Reduction of phosphine oxides to the corresponding phosphine derivatives in $\mathrm{Mg} / \mathrm{Me}_{3} \mathrm{SiCl} / \mathrm{DMI}$ system

Manabu Kuroboshi ${ }^{\text {a,* }}$, Toshihito Kita ${ }^{\text {a }}$, Asuka Aono ${ }^{\text {a }}$, Toshimasa Katagiri ${ }^{\text {a }}$, Seiya Kikuchi ${ }^{a}$, Syoko Yamane ${ }^{\text {a }}$, Hiromu Kawakubo ${ }^{\text {b }}$, Hideo Tanaka ${ }^{\text {a }}$
${ }^{\text {a }}$ Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan
${ }^{\mathrm{b}}$ Nihon Pharmaceutical University, Komuro 10281, Ina, Kitaadachi, Saitama 362-0806, Japan

A R T I C L E I N F O

Article history:

Received 17 November 2014
Revised 22 December 2014
Accepted 26 December 2014
Available online xxxx

Keywords:

Reduction
Phosphine oxide
Phosphine
Magnesium
1,3-Dimethyl-2-imidazolidinone

Abstract

Direct reductions of phosphine oxides to the corresponding phosphines were performed successfully by using $\mathrm{Mg} / \mathrm{Me}_{3} \mathrm{SiCl} / \mathrm{DMI}$ system. The reduction proceeded under mild conditions and was applicable to a wide range of phosphine oxides; triarylphosphine oxides, alkyldiarylphosphine oxides, and dialkylarylphosphine oxides gave the corresponding phosphines in good to excellent yields.

© 2015 Published by Elsevier Ltd.

Table 1
$\mathrm{Mg}-\mathrm{Me}_{3} \mathrm{SiCl}$ promoted reduction of $\mathbf{2 a}$ to $\mathbf{1 a}$. Effect of solvents ${ }^{\text {a }}$

Entry	Solvent	Ratio $^{\text {b }}(\%)$	
		1a	2a
1	DMI	$98(96)^{c}$	1
2	MeCN	$9(9)^{c}$	91
3	DMF	$7(7)^{c}$	93
4	DMAc	n.d. d	100^{e}
5	NMP	n.d. ${ }^{\text {d }}$	100^{e}
6	DMPU	n.d. ${ }^{\text {d }}$	100^{e}
7	THF	n.d. ${ }^{\text {e }}$	100^{e}

${ }^{\text {a }}$ Compound 2a (2 mmol), $\mathrm{Mg}(6 \mathrm{mmol}), \mathrm{Me} \mathrm{S}_{3} \mathrm{SiCl}(6 \mathrm{mmol})$, solvent (8 mL), rt, 2 h .
${ }^{\mathrm{b}}$ Determined by ${ }^{31} \mathrm{P}$ NMR.
${ }^{\text {c }}$ Isolated yields are shown in the parentheses.
${ }^{\text {d }}$ Not detected.
${ }^{e}$ No peaks other than 2a were observed.

1a was obtained in 96% yield after purification by silica gel column chromatography (hexane/AcOEt = 5:1) (Table 1, entry 1).

Remarkable solvent effect was found: among the solvents examined, DMI was the only solvent to afford 1a efficiently (Table 1): 1a was obtained quantitatively in DMI (entry 1), whereas yield of $\mathbf{1 a}$ was less than 10% in acetonitrile (entry 2) and DMF (entry 3), and no 1a was obtained in DMAc (N, N-dimethylacetamide), NMP (N-methylpyrrolidone), DMPU (N, N^{\prime}-dimethylpropyleneurea), and THF (entries 4-7).

We investigated metal reductants. Mg powder (4 mol equiv) gave 1a quantitatively (Table 2, entry 1). Mg turnings (Grignard reaction grade) also gave $\mathbf{1 a}$ in 85% yield (entry 2). The reduction did not occur with activated zinc powder and aluminum chips to recover 2a unchanged (entries 3 and 4).

A decrease of the amount of Mg powder brought about a decrease of the yield of $\mathbf{1 a}$ to 93% (3 mol equiv), 78% (2 mol equiv), and 45% (1 mol equiv), respectively (entries 5-7).
$\mathrm{Me}_{3} \mathrm{SiCl}$ was indispensable for the reduction: the reduction did not proceed at all in the absence of $\mathrm{Me}_{3} \mathrm{SiCl} .{ }^{19}$

From these results, the optimized conditions were as follows: Mg (4 mol equiv), $\mathrm{Me}_{3} \mathrm{SiCl}$ (3 mol equiv), DMI, room temp. The reduction proceeded in larger scale: to a mixture of Mg powder ($45 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv), $\mathrm{Me}_{3} \mathrm{SiCl}$ ($80 \mathrm{mmol}, 2.6 \mathrm{~mol}$ equiv), and DMI (20 mL) was added $\mathbf{2 a}(8.40 \mathrm{~g}, 30 \mathrm{mmol})$. After short induction period (ca. 5 min), a heavy exothermic reaction occurred. The whole mixture was stirred for 2 h with cooling by a water bath. After the workup, the reaction mixture was analyzed by ${ }^{31} \mathrm{P}$ NMR to find that 1a and 2a were obtained in 94:6 ratio. The desired 1a ($7.08 \mathrm{~g}, 26 \mathrm{mmol}, 87 \%$ yield) was obtained after purification by the silica gel column chromatography.

Table 2
Effect of metal reductants ${ }^{\text {a }}$

Entry	Metal (mmol)	Ratio $^{\mathrm{b}}(\%)$	
		$\mathbf{1 a}$	$\mathbf{2 a}$
1	Mg powder (8)	$98(96)^{\mathrm{c}}$	1
2	Mg turnings (8)	85	15
3	Zn powder $(8)^{\mathrm{d}}$	n.d. $^{\mathrm{e}}$	100^{f}
4	Al chips (8)	n.d. $^{\mathrm{e}}$	100^{f}
5	Mg powder (6)	93	7
6	Mg powder (4)	78	22
7	Mg powder (2)	45	55

[^0]Table 3
Reduction of several types of phosphine oxides

		$\xrightarrow[\text { DMI (} 8 \mathrm{~mL} \text {), Room temp., Time }]{\mathrm{Mg}(8 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiCl}(6 \mathrm{mmol})}$			$\begin{gathered} \mathrm{R}^{1} \\ \mathrm{R}^{1}-\mathrm{P} \\ \mathrm{R}^{2} \\ \mathbf{1} \end{gathered}$	
Entry	R^{1}	R^{2}		Time (h)	Ratio ${ }^{\text {a,b }}$ (\%)	
					1	2
1	Ph	Ph	2a	2	97 (96)	3
2	o-Tolyl	o-Tolyl	2b	4	95 (89)	4
3	m-Tolyl	m-Tolyl	2c	6	91 (84)	7
4	p-Tolyl	p-Tolyl	2d	4	95 (91)	5
5	p-Anis	p-Anis	2 e	2	94 (93)	6
6	Ph	$p-\mathrm{NCC}_{6} \mathrm{H}_{4}$	2 f	2	Complex	n.d. ${ }^{\text {d }}$
7	Ph	${ }^{\text {i }} \mathrm{Pr}$	2 g	2	37 (54)	22
8	Ph	Et	2h	2	96 (75 ${ }^{\text {c }}$)	4
9	Et	Ph	2 i	2	35 (70 ${ }^{\text {c }}$)	57
10	Oct	Oct	2j	2	n.d. ${ }^{\text {d }}$	98

${ }^{\text {a }}$ The ratios of $\mathbf{1}$ to $\mathbf{2}$ were determined by ${ }^{31} \mathrm{P}$ NMR.
${ }^{\mathrm{b}}$ Yields referred to the isolated $\mathbf{1}$ are shown in the parentheses.
${ }^{\text {c }}$ Yields were evaluated by ${ }^{31} \mathrm{P}$ NMR. ${ }^{21}$
${ }^{\text {d }}$ Not detected.

Several phosphine oxides $\mathbf{2}$ were reduced under the optimized conditions (Table 3). Triarylphosphine oxides 2a-2e gave the corresponding triarylphosphine $\mathbf{1 a - 1 e}$ in quantitative yields (entries $1-5$), whereas triarylphosphine oxide having an electron-withdrawing group such as (4-cyanophenyl)diphenylphosphine oxide (2f) gave only a complex mixture. ${ }^{20}$ Alkyldiarylphosphine oxides $\mathbf{2 g}$ and $\mathbf{2 h}$ (entries 7 and 8) and dialkylarylphosphine oxide $\mathbf{2 i}$ (entry 9) were also reduced with the $\mathrm{Mg}-\mathrm{Me}_{3} \mathrm{SiCl}-\mathrm{DMI}$ system to afford the corresponding phosphine derivatives, $\mathbf{1 g}, \mathbf{1 h}$, and $\mathbf{1 i}$, in good yields. ${ }^{21}$ On the other hand, reduction of trialkylphosphine oxide $\mathbf{2 j}$ did not proceed at all to recover $\mathbf{2 j}$ quantitatively.

A plausible mechanism is shown in Scheme 2. ${ }^{18}$ At the initial stage of the reaction, one-electron reduction of 2 with Mg would occur to afford the corresponding anion radical 4 . The anion radical 4 would be trapped immediately with $\mathrm{Me}_{3} \mathrm{SiCl}$ to afford silylated radical 5 . Further one-electron reduction of $\mathbf{5}$ followed by elimination of hexamethyldisiloxane would occur to afford 1.

In conclusion, a direct reduction of phosphine oxides 2 to the corresponding phosphines $\mathbf{1}$ was performed successfully by using $\mathrm{Mg}-\mathrm{Me}_{3} \mathrm{SiCl}-\mathrm{DMI}$ system. Though DMI was a special solvent to promote the reduction, detail of the effect of DMI is still not clear at present and will be discussed in near future. ${ }^{22-25}$ The reduction could be applicable to simple phosphine oxides as well as more complicated phosphine oxides. Since Mg is stable and easy to handle, and not so expensive, the present method gives a way to recycle use of expensive phosphine reagents in organic syntheses.

Scheme 2. A plausible mechanism of reduction of $\mathbf{2}$ to $\mathbf{1}$ by using $\mathrm{Mg}-\mathrm{Me}_{3} \mathrm{SiCl}-\mathrm{DMI}$ system.

Acknowledgments

The SC-NMR Laboratory of Okayama University is thanked for recording ${ }^{31} \mathrm{P}$ NMR. The authors also thank Miss Mai Yoshikawa (Okayama University) for guidance of the experiments.

References and notes

1. (a) Maercker, A. In Org. React.; John Wiley \& Sons: New York, 1965; Vol. 14,. Chapter 3 (b) Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87.
2. Hughes, D. L. In Org. React.; John Wiley \& Sons: New York, 1992; Vol. 42,. Chapter 2.
3. (a) Mukaiyama, T. Angew. Chem. 1976, 88, 111; (b) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614.
4. (a) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801; (b) Calzada, J. G.; Hooz, J. Org. Synth. 1974, 54, 63.
5. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
6. BINAP: Takaya, H.; Ohta, T.; Inoue, S.-i.; Tokunaga, M.; Kitamura, M.; Noyori, R. Org. Synth. 1995, 72, 74; SEGPHOS: Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. Adv. Synth. Catal. 2001, 343, 264.
7. (a) Joshaghani, M.; Faramarzi, E.; Rafiee, E.; Daryanavard, M.; Xiao, J.; Baillie, C. J. Mol. Catal. A: Chem. 2007, 273, 310; (b) Campos, J.; Peloso, R.; Carmona, E. Angew. Chem., Int. Ed. 2012, 51, 8255.
8. Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J. Org. Synth. 1999, 76, 6.
9. Ager, D. J.; East, M. B.; Eisenstadt, A.; Laneman, S. A. Chem. Commun. 1997, 2359
10. $\mathrm{HSiCl}_{3} / \mathrm{NR}_{3}$: (a) Fritzsche, H.; Hasserodt, U.; Korte, F. Chem. Ber. 1965, 98, 171 ; (b) Dziuba, K.; Flis, A.; Szmigielska, A.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 2010, 21, 1401; (c) Barta, K.; Francio, G.; Leitner, W.; Lloyd-Jones, G. C.; Shepperson, I. R. Adv. Synth. Catal. 2008, 350, 2013; (d) Huang, Z.-G.; Jiang, B.; Cheng, K.-J. Phosphorus, Sulfur Silicon Relat. Elem. 2007, 182, 1609; (e) El Abed, R.; Aloui, F.; Genet, J.-P.; Ben, H. B.; Marinetti, A. J. Organomet. Chem. 2007, 692, 1156; PhSiH_{3} : Marsi, K. L. J. Org. Chem. 1974, 39, 265; Hydrosilane/ $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$: (a) Coumbe, T.; Lawrence, N. J.; Muhammad, F. Tetrahedron Lett. 1994, 35, 625; (b) Allen, A., Jr.; Ma, L.; Lin, W. Tetrahedron Lett. 2002, 43, 3707; (c) Petit, C.; Favre-Reguillon, A.; Albela, B.; Bonneviot, L.; Mignani, G.; Lemaire, M. Organometallics 2009, 28, 6379; (d) Berthod, M.; Favre-Reguillon, A.; Mohamad, J.; Mignani, G.; Docherty, G.; Lemaire, M. Synlett 2007, 1545; (e) Lawrence, N. J.; Drew, M. D.; Bushell, S. M. J. Chem. Soc., Perkin Trans. 1 1999, 3381; $(\mathrm{RO})_{2} \mathrm{MeSiH} / \mathrm{acid}$ or $\mathrm{Cu}(\mathrm{OTf})_{2}$: (a) Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge,
K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 18325; (b) Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 9727.
11. LiAlH_{4} : Horner, L.; Hoffmann, H.; Beck, P. Chem. Ber. 1958, 91, 1583; $\mathrm{LiAlH}_{4} /$ CeCl_{3} : Imamoto, T.; Tanaka, T.; Kusumoto, T. Chem. Lett. 1985, 1491; LiAlH 4 / MeOTf: Imamoto, T; Kikuchi, S.-I.; Miura, T.; Wada, Y. Org. Lett. 2001, 3, 87; AlH_{3} : Griffin, S.; Heath, L.; Wyatt, P. Tetrahedron Lett. 1998, 39, 4405; NaAlH ${ }_{4}$ / NaAlCl_{4} : Nelson, G. E. U.S. Patent 4,507,502, 1985; CAN 103: 37617; DIBAL-H: (a) Busacca, C. A.; Raju, R.; Grinberg, N.; Haddad, N.; James-Jones, P.; Lee, H.; Lorenz, J. C.; Saha, A.; Senanayake, C. H. J. Org. Chem. 2008, 73, 1524; (b) Malpass, D. B.; Yeargin, G. S. U.S. Patent 4,113,783, 1978; CAN 90: 23256; (c) Busacca, C. A.; Lorenz, J. C.; Sabila, P.; Haddad, N.; Senanayake, C. H. Org. Synth. 2007, 84, 242.
12. Handa, Y.; Inanaga, J.; Yamaguchi, M. J. Chem. Soc., Chem. Commun. 1989, 298
13. Mathey, F.; Maillet, R. Tetrahedron Lett. 1980, 21, 2525.
14. Dockner, T. Angew. Chem. 1988, 100, 699.
15. Timokhin, B. V.; Kazantseva, M. V.; Blazhev, D. G.; Rokhin, A. V. Russ. J. Gen. Chem. 2000, 70, 1310. CAN 134: 311265.
16. Yano, T.; Hoshino, M.; Kuroboshi, M.; Tanaka, H. Synlett 2010, 801.
17. Yano, T.; Kuroboshi, M.; Tanaka, H. Tetrahedron Lett. 2010, 51, 698.
18. Kawakubo, H.; Kuroboshi, M.; Yano, T.; Kobayashi, K.; Kamenoue, S.; Akagi, T.; Tanaka, H. Synthesis 2011, 4091.
19. In electroreduction of $\mathbf{2 a}$ without $\mathrm{Me}_{3} \mathrm{SiCl}$, cleavage of $\mathrm{C}-\mathrm{P}$ bond occurred to give diphenylphosphine oxide $\left(\mathrm{Ph}_{2} \mathrm{PH}=\mathrm{O}\right)$.
20. Though several peaks were observed from -3.64 to -6.12 ppm (attributable to P (III) species) by analysis of the crude product by ${ }^{31} \mathrm{P}$ NMR, $\mathbf{2 f}$ was not detected.
21. Since $\mathbf{1 g}, \mathbf{1 h}$, and $\mathbf{1 i}$ were easily oxidized under air, the yields of these products were estimated by ${ }^{31} \mathrm{P}$ NMR of the reaction mixture.
22. In the initial stage of the reaction, Mg would react with $\mathrm{Me}_{3} \mathrm{SiCl}$ (and a small amount of water included in the solvent) to afford a small amount of MgCl_{2}.
23. DMI itself is not so highly polar solvent since donor number (DN) and acceptor number (AN) of DMI (DN/AN 27/19) is similar to those of MeCN (14/20), DMF (29/21), and THF (20/8). However, DN and AN of DMI (62/52) and DMF (78/48) increased remarkably by addition of a small amount of $\mathrm{MgCl}_{2}(0.1 \mathrm{M})$. The electron transfer from Mg to 2 and/or 5 would only occur in such highly polar environment. DN and AN were determined by solvatochromism. DN: Soukup, R. W.; Sone, K. Bull. Chem. Soc. Jpn. 1987, 60, 2286; AN: Reichardt, C. Angew. Chem., Int. Ed. Engl. 1965, 4, 29.
24. ${ }^{31} \mathrm{P}$ NMR of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ was low-field shift by addition of MgCl_{2} (from 25.01 ppm to 25.83 ppm), indicating that MgCl_{2} would play as a Lewis acid to $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ as well as DMI.
25. Kitamura, T.; Gondo, K.; Katagiri, T. J. Org. Chem. 2013, 78, 3421; Utsumi, S.; Katagiri, T.; Uneyama, K. Tetrahedron 2012, 68, 580.

[^0]: ${ }^{\text {a }}$ Compound 2a (2 mmol), Metal, $\mathrm{Me}_{3} \mathrm{SiCl}(6 \mathrm{mmol})$, DMI (8 mL), rt, 2 h .
 ${ }^{\mathrm{b}}$ Determined by ${ }^{31} \mathrm{P}$ NMR.
 ${ }^{\text {c }}$ Isolated yield is shown in the parenthesis.
 ${ }^{\mathrm{d}}$ Zinc was activated by washing with aq dil HCl .
 ${ }^{\mathrm{e}}$ Not detected.
 ${ }^{\mathrm{f}}$ No peaks other than $\mathbf{2 a}$ were observed.

