

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Studies Toward the Stereoselective Synthesis of C13 to C21 Fragment of the Brasilinolides Family of Immunosuppressive Macrolides

Hajari Ravindranath & Gangavaram V. M. Sharma

To cite this article: Hajari Ravindranath & Gangavaram V. M. Sharma (2015) Studies Toward the Stereoselective Synthesis of C13 to C21 Fragment of the Brasilinolides Family of Immunosuppressive Macrolides, Synthetic Communications, 45:21, 2485-2490, DOI: <u>10.1080/00397911.2015.1090608</u>

To link to this article: <u>http://dx.doi.org/10.1080/00397911.2015.1090608</u>

View supplementary material 🖸

0.0	
سب	

Accepted author version posted online: 12 Sep 2015.

	Þ
ല	

Submit your article to this journal \square

🔾 View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

Synthetic Communications[®], 45: 2485–2490, 2015 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online DOI: 10.1080/00397911.2015.1090608

STUDIES TOWARD THE STEREOSELECTIVE SYNTHESIS OF C13 TO C21 FRAGMENT OF THE BRASILINOLIDES FAMILY OF IMMUNOSUPPRESSIVE MACROLIDES

Hajari Ravindranath and Gangavaram V. M. Sharma

Discovery Laboratory, Organic and Biomolecular Chemistry Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Technology, Hyderabad, India

GRAPHICAL ABSTRACT

Abstract The work describes our attempts to synthesize the C13 to C21 fragment of brasilinolides, a 32-membered macrolide class of molecule. The C13 to C21 segment encompasses six asymmetric centers and a pyran ketal moiety. The synthesis starts from L-malic acid, and the salient features of our asymmetric synthesis are opening of epoxide, assymmetric dihydroxylation for the creation of vic-diol, and Barbier allylation.

Keywords Asymmetric dihydroxylation; Barbier allylation; α/β -unsaturated ketone; *vic*-diol

Received August 17, 2015.

Address correspondence to Hajari Ravindranath, D-206, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India. E-mail: ravindranathiict@gmail.com

Color versions of one or more of the figures in the article can be found online at www.tandfonline. com/lsyc.

Scheme 1. Retro synthetic analysis of C13 to C21 fragment.

INTRODUCTION

The brasilinolides (1a–c, Scheme 1) belong to an important class of immunosuppressive agents.^[1] Macrolides 1a–1c were first isolated in 1996 from the pathogenic actinomycete *Nocardia brasiliensis* IFM-0406. They constitute a structurally unique family of bioactive 32-membered macrolides.^[2] The relative and absolute configurations of 1a–1c were determined inter alia by controlled chemical degradation of 1c and detailed spectroscopic studies of the resulting fragments.^[3] Brasilinolide A 1a exhibits immunosuppressive activity^[4] in the mouse mixed lymphocyte reaction with an IC₅₀ of $0.625 \,\mu g \,m L^{-1}$ and shows no acute toxicity, even up to 500 mg kg⁻¹. In addition, 1a is reported to show significant antifungal activity, while 1b is active against a range of fungi and bacteria. Paterson et al.^[5,6] in 2009 reported highly convergent syntheses of a fully protected C1-C19 subunit and differentially protected C20-C38 segment of 1a–1c. In continuation of our studies on the synthesis of macrolides,^[7] herein, we report our studies towards the stereoselective synthesis of C13–C21 segment of 1a–1c by asymmetric approach from L-malic acid.

RESULTS AND DISCUSSION

From the antithetic analysis of **1a–1c** (Scheme 1), the synthesis of C13–C21 fragment **2a** containing a pyran ketol was envisioned from the corresponding ketone **2**, which in turn can be obtained from benzoate **3**. Acetonide **3** in turn could be prepared from the allylic alcohol **4**, which can be made from the epoxide **6**, through **5**.

Figure 1. Structure of immunosuppressive brasilinolides.

Scheme 2. Reagents and conditions: a) BzCl, CH_2Cl_2 , TEA, 0 °C-rt, 4 h; b) *p*-TsCl, CH_2Cl_2 , Et₃, 0 °C-rt, 4 h; c) K_2CO_3 , MeOH, 0 °C-rt, 4 h; d) *n*BuLi, BF₃OEt₂, THF, -78 °C, 1 h; e) PMB-Br, NaH, THF, 0 °C-rt, 1 h; f) PPTS, MeOH, 0 °C-rt, 1 h; g) LAH, THF, 0 °C-rt, 4 h; h) AD-mix- α , MeSOzNH₂, ^tBuOH:H₂O(l:l), 0 °C, 18 h; i) PTSA, 2,2 DMP, CH₂Cl₂, 0 °C-rt, 4 h; j) Dess-Martin Periodinane, CH₂Cl₂, 0 °C-rt, 2 h; k) Zn, allylbromide, THF, 0 °C-rt, 6 h; 1) DDQ, CH₂Cl₂: H₂O(9:l), 0 °C-rt, 1 h.

Thus, the epoxide is prepared from L-malic acid, while, the *vic*-diol at C16/C17 is proposed through asymmetric dihydroxylation.

The selective protection of known diol 17^[8] with benzoyl chloride in the presence of Et₃N and Bu₂SnO^[9] in CH₂Cl₂ furnished the benzoate 18 in 75% yield. Treatment of ester 18 with p-TsCl, Et_3N , and dimethylaminopyridine (DMAP, cat.) in CH₂Cl₂ furnished 18a, which on reaction with K_2CO_3 in methanol gave epoxide 6 in 76% yield. Epoxide 6 on reaction with 7 in the presence of n-BuLi and $BF_3 \cdot Et_2O$ in tetrahydrofuran (THF) gave alcohol 8 in 73% yield. Reaction of 8 with NaH and p-methoxybenzyl (PMB)-Br in dry THF afforded the PMB ether 5 (79%), which on p-toluenesulfonic acid (PTSA)-catalyzed removal of tetrahydropyranyl (THP) in methanol furnished alcohol 9 in 89% yield. Reduction of 9 with lithium aluminum hydride (LAH) in dry THF afforded the allylic alcohol 4 (77%), which on treatment with BzCl and Et_3N in CH_2Cl_2 gave bezoate 10 in 76% yield. The asymmetric dihydroxylation of benzoate 10 with AD-mix- α in the presence of methanesulfonamide in $^{t}BuOH/H_{2}O$ (1:1) afforded the diol 11 (52%), which on treatment with 2,2-dimethoxy propane in the presence of PTSA (cat.) in CH₂Cl₂ furnished the acetonide **3** in 84% yield. Further, benzoate **3** on reaction with K_2CO_3 in MeOH underwent hydrolysis to furnish the alcohol 12 (75%), which on oxidation with Dess–Martin periodinane in anhydrous CH_2Cl_2 gave the aldehyde 13.

Zinc-mediated Barbier allylation of **13** gave allylic alcohols **14** as an inseparable mixture (80%), which on oxidation with Dess–Martin periodinane in anhydrous CH₂Cl₂ gave the ketone **2** in 75% yield. Attempted removal of the PMB group in **2** oxidatively with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)^[10] in aqueous CH₂Cl₂ gave an unexpected α/β -unsaturated ketone **15** in 63% yield. Further attempts to deprotect the PMB group in **2** with other reagents such as TMSCl, anisole, SnCl₂ (cat.)^[11] in CH₂Cl₂, and ceric ammonium nitrate (CAN)^[12] in CH₂Cl₂/H₂O) did not give the desired product **2a**. Several attempts for the conversion of **2** to form the expected ketol **2a** met with failure.

EXPERIMENTAL

1-((4R,5R)-5-((R)-3-(Benzyloxy)-1-(4-methoxybenzyloxy)propyl)-2,2dimethyl-1,3-dioxolan-4-yl)pent-4-en-2-one (2)

To a stirred solution of diastereomeric mixture of alcohol 14 (2.1 g, 4.4 mmol) in anhydrous CH₂Cl₂ (1.5 mL) under N₂ atmosphere at 0 °C, Dess-Martin periodinane (2.2 g, 5.3 mmol) and NaHCO₃ (0.56 g, 6.7 mmol) were added and stirred at room temperature for 2 h. Workup as described for 13 and purification of the residue by column chromatography (silica gel, 60–120 mesh, EtOAc/hexane, 1:9) furnished 2 (1.5 g, 75%) colorless thick syrup. $[\alpha]_{D}^{25} = 70.03$ (c 0.3, CHCl₃); IR (CHCl₃): 3068, 2923, 1720, 1661, 1513, 1455, 1377, 1302, 1242, 1213, 1093, 915, 878, 849, 820, 735, 699, 667 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃, 295 K): δ 7.21 (m, 7H, Ar-H), 6.81 (d, 2H, J = 8.5 Hz, Ar-H), 5.75 (m, 1H, olefinic), 5.0–5.1 (m, 2H, olefinic), 4.35–4.48 (m, 4H, 2×ArCH₂), 4.0 (m, 1H, OCH), 3.15–3.81 (m, 4H, OMe, OCH), 3.05–3.18 (m, 3H, 3×OCH), 2.91 (m, 2H, CH₂), 1.75–1.98 (m, 2H, 2×CH), 1.55– 1.74 (m, 2H, 2×CH), 1.35 (s, 3H, CH₃), 1.40 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 206.8, 159.1, 138.3, 134.3, 130.6, 129.5 (2C),128.3 (2C), 127.6 (3C), 118.1, 113.7 (2C), 108.3, 83.09, 75.6, 74.0, 73.0, 71.5, 66.7, 55.2, 39.8, 37.8, 35.0, 27.3 (2C). HRMS (ESI): m/z calculated for C₂₈H₃₇O₆[M+H]⁺: 470.1256; found: 470.1254.

(E)-1-((4R,5R)-5-((R)-3-(Benzyloxy)-1-hydroxypropyl)-2,2-dimethyl-1,3-dioxolan-4-yl)pent-3-en-2-one (15)

To a solution of **2** (1.5 g, 3.2 mmol) in CH₂Cl₂/H₂O (10 mL; 19:1), DDQ (0.8 g, 3.8 mmol) was added and stirred at room temperature 1 h. The reation mixture was quenched with saturated NaHCO₃ solution (10 mL), filtered, and washed with CH₂Cl₂(20 mL). The filtrate was washed with water (15 mL), brine (10 mL), and dried (Na₂SO₄). Solvent was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel, 60–120 mesh, EtOAc:*n*-hexane, 1:9) to furnish **15** (0.7 g, 63%) colorless liquid. $[\alpha]_D^{25} = 58.6$ (*c* 0.4, CHCl₃); IR (CHCl₃): 3018, 2935, 2872, 1714, 1623, 1513, 1452, 1379, 1315, 1275, 1214, 1164, 1091, 1027, 972, 927, 840, 840, 744, 666, 626 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.32 (m, 5H, Ar-H), 7.08 (m, 1H, olefinic), 6.65 (m, 1H, olefinic), 4.51 (s, 2H, PhCH₂), 4.29 (m, 1H, OCH), 4.18 (m, 1H, OCH), 4.04 (m, 2H, 2 × OCH), 3.74–3.62 (m, 3H, OCH, COCH₂), 3.30 (brs, 1H, OH), 1.96–1.87 (m, 2H, CH₂),

CONCLUSION

In summary, the present study reports our attempts on the stereoselective synthesis of the C13–C21 segment starting from L-(–)-malic acid. The synthetic strategy involved opening of epoxide to obtain C19 stereocenter, assymmetric dihydroxylation to obtain C16/C17 *vic*-diol moiety, and Barbier allylation on aldehyde for C-C bond formation. The attempted pyran ring formation by the removal of the PMB group led to the identification of an unexpected α/β -unsaturated ketone **15** exclusively.

FUNDING

All the authors thank the University Grants Commission, New Delhi, for financial support.

SUPPLEMENTAL MATERIAL

Full experimental details, spectral data, and ¹H NMR and ¹³C NMR of all the new products for this article can be accessed on the publisher's website.

REFERENCES

- 1. For a review of natural products as immunosupressive agents, see Mann, J. Nat. Prod. Rep. 2001, 18, 417–430.
- Shigemori, H.; Tanaka, Y.; Yazawa, K.; Mikami, Y.; Kobayashi, J. *Tetrahedron* 1996, *52*, 9031–9034; (b) Tanaka, Y.; Komaki, H.; Yazawa, K.; Mikami, Y.; Nemoto, A.; Tojyo, T.; Kadowaki, K.; Shigemori, H.; Kobayashi, J. *J. Antibiot.* 1997, *50*, 1036–1041; (c) Mikami, Y.; Komaki, H.; Imai, T.; Yazawa, K.; Nemoto, A.; Tanaka, Y.; Gräfe, U. *J. Antibiot.* 2000, *53*, 70.
- Komatsu, K.; Tsuda, M.; Tanaka, Y.; Mikami, Y.; Kobayashi, J. J. Org. Chem. 2004, 69, 1535–1541.
- For a review of the chemistry and biology of immunosuppressive natural products, see Mann, J. Nat. Prod. Rep. 2001, 18, 417–430.
- Paterson, I.; Burton, P. M.; Cordier, C. J.; Housden, M, P.; Muhlthau, F. A.; Loiseleur, O. Org. Lett. 2009, 11, 353–356.
- Paterson, I.; Burton, P. M.; Cordier, C. J.; Housden, M, P.; Muhlthau, F. A.; Loiseleur, O. Org. Lett. 2009, 11, 693–696.
- (a) Nicolaou, K. C. Tetrahedron. 1977, 33, 683–710; (b) Back, T. G. Tetrahedron 1997, 33, 3041–3059; (c) Colvin, E. W.; Purcell, T. A.; Raphael, R. A. J. Chem. Soc., Perkin Trans. 1 1976, 1716–1718; (d) Corey, E. J.; Nicolaou, K. C.; Toru, T. J. Am. Chem. Soc. 1975, 97, 2287–2288; (e) Garcia, D. M.; Yamada, H.; Hatakeyama, S.; Nishizawa, M. Tetrahedron Lett. 1994, 35, 3325–3328; (f) Gerlach, H.; Prelog, V. Justus Liebig Ann. Chem. 1963, 669, 121–135.

- Willson, T. M.; Kociensk, P.; Jarowicki, K.; Isaac, K.; Hitchcock, P. M.; Faller, A.; Campbell, S. F. *Tetrahedron* 1990, 46, 1767–1782.
- (a) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447–450.
- 10. Oikawa, Y.; Yonemitsu, T. Tetrahedron Lett. 1982, 23, 885-888.
- (a) Greenwood, N. N.; Earnshaw, A. Chem. Elem. (Czech.) 1993, 241, 1542;
 (b) Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371–2374.
- (a) Akiyama, T.; Shima, H.; Ozaki, S. Synlett 1992, 415–416; (b) Georg, G. I.; Mashava,
 P. M.; Akgun, E.; Milstead, M. W. Tetrahedron 1991, 32, 3151–3154; (c) Wang, Y.;
 Babirad, S. A.; Kishi, Y. J. Org. Chem. 1992, 57, 468–481.