0 \rightarrow 0: 1\right)$ to furnish six fractions, Frs. 3-1-3-6. Prep. HPLC (system I) of Fr. 3-2 (105 mg) yielded compounds $\mathbf{5}\left(22.3 \mathrm{mg} ; t_{\mathrm{R}} 33.0 \mathrm{~min}\right)$ and $\mathbf{1 3}\left(22.3 \mathrm{mg} ; t_{\mathrm{R}}\right.$ $11.3 \mathrm{~min})$. Fr. 3-3 $(707 \mathrm{mg})$ was further subjected to $\mathrm{CC}\left(\mathrm{SiO}_{2}(50 \mathrm{~g})\right.$; hexane/AcOEt gradient $\left.1: 0 \rightarrow 0: 1\right)$ which yielded seven fractions, Frs. 3-3a-3-3g. Prep. HPLC (system I) of Fr. $3-3 e$ (417 mg) yielded compounds $\mathbf{1}\left(57.0 \mathrm{mg} ; t_{\mathrm{R}} 22.0 \mathrm{~min}\right), \mathbf{8}\left(2.1 \mathrm{mg} ; t_{\mathrm{R}} 19.3 \mathrm{~min}\right), \mathbf{1 0}\left(5.8 \mathrm{mg} ; t_{\mathrm{R}} 18.8 \mathrm{~min}\right)$, and $\mathbf{1 4}\left(258.0 \mathrm{mg} ; t_{\mathrm{R}}\right.$ 6.3 min). In addition, prep. HPLC (system I) of $\mathrm{Fr} .3-3 g(99 \mathrm{mg})$ yielded $11\left(68.1 \mathrm{mg} ; t_{\mathrm{R}} 14.3 \mathrm{~min}\right)$. Fr. 4 was subjected to $\mathrm{CC}\left(\mathrm{SiO}_{2}(53 \mathrm{~g})\right.$; hexane/AcOEt gradient $\left.1: 1 \rightarrow 0: 1\right)$ to yield purified $\mathrm{Fr} .4(580 \mathrm{mg})$, which, upon prep. HPLC (system I), yielded compound $7\left(5.8 \mathrm{mg} ; t_{\mathrm{R}} 41.3 \mathrm{~min}\right)$. A portion $(23.86 \mathrm{~g})$ of Fr. 7 was subjected to $\mathrm{CC}\left(\mathrm{SiO}_{2} 900 \mathrm{~g}\right)$; $\mathrm{AcOEt} / \mathrm{MeOH}$ gradient $\left.19: 1 \rightarrow 0: 1\right)$ to yield nine fractions, Frs. 7-1-7-9. Further CC on $\mathrm{SiO}_{2}(37 \mathrm{~g})$ of a portion $(1.25 \mathrm{~g})$ of $\mathrm{Fr} .7-1(10.14 \mathrm{~g})$ yielded four fractions, Frs. 7-1a-7-1d. Prep. HPLC (system II) of Fr. 7-1a (322 mg), 7-1b (103 mg), and 7-1d (559 mg) yielded compounds $2\left(100.4 \mathrm{mg} ; t_{\mathrm{R}} 23.0 \mathrm{~min}\right)$ and $\mathbf{6}\left(202.3 \mathrm{mg} ; t_{\mathrm{R}} 29.6 \mathrm{~min}\right)$, compounds $\mathbf{4}\left(10.8 \mathrm{mg} ; t_{\mathrm{R}} 23.0 \mathrm{~min}\right)$ and $9\left(21.4 \mathrm{mg} ; t_{\mathrm{R}} 39.7 \mathrm{~min}\right)$, and compounds $\mathbf{3}\left(155.5 \mathrm{mg} ; t_{\mathrm{R}} 34.8 \mathrm{~min}\right)$ and $\mathbf{1 2}\left(154.6 \mathrm{mg} ; t_{\mathrm{R}} 26.0 \mathrm{~min}\right)$, resp. A portion $(52.6 \mathrm{~g})$ of the BuOH -soluble fraction was chromatographed on a Diaion HP-20 $(500 \mathrm{~g})$ column ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $1: 9 \rightarrow 10: 0$) to yield seven fractions, Fr. B1-B7. Fr. B2 (5.58 g) was further chromatographed on ODS $(250 \mathrm{~g})$ column $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right.$ gradient $\left.0: 1 \rightarrow 1: 0\right)$ to yield seven fractions, Fr. B2-1 - B2-7. Prep. HPLC (system III) of Fr. B2-4 (328 mg) yielded $\mathbf{1 6}\left(15.4 \mathrm{mg} ; t_{\mathrm{R}} 24.6 \mathrm{~min}\right)$.

On the other hand, further $\mathrm{CC}\left(\mathrm{SiO}_{2}(75 \mathrm{~g}) ; \mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ gradient $\left.1: 0 \rightarrow 0: 1\right)$ of a portion $(1.50 \mathrm{~g})$ of Fr. B2-5 (2.86 g) yielded five fractions, Fr. B2-5a-B2-5e. Prep. HPLC (system IV) of Fr. B2-5a (201 mg) yielded 15 ($143.4 \mathrm{mg} ; t_{\mathrm{R}} 16.7 \mathrm{~min}$). The physical characteristics and spectral data of two new compounds, 8 and 9 , are given below.
(11 ξ)-9-Oxoacerogenin A ($=4,12$-Dihydroxy-2-oxatricyclo[13.2.2.1 $1^{3,7}$]icosa-3,5,7(20),15,17,18-hex-aen-10-one; 8). Fine needles. M.p. $147-150^{\circ}(\mathrm{MeOH}) \cdot[\alpha]_{\mathrm{D}}^{25}=+0.5(c=0.36, \mathrm{EtOH}) . \mathrm{UV}(\mathrm{MeOH}): 276$ (3.52). IR (KBr): $3403(\mathrm{OH}), 1705(\mathrm{C}=\mathrm{O}), 1504(\operatorname{arom} . \mathrm{C}=\mathrm{C}), 1231,1055(\mathrm{C}-\mathrm{O}-\mathrm{C}) \cdot{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: Table 1. HR-ESI-MS: $335.1303\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{4}^{+}\right.$; calc. 335.1259).
(9छ)-9-O- β-D-Glucopyranosylacerogenin $K \quad$ (= 3,17-Dihydroxytricyclo[12.3.1.1 $1^{2,6}$]nonadeca-1(18),2,4,6(19),14,16-hexaen-9-yl β-d-Glucopyranoside; 9). Fine needles. M.p. 166-169 (MeOH). $[\alpha]_{\mathrm{D}}^{25}=-71.1(c=0.34, \mathrm{EtOH}) . \mathrm{UV}(\mathrm{MeOH}): 217(4.03), 256(3.45), 297(3.15) . \mathrm{IR}(\mathrm{KBr}): 3397(\mathrm{OH})$, 1506 (aromatic $\mathrm{C}=\mathrm{C}$), 1075. ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$: Table 1. HR-ESI-MS: $483.1984\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}_{8}^{+}$; calc. 483.1994).

Acid Hydrolysis of 9 and Sugar Identification. A soln. of $9(12.3 \mathrm{mg})$ in $1 \mathrm{~m} \mathrm{HCl} / \mathrm{MeOH} 1: 1(12 \mathrm{ml})$ was heated under reflux for 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{AcOEt}(3 \times$). The AcOEt extract was passed through $\mathrm{CC}\left(\mathrm{SiO}_{2}(5 \mathrm{~g})\right.$; hexane/AcOEt) to yield acerogenin $K(\mathbf{1 7})(5.0 \mathrm{mg})$. The aq. layer was neutralized by passing through an Amberlite MB-4, and the eluate was concentrated. The residue (3.7 mg) was dissolved in pyridine $(0.5 \mathrm{ml})$ and stirred with L-cysteine methyl ester (5 mg) for 1.0 h at 60°. The trimethylsilylation reagent HMDS-TMCS $(0.3 \mathrm{ml})$ was added, and warming at 60° was continued for another 30 min . The mixture was centrifuged, and a portion ($1 \mu \mathrm{l}$) of the filtrate was analyzed by GLC. The GLC afforded a peak with $t_{\mathrm{R}} 18.3 \mathrm{~min}$ which was identical with that of authentic D-glucose ($t_{\mathrm{R}} 18.2 \mathrm{~min}$). Authentic L-glucose eluted with $t_{\mathrm{R}} 16.0 \mathrm{~min}$ under the same GLC condition.
(9 $\xi)$-Acerogenin $K\left(=\right.$ Tricyclo[12.3.1.1 ${ }^{2,6}$]nonadeca-1(18),2,4,6(19),14,16-hexaene-3,9,17-triol; 17). $[\alpha]_{\mathrm{D}}^{24}=-9.0(c=1.52, \mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): 1.44\left(\right.$ sept., $\left.J=6.0, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(11)\right) ; 1.70-1.80$ $\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(11)\right) ; 1.74-1.83\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(8)\right) ; 1.89\left(d d\right.$-like, $\left.J=12.1,12.1, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(10)\right) ; 1.93-2.05(m$, $\left.\mathrm{H}_{\mathrm{b}}-\mathrm{C}(8), \mathrm{H}_{\mathrm{a}}-\mathrm{C}(12)\right) ; 1.98-2.10\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(10)\right) ; 2.43\left(d t, J=2.5,15.6, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(12)\right) ; 2.49(d t, J=3.6,13.4$, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}(7)\right) ; 2.88\left(\right.$ br. $\left.d, J=17.0, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(7)\right) ; 3.00\left(d t, J=2.4,17.4, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(13)\right) ; 3.34(d d d, J=2.3,13.3,16.2$, $\left.\mathrm{H}_{\mathrm{b}}-\mathrm{C}(13)\right) ; 4.47$ (br. $\left.t, J=9.6, \mathrm{H}-\mathrm{C}(9)\right) ; 7.14$ ($\left.d d, J=2.3,8.2, \mathrm{H}-\mathrm{C}(5)\right) ; 7.19$ (br. $\left.s, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(16)\right)$; 7.25 (br. $d, J=8.2, \mathrm{H}-\mathrm{C}(4)$); 7.47 (br. $s, \mathrm{H}-\mathrm{C}(19)$); 7.57 (br. $s, \mathrm{H}-\mathrm{C}(18)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz} ; \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right.$): $23.5(\mathrm{C}(11)) ; 27.2(\mathrm{C}(8)) ; 27.6(\mathrm{C}(13)) ; 30.4(\mathrm{C}(7)) ; 35.8(\mathrm{C}(12)) ; 40.7(\mathrm{C}(10)) ; 68.0(\mathrm{C}(9)) ; 116.9$ (C(4), $\mathrm{C}(16)) ; 127.4$ ($\mathrm{C}(2)$); 127.5 ($\mathrm{C}(1))$; 129.9 ($\mathrm{C}(5)) ; 130.0$ (C(15)); 131.1 (C(6)); 131.6 (C(14)); 134.7 $(\mathrm{C}(19)) ; 135.2(\mathrm{C}(18)) ; 152.7(\mathrm{C}(3), \mathrm{C}(17))$. The structure of 17 was supported by its ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$, HMQC, and HMBC spectra. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR signal assignments for $\mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(12)$, and $\mathrm{H}-\mathrm{C}(13)$ reported in [4] were revised as described above. ESI-MS: $321\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3}^{+}\right)$.

Acid Hydrolysis of $\mathbf{2}$ and $\mathbf{6}$. A soln. of $2(300 \mathrm{mg})$ in $1 \mathrm{M} \mathrm{HCl} / \mathrm{MeOH}(1: 1 ; 24 \mathrm{ml})$ was heated under reflux for 2 h . After cooling, the mixture was poured into ice- $\mathrm{H}_{2} \mathrm{O}$, and extracted with AcOEt. The AcOEt extract, after usual workup, yielded $\mathbf{1}(185 \mathrm{mg})$. In a similar procedure of acid hydrolysis, $\mathbf{6}$ (400 mg) yielded $5(175 \mathrm{mg})$.

Acerogenin $A\left(=(12 \mathrm{R})-2-\right.$ Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexaene-4,12-diol; 1). $[\alpha]_{\mathrm{D}}^{20}=+59.9(c=0.49, \mathrm{EtOH})$ (lit. [2]: $\left.[\alpha]_{\mathrm{D}}=+57.3\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 0.78-0.85(m$, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}(9)\right) ; 0.90-0.97\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(10)\right) ; 0.98-1.06\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(9)\right) ; 1.04-1.12\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(10)\right) ; 1.18-1.27(m$, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}(8)\right) ; 1.42-1.52\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(8)\right) ; 1.62\left(d d d d, J=4.1,5.5,9.6,10.1, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(12)\right) ; 1.88(d q, J=14.2,4.1$, $\left.\mathrm{H}_{\mathrm{b}}-\mathrm{C}(12)\right) ; 2.37-2.49\left(m, \mathrm{CH}_{2}(7)\right) ; 2.68\left(d t, J=2.8,12.8, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(13)\right) ; 2.98\left(d t, J=13.3,3.7, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(13)\right)$; $3.25(t t, J=5.0,5.0, \mathrm{H}-\mathrm{C}(11)) ; 5.62(d, J=1.8, \mathrm{H}-\mathrm{C}(6)) ; 5.72$ (br. $s, \mathrm{OH}-\mathrm{C}(2)) ; 6.59(d d, J=1.8,8.0$, $\mathrm{H}-\mathrm{C}(4)) ; 6.83(d, J=8.0, \mathrm{H}-\mathrm{C}(3)) ; 6.92$ and $7.14(d d, J=2.8,8.2$, each $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(16), \mathrm{H}-\mathrm{C}(18)) ; 7.19$ and $7.28(d d, J=2.3,8.2$, each $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(19))$. ESI-MS: $321\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3}^{+}\right)$.
(R)-Acerogenin B (= (10R)-2-Oxatricyclo[13.2.2.1 $1^{3,7}$]icosa-3,5,7(20),15,17,18-hexaene-4,10-diol; 5). $[\alpha]_{\mathrm{D}}^{20}=-76.4(c=0.49, \mathrm{EtOH})\left([2][6]:[\alpha]_{\mathrm{D}}=-95.0\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 0.74-0.82(m$, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}(10)\right) ; 0.95-1.05\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(11)\right) ; 1.18-1.28\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(10)\right) ; 1.25-1.35\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(11)\right) ; 1.45-1.53(m$, $\left.\mathrm{CH}_{2}(8)\right) ; 1.50-1.58\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(12)\right) ; 1.76$ (sept.-like, $\left.J=7.2, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(12)\right) ; 2.52-2.62\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(7)\right) ; 2.55-$ $2.67\left(m, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(7), \mathrm{H}_{\mathrm{a}}-\mathrm{C}(13)\right) ; 2.80\left(d d d, J=4.4,6.0,13.2, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(13)\right) ; 3.02-3.11(m, \mathrm{H}-\mathrm{C}(9)) ; 5.57(d$, $J=1.8, \mathrm{H}-\mathrm{C}(6)) ; 6.63(d d, J=1.8,8.2, \mathrm{H}-\mathrm{C}(4)) ; 6.84(d, J=8.2, \mathrm{H}-\mathrm{C}(3)) ; 6.93$ and $7.13(2 d d, J=2.5,8.2$,
each $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(16), \mathrm{H}-\mathrm{C}(18))$; 7.23 and $7.30(2 d d, J=2.1,8.2$, each $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(19))$. ESI-MS: $321\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3}^{+}\right)$.
$\mathrm{CH}_{2} \mathrm{~N}_{2}$ Methylation of $\mathbf{1}$ and $\mathbf{5}$. To a soln. of $\mathbf{1}(10.4 \mathrm{mg})$ in $\mathrm{AcOEt} / \mathrm{MeOH}(2: 1 ; 3.0 \mathrm{ml}), \mathrm{Me}_{3} \mathrm{SiCHN}_{2}$ $(10 \%$ in hexane; 0.2 ml$)$ was added, and the mixture was stirred at r.t. for 1 h . Removal of the solvent under reduced pressure yielded $\mathbf{1 8}(10.3 \mathrm{mg})$. Similarly, methylation of $5(9.7 \mathrm{mg})$ yielded $\mathbf{2 7}(9.9 \mathrm{mg})$.

2-O-Methyl Acerogenin $A\left(=(12 \mathrm{R})-4\right.$-Methoxy-2-oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexaen-12-ol; 18). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: 3.23-3.31 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(11)$); 3.93 (s, $\mathrm{MeO})$. ESI-MS: $335\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3}^{+}\right)$.

2-O-Methyl Acerogenin B (=(10R)-4-Methoxy-2-oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexaen-10-ol; 27). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$): 3.02-3.11 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(9)$); 3.93 (s, $\mathrm{MeO})$. ESI-MS: $335\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3}^{+}\right)$.

Acetylation of $\mathbf{1}, \mathbf{5}, \mathbf{1 8}$, and $\mathbf{2 7}$ by $A c_{2} O$. To a soln. of $\mathbf{1}(10.4 \mathrm{mg})$ in pyridine $(0.5 \mathrm{ml}), \mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was added, and the mixture was left overnight at r.t. The mixture was then poured into ice- $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ extract, after washing with dil. HCl soln. $\left(\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O} 1: 9\right)$ and with sat. NaHCO_{3} aq. soln. followed by usual workup, yielded $21(10.4 \mathrm{mg})$. Similarly, acetylation of $\mathbf{5}(5.2 \mathrm{mg}), \mathbf{1 8}$ $(5.1 \mathrm{mg})$, and $\mathbf{2 7}(4.2 \mathrm{mg})$ yielded $\mathbf{3 0}(5.1 \mathrm{mg}), \mathbf{1 9}(5.6 \mathrm{mg})$, and $\mathbf{2 8}(4.8 \mathrm{mg})$, resp.

11-O-Acetyl-2-O-methyl Acerogenin $A\left(=(12 \mathrm{R})-4\right.$-Methoxy-2-oxatricyclo[13.2.2.1 $1^{3,7}$]icosa-3,5,7(20), 15,17,18-hexaen-12-yl Acetate; 19). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.97(s, \mathrm{AcO}-\mathrm{C}(11))$; $3.88(s, \mathrm{AcO}-\mathrm{C}(2)) ; 4.32-4.38(m, \mathrm{H}-\mathrm{C}(11))$. ESI-MS: $377\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{4}^{+}\right)$.

2,11-Di-O-acetyl Acerogenin $A(=(12 R)$-2-Oxatricyclo[13.2.2.13,7]icosa-3,5,7(20),15,17,18-hexaene-4,12-diyl Diacetate; 21). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 2.02(\mathrm{~s}, \mathrm{AcO}-\mathrm{C}(11)) ; 2.37(s$, $\mathrm{AcO}-\mathrm{C}(2)) ; 4.32-4.38(m, \mathrm{H}-\mathrm{C}(11))$. ESI-MS: $405\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{5}^{+}\right)$.

9-O-Acetyl-2-O-methyl Acerogenin B (= (10R)-4-Methoxy-2-oxatricyclo[13.2.2.1 ${ }^{3,7}$ icosa-3,5,7(20), 15,17,18-hexaen-10-yl Acetate; 28). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.90(s, \mathrm{AcO}-\mathrm{C}(9))$; $3.88(s, \mathrm{MeO}-\mathrm{C}(2)) ; 4.38(d d d, J=3.6,7.2,13.8, \mathrm{H}-\mathrm{C}(9))$. ESI-MS: $377\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{4}^{+}\right)$. 2,9-Di-O-acetyl Acerogenin B (=(10R)-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$ icosa-3,5,7(20),15,17,18-hexaene-4,10-diyl Diacetate; 30). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.94(s, \mathrm{AcO}-\mathrm{C}(9)) ; 2.27$ (s, $\mathrm{AcO}-\mathrm{C}(2)) ; 4.37(d d d, J=3.2,7.6,13.2, \mathrm{H}-\mathrm{C}(9))$. ESI-MS: $405\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{5}^{+}\right)$.

Acetylation of $\mathbf{1}$ and $\mathbf{5}$ by AcOEt in the Presence of $\mathrm{Ts} O H$. A soln. of $\mathbf{1}(17.4 \mathrm{mg})$ and $\mathrm{TsOH}(17.7 \mathrm{mg})$, along with a few pieces of molecular sieves in AcOEt $(5.0 \mathrm{ml})$, was heated under reflux for 7 h . The mixture was filtered, and the usual workup of the filtrate yielded a residue (16.0 mg) which, upon CC $\left(\mathrm{SiO}_{2}\right.$; hexane/AcOEt gradient $\left.9: 1 \rightarrow 7: 3\right)$, yielded $\mathbf{2 0}(5.4 \mathrm{mg})$. The similar acetylation of $\mathbf{5}(10.5 \mathrm{mg})$ yielded 29 (3.4 mg).

11-O-Acetyl Acerogenin A ($=(12 \mathrm{R})$-4-Hydroxy-2-oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexaen-12-yl Acetate; 20). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.97$ (s, $\mathrm{AcO}-\mathrm{C}(11)$); 4.31 ($t t, J=4.0,6.8, \mathrm{H}-\mathrm{C}(11))$, ESI-MS: $363\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{4}^{+}\right)$.

9-O-Acetyl Acerogenin B (= (10R)-4-Hydroxy-2-oxatricyclo[13.2.2.1 $1^{3,7}$]icosa-3,5,7(20),15,17,18-hexa-en-10-yl Acetate; 29). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.97(s, \mathrm{AcO}-\mathrm{C}(9)) ; 4.38(d d d, J=$ 3.0, 7.2, 14.0, H-C(9)). ESI-MS: $363\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{4}^{+}\right)$.

Esterification of $\mathbf{1}$ and $\mathbf{5}$ with Crotonic Acid. To a soln. of $\mathbf{1}(20.4 \mathrm{mg})$ in toluene (3.0 ml), crotonic acid $(20.8 \mathrm{mg})$, DMAP $(15.5 \mathrm{mg})$, and DPTC $(30.7 \mathrm{mg})$ were added, and the mixture was stirred at r.t. for 48 h under N_{2}. The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ extract $(26.2 \mathrm{mg})$ was passed through $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/AcOEt gradient $\left.9: 1 \rightarrow 1: 1\right)$ to afford $22(2.8 \mathrm{mg})$. Similarly, the esterification of $\mathbf{5}(20.5 \mathrm{mg})$ with crotonic acid yielded $\mathbf{3 1}(2.7 \mathrm{mg})$.

2,11-Di-O-crotonyl Acerogenin $A\left(=(12 \mathrm{R})\right.$-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexa-ene-4,12-diyl Bis[(2E)-but-2-enoate]; 22). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.88(d d, J=$ $\left.1.8,6.9, \mathrm{Me}\left(4^{\prime \prime}\right)\right) ; 1.98\left(d d, J=1.8,6.9, \mathrm{Me}\left(4^{\prime}\right)\right) ; 4.43(d d d, J=3.7,7.3,10.6, \mathrm{H}-\mathrm{C}(11)) ; 5.84(d q, J=15.6$, $\left.1.4, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 6.15\left(d q, J=15.6,1.8, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 6.91-6.98\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 7.23-7.29\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) . \mathrm{ESI}-$ MS: $457\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NaO}_{4}^{+}\right)$.

2,9-Di-O-crotonyl Acerogenin B ($=(10 \mathrm{R})$-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexa-ene-4,10-diyl Bis[(2E)-but-2-enoate]; 31). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): 1.86 (dd, $\left.J=1.8,6.9, \mathrm{Me}\left(4^{\prime \prime}\right)\right) ; 1.98\left(d d, J=1.8,6.9, \mathrm{Me}\left(4^{\prime}\right)\right) ; 4.45(d q, J=3.2,7.8, \mathrm{H}-\mathrm{C}(9)) ; 5.76(d q, J=15.1,1.4$,
$\left.\mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 6.15\left(d q, J=15.6,1.8, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 6.85-6.91\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 7.23-7.29\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) . \mathrm{ESI}-\mathrm{MS}:$ $457\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NaO}_{4}^{+}\right)$.

Esterification of $\mathbf{1}$ and 5 with (E)-Cinnamic Acid. To a soln. of $\mathbf{1}(20.5 \mathrm{mg})$ in toluene (2.0 ml), (E)cinnamic acid (20.6 mg), DMAP (15.8 mg), and DPTC (30.6 mg) were added and stirred at r.t. for 24 h under N_{2}. The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ extract (30.4 mg) was subjected to $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/AcOEt gradient $\left.9: 1 \rightarrow 1: 1\right)$ to afford $23(17.8 \mathrm{mg})$. Esterification of 5 $(19.5 \mathrm{mg})$ with (E)-cinnamic acid as described above yielded $32(11.4 \mathrm{mg})$.

2,11-Di-O-cinnamoyl Acerogenin A ($=(12 \mathrm{R})$-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexa-ene-4,12-diyl Bis[(2E)-3-phenylprop-2-enoate; 23). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $4.49-4.56(m, \mathrm{H}-\mathrm{C}(11)) ; 6.44\left(d t\right.$-like, $\left.J=15.6,2.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 6.75\left(d, J=16.0, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 7.39(t$-like, $J=$ 3.0, H-C $\left.\left(6^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(7^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(8^{\prime \prime}\right)\right) ; 7.42\left(t\right.$-like, $J=3.0, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)$, H-C $\left(7^{\prime}\right)$, H-C($\left.\left.8^{\prime}\right)\right) ; 7.51-7.55$ (m, $\left.\mathrm{H}-\mathrm{C}\left(5^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(9^{\prime \prime}\right)\right) ; 7.59-7.63\left(m, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{H}-\mathrm{C}\left(9^{\prime}\right)\right) ; 7.68\left(d d\right.$-like, $\left.J=1.8,16.0, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 7.95(d, J=$ 16.0, $\left.\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$. ESI-MS: $581\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{37} \mathrm{H}_{34} \mathrm{NaO}_{5}^{+}\right)$.

2,9-Di-O-cinnamoyl Acerogenin $B\left(=(10 \mathrm{R})\right.$-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexa-ene-4,10-diyl Bis[(2E)-3-phenylprop-2-enoate]; 32). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $4.54(d d d, J=2.8,8.0,13.2, \mathrm{H}-\mathrm{C}(9)) ; 6.34\left(d t-\mathrm{like}, J=16.0, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 6.74\left(d, J=16.0, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 7.39(t-$ like, $\left.J=3.0, \mathrm{H}-\mathrm{C}\left(6^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(7^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(8^{\prime \prime}\right)\right) ; 7.42\left(t-\mathrm{like}, J=3.0, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right), \mathrm{H}-\mathrm{C}\left(7^{\prime}\right), \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right) ; 7.49$ (dd, $\left.J=2.0,6.0, \mathrm{H}-\mathrm{C}\left(5^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(9^{\prime \prime}\right)\right) ; 7.59\left(d d, J=2.0,6.0, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{H}-\mathrm{C}\left(9^{\prime}\right)\right) ; 7.60\left(d, J=16.0, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right)\right)$; $7.94\left(d, J=16.0, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$. ESI-MS: $581\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{37} \mathrm{H}_{34} \mathrm{NaO}_{5}^{+}\right)$.

Esterification of $\mathbf{1}$ and $\mathbf{5}$ with Succinic Anhydride. To a soln. of $\mathbf{1}(20.8 \mathrm{mg})$ in pyridine $(10.0 \mathrm{ml})$, succinic anhydride (21.0 mg) and DMAP (10.6 mg) were added, and the mixture was refluxed for 7 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The AcOEt extract was washed with dil. HCl and then with $\mathrm{H}_{2} \mathrm{O}$. The mixture obtained (23.2 mg) was subjected to $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/ AcOEt gradient $8: 2 \rightarrow 0: 1)$ to afford $24(2.2 \mathrm{mg})$. Esterification of $5(21.0 \mathrm{mg})$ with succinic anhydride as described above yielded $\mathbf{3 3}$ (2.2 mg).

11-O-Succinyl Acerogenin $A \quad$ (=Butanedioic Acid Mono[(12R)-4-hydroxy-2-oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),15,17,18-hexaen-12-yl] Ester; 24). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz ; $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): 2.86-2.97\left(m, \mathrm{CH}_{2}\left(2^{\prime}\right), \mathrm{CH}_{2}\left(3^{\prime}\right)\right) ; 4.60-4.8(m, \mathrm{H}-\mathrm{C}(11))$. ESI-MS: $421\left([M+\mathrm{Na}]^{+}\right.$, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{6}^{+}$).

9-O-Succinyl Acerogenin B (= Butanedioic Acid Mono[(10R)-4-hydroxy-2-oxatricyclo[13.2.2.1 $1^{3,7}$]-icosa-3,5,7(20),15,17,18-hexaen-10-yl] Ester; 33). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): 2.80-$ $2.95\left(m, \mathrm{CH}_{2}\left(2^{\prime}\right), \mathrm{CH}_{2}\left(3^{\prime}\right)\right) ; 4.70-4.79(m, \mathrm{H}-\mathrm{C}(9))$. ESI-MS: $421\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{6}^{+}\right)$.

Dehydration of $\mathbf{1}$ and $\mathbf{5}$. A soln. of $\mathbf{1}(100.6 \mathrm{mg})$ in pyridine $(5.0 \mathrm{ml})$ was treated with $\mathrm{SOCl}_{2}(0.5 \mathrm{ml})$, and the mixture was stirred at 0° for 5 h . The mixture was poured into ice- $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The AcOEt extract was washed with sat. aq. NaHCO_{3} and brine, and then worked up as usual to yield a residue $(96.5 \mathrm{mg})$, which, upon $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/AcOEt gradient $\left.9: 1 \rightarrow 7: 3\right)$, afforded a fraction containing dehydration products. Prep. HPLC (system $I V$) of this fraction yielded 25 (6.3 mg ; t_{R} $46.0 \mathrm{~min})$ and $26\left(3.4 \mathrm{mg} ; t_{\mathrm{R}} 49.6 \mathrm{~min}\right)$. The procedure as described above for $\mathbf{5}(100.3 \mathrm{mg})$ yielded $\mathbf{3 4}$ $\left(9.8 \mathrm{mg} ; t_{\mathrm{R}} 50.4 \mathrm{~min}\right)$ and $\mathbf{3 5}\left(1.7 \mathrm{mg} ; t_{\mathrm{R}} 48.8 \mathrm{~min}\right)$.

11-Deoxy-10(11)E-dehydroacerogenin A ($=(11 \mathrm{E})$-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),11, 15,17,18-heptaen-4-ol; 25). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.47$ ($d t, J=12.0,6.4$, $\left.\mathrm{CH}_{2}(8)\right) ; 1.77\left(d d, J=5.7,12.1, \mathrm{CH}_{2}(9)\right) ; 2.25\left(d d, J=7.1,12.7, \mathrm{CH}_{2}(12)\right) ; 2.44\left(d d, J=6.4,6.4, \mathrm{CH}_{2}(7)\right)$; $2.78\left(d d, J=6.4,6.4, \mathrm{CH}_{2}(13)\right) ; 4.90(d t, J=15.4,5.9, \mathrm{H}-\mathrm{C}(10)) ; 5.09(d t, J=14.9,7.7, \mathrm{H}-\mathrm{C}(11)) ; 5.41(d$, $J=1.7, \mathrm{H}-\mathrm{C}(6)) ; 5.52$ (br. $s, \mathrm{HO}-\mathrm{C}(2)) ; 6.57(d d, J=2.1,8.2, \mathrm{H}-\mathrm{C}(4)) ; 6.82(d, J=8.3, \mathrm{H}-\mathrm{C}(3)) ; 7.00(d t$, $J=8.5,2.0, \mathrm{H}-\mathrm{C}(16), \mathrm{H}-\mathrm{C}(18)) ; 7.08(d t, J=8.3,2.0, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(19))$. HR-ESI-MS: 303.1364 $\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}^{+}\right.$; calc. 303.1361).

11-Deoxy-11(12)E-dehydroacerogenin A ($=(12 \mathrm{E})$-2-Oxatricyclo[13.2.2.1 ${ }^{3,7}$]icosa-3,5,7(20),12, 15,17,18-heptaen-4-ol; 26). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.09-1.17\left(m, \mathrm{CH}_{2}(9)\right)$; $1.28-1.37\left(m, \mathrm{CH}_{2}(8)\right) ; 1.91\left(d d d, J=1.2,6.4,10.8, \mathrm{CH}_{2}(10)\right) ; 2.46\left(t, J=6.0, \mathrm{CH}_{2}(7)\right) ; 3.29(d d, J=2.0$, $\left.5.2, \mathrm{CH}_{2}(13)\right) ; 4.48(d t t, J=14.9,1.6,6.4, \mathrm{H}-\mathrm{C}(11)) ; 5.75(d t t, J=15.6,1.6,5.2, \mathrm{H}-\mathrm{C}(12)) ; 5.60$ (br. s, $\mathrm{HO}-\mathrm{C}(2)) ; 5.69(d, J=1.7, \mathrm{H}-\mathrm{C}(6)) ; 6.58(d d, J=1.2,8.0, \mathrm{H}-\mathrm{C}(4)) ; 6.82(d, J=8.3, \mathrm{H}-\mathrm{C}(3)) ; 7.07$ (dt, $J=8.5,2.0, \mathrm{H}-\mathrm{C}(16), \mathrm{H}-\mathrm{C}(18)) ; 7.22(d t, J=8.3,2.0, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(19))$. HR-ESI-MS: 303.1369 $\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}^{+}\right.$; calc. 303.1361).

9-Deoxy-8(9)E-dehydroacerogenin B ($=$ (9E)-2-Oxatricyclo[13.2.2.1 $1^{3,7}$]icosa-3,5,7(20),9,15,17,18-heptaen-4-ol; 34). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.09-1.19\left(m, \mathrm{CH}_{2}(11)\right) ; 1.47-1.55$ $\left(m, \mathrm{CH}_{2}(12)\right) ; 1.85\left(d d, J=7.2,12.8, \mathrm{CH}_{2}(10)\right) ; 2.63\left(d t, J=10.8,6.0, \mathrm{CH}_{2}(13)\right) ; 3.00\left(d, J=7.2, \mathrm{CH}_{2}(7)\right)$; $5.18(d t, J=14.8,7.6, \mathrm{H}-\mathrm{C}(8)) ; 5.34(d, J=1.6, \mathrm{H}-\mathrm{C}(6)) ; 5.39(d t, J=14.8,7.6, \mathrm{H}-\mathrm{C}(9)) ; 5.57$ (br. s, $\mathrm{HO}-\mathrm{C}(2)) ; 6.59(d d, J=1.6,8.0, \mathrm{H}-\mathrm{C}(4)) ; 6.82(d, J=7.6, \mathrm{H}-\mathrm{C}(3)) ; 7.02(d t, J=8.3,2.2, \mathrm{H}-\mathrm{C}(16)$, $\mathrm{H}-\mathrm{C}(18)) ; 7.21(d t, J=8.3,2.2, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(19))$. HR-ESI-MS: $303.1385\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}^{+}\right.$; calc. 303.1361).

9-Deoxy-9(10)E-dehydroacerogenin $\quad B \quad\left(=(10 \mathrm{E})-2-\right.$ Oxatricyclo[13.2.2.1 ${ }^{3,7}$ icosa-3,5,7(20),10, 15,17,18-heptaen-4-ol; 35). Amorphous solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 1.77-1.85\left(m, \mathrm{CH}_{2}(12)\right)$; 2.05-2.15 ($\left.m, \mathrm{CH}_{2}(11), \mathrm{CH}_{2}(8)\right) ; 2.50\left(d t, J=10.8,5.6, \mathrm{CH}_{2}(7)\right) ; 2.74\left(t, J=6.3, \mathrm{CH}_{2}(13)\right) ; 4.83(d t t, J=$ $16.0,1.2,5.6, \mathrm{H}-\mathrm{C}(10)) ; 5.00(d t t, J=15.6,1.6,6.4, \mathrm{H}-\mathrm{C}(9)) ; 5.54$ (br. $s, \mathrm{HO}-\mathrm{C}(2)) ; 6.04(d, J=2.4$, $\mathrm{H}-\mathrm{C}(6)) ; 6.54(d d, J=2.0,8.0, \mathrm{H}-\mathrm{C}(4)) ; 6.79(d, J=8.0, \mathrm{H}-\mathrm{C}(3)) ; 7.00(d t, J=8.8,2.0, \mathrm{H}-\mathrm{C}(16)$, $\mathrm{H}-\mathrm{C}(18))$; $7.28(d t, J=8.8,2.0, \mathrm{H}-\mathrm{C}(15), \mathrm{H}-\mathrm{C}(19))$. HR-ESI-MS: $303.1380\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}^{+}\right.$; calc. 303.1361).

Cell Lines and Culture Conditions. B16 4A5 (mouse melanoma), HL60 (human leukemia), and CRL1579 (human melanoma) cell lines were purchased from Riken Cell Bank (Tsukuba, Ibaraki, Japan). B16 Cells were cultured in D-MEM medium, while HL60 and CRL1579 cells were grown in RPMI-1640 medium. The medium was supplemented with 10% FBS and antibiotics (100 units $/ \mathrm{ml}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin). Cells were incubated at 37° in a $5 \% \mathrm{CO}_{2}$ humidified incubator. The cells were cultured according to the method described in [24][26][27].

Cytotoxicity Assay. Cytotoxicity assay was performed according to the method described in [24][26][27].

Assay of Melanin Content. Melanogenesis inhibition assay in the α-MSH-stimulated B16 melanoma cells was performed according to the method described in [27].

REFERENCES

[1] K. Izawa, 'Colored Picture Book of Medicinal Herb, Vol. 2', Shufunotomo Co. Ltd., 1991, pp. 195.
[2] T. Inoue, Yakugaku Zasshi 1993, 113, 181.
[3] S. Nagumo, N. Kaji, T. Inoue, M. Nagai, Chem. Pharm. Bull. 1993, 41, 1255.
[4] S. Nagumo, S. Ishizawa, M. Nagai, T. Inoue, Chem. Pharm. Bull. 1996, 44, 1086.
[5] T. Morikawa, J. Tao, K. Ueda, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2003, 51, 62.
[6] T. Morikawa, J. Tao, I. Toguchida, H. Matsuda, M. Yoshikawa, J. Nat. Prod. 2003, 66, 86.
[7] H. Morita, J. Deguchi, Y. Motegi, S. Sato, C. Aoyama, J. Takeo, M. Shiro, Y. Hirasawa, Bioorg. Med. Chem. Lett. 2010, 20, 1070.
[8] M. Shinoda, S. Ohta, M. Kumasaka, M. Fujita, M. Nagai, T. Inoue, Shoyakugaku Zasshi 1986, 40, 177.
[9] T. Akihisa, Y. Taguchi, K. Yasukawa, H. Tokuda, H. Akazawa, T. Suzuki, Y. Kimura, Chem. Pharm. Bull. 2006, 54, 735.
[10] H. Akazawa, T. Akihisa, Y. Taguchi, N. Banno, R. Yoneima, K. Yasukawa, Biol. Pharm. Bull. 2006, 29, 1970.
[11] T. Akihisa, H. Akazawa, N. Banno, Fragrance J. 2008, 36, 48.
[12] H. Akazawa, Y. Fujita, N. Banno, K. Watanabe, Y. Kimura, A. Manosroi, J. Manosroi, T. Akihisa, J. Oleo Sci. 2010, 59, 213.
[13] S. Hara, H. Okabe, K. Mihashi, Chem. Pharm. Bull. 1987, 35, 501.
[14] M. Nagai, M. Kubo, M. Fujita, T. Inoue, M. Matsuo, Chem. Pharm. Bull. 1978, 26, 2805.
[15] M. Nagai, M. Kubo, K. Takahashi, M. Fujita, T. Inoue, Chem. Pharm. Bull. 1983, 31, 1923.
[16] M. Nagai, E. Matsuda, T. Inoue, M. Fujita, H. J. Chi, T. Ando, Chem. Pharm. Bull. 1990, 38, 1506.
[17] M. Nagai, N. Kenmochi, M. Fujita, N. Furukawa, T. Inoue, Chem. Pharm. Bull. 1986, 34, 1056.
[18] G. Fronza, C. Fuganti, M. Mendozza, R. S. Rallo, G. Ottolina, D. Joulain, Tetrahedron 1996, 52, 4041.
[19] B. Das, P. S. Rao, K. V. N. S. Srinivas, J. S. Yadav, Phytochemistry 1993, 33, 1529.
[20] H. Pan, L. N. Lundgren, Phytochemistry 1994, 36, 79.
[21] I. Kitagawa, H. Wei, S. Nagao, T. Mahmud, K. Hori, M. Kobayashi, T. Uji, H. Shibuya, Chem. Pharm. Bull. 1996, 44, 1162.
[22] K. Saitoh, I. Shiina, T. Mukainaka, Chem. Lett. 1998, 27, 679.
[23] H. Matsuda, T. Morikawa, J. Tao, K. Ueda, M. Yoshikawa, Chem. Pharm. Bull. 2002, 50, 208.
[24] T. Akihisa, K. Seino, E. Kaneko, K. Watanabe, S. Tochizawa, M. Fukatsu, N. Banno, K. Metori, Y. Kimura, J. Oleo Sci. 2010, 59, 49.
[25] Y.-J. Lim, E. H. Lee, T. H. Kang, S. K. Ha, M. S. Oh, S. M. Kim, T.-J. Yoon, C. Kang, J.-H. Park, S. Y. Kim, Arch. Pharm. Res. 2009, 32, 367.
[26] K. Tabata, K. Motani, N. Tkayanagi, R. Nishimura, S. Asami, Y. Kimura, M. Ukiya, D. Hasegawa, T. Akihisa, T. Suzuki, Biol. Pharm. Bull. 2005, 28, 1404.
[27] T. Kikuchi, M. Nihei, H. Nagai, H. Fukushi, K. Tabata, T. Suzuki, T. Akihisa, Chem. Pharm. Bull. 2010, 58, 568.

