This article was downloaded by: [University of Saskatchewan Library] On: 14 October 2014, At: 07:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/lsyc20

Improved Procedure for Ruthenium-Catalyzed Oxidative Cleavage of Alkenes With IO(OH)₅

Abdel Ghany F. Shoair ^a & Ramadan H. Mohamed ^a ^a Department of Chemistry, Faculty of Science, Egypt Published online: 21 Aug 2006.

To cite this article: Abdel Ghany F. Shoair & Ramadan H. Mohamed (2006) Improved Procedure for Ruthenium-Catalyzed Oxidative Cleavage of Alkenes With IO(OH)₅, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 36:1, 59-64, DOI: 10.1080/00397910500328944

To link to this article: http://dx.doi.org/10.1080/00397910500328944

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Synthetic Communications[®], 36: 59–64, 2006 Copyright © Taylor & Francis LLC ISSN 0039-7911 print/1532-2432 online DOI: 10.1080/00397910500328944

Improved Procedure for Ruthenium-Catalyzed Oxidative Cleavage of Alkenes With IO(OH)₅

Abdel Ghany F. Shoair and Ramadan H. Mohamed

Department of Chemistry, Faculty of Science, Egypt

Abstract: Oxidative cleavage of alkenes to carboxylic acids catalyzed by *cis*-[RuCl₂-(bipy)₂] \cdot 2H₂O in the presence of IO(OH)₅ has been studied in a biphasic (CH₃CN-CCl₄-H₂O; 1:1:2 v/v) solvent system. Ruthenium tetraoxide seems to be the active catalyst species.

Keywords: Alkenes, cleavage, oxoruthenates

INTRODUCTION

There are a number of systems in which RuCl₃ \cdot nH₂O has been used as a catalyst for oxidative cleavage of alkenes to acids.^[1-3] Wolfe et al.^[1] reported the oxidation of cyclohexene to adipic acid by stirring a solution of cyclohexene in CH₂Cl₂ with an aqueous solution of RuCl₃ \cdot nH₂O and NaOCl. The most widely used procedure is that reported by Carlesen et al.,^[2] in which cyclopentene was converted into glutaric acid by using RuCl₃ \cdot nH₂O as catalyst with NaIO₄ as a cooxidant in a biphasic CH₃CN-CCl₄-H₂O solution. Halostyrenes and haloalkenes were oxidized to their acids using RuO₂ \cdot nH₂O with either NaIO₄ or NaOCl as cooxidants.^[3] However, a disadvantage of these catalyst systems is the formation of NaIO₃ and/or NaCl during the oxidation reaction, and they are sparingly

Received in the UK March 17, 2005

Address correspondence to Abdel Ghany F. Shoair, Department of Chemistry, Faculty of Science, 34517 Domiat El-gadida, Egypt. E-mail: shoairaksm@hotmail. com

soluble in water with the solvent quantity specified (5 cm^3) .^[2,3] These solids remain at the end of the reaction, making the workup difficult.

The complex *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O was used for the chemoselective degradation of aromatic rings to acids with NaIO₄ as a cooxidant^[4] but not for the oxidative cleavage of alkenes to acids. As a part of our continuing study on the use of ruthenium catalysts for specific oxidation of organic compounds,^[5,6] we studied the use of the catalyst system *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O/IO(OH)₅ for the oxidative cleavage of alkenes to acids with IO(OH)₅ as cooxidant; in this system, the direct use of RuO₄ is avoided.

RESULTS AND DISCUSSION

Although the complex *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O has occasionally been used for other oxidations, few experimental details are available.^[4] We studied the reaction of *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O with IO(OH)₅ in a biphasic solvent system for cleavage of alkenes to acids. After many trials, we found that the catalyst system, *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O/IO(OH)₅, is a highly effective catalyst for oxidative cleavage of a number of linear and cyclic alkenes at room temperature in a biphasic solvent (CH₃CN-CCl₄-H₂O). In a typical experiment, an aqueous solution of an excess amount of IO(OH)₅ was added to a stirred solution of an alkene and a catalytic amount of *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O in CCl₄-CH₃CN, where after stirring for 15 min the brown color of the reaction mixture turned into pale yellow, which is due to the formation of RuO₄.

The results obtained for the oxidation of several alkenes by the present catalyst system are summarized in Table 1. We found that the yields of the acids are in the range of 70-92%. These results are comparable to those previously reported by us for the use of the RuCl₃ · nH₂O/IO(OH)₅ catalyst system for oxidative cleavage of alkenes to acids,^[6] and the yields here are higher than those previously reported for other catalyst system, [RuCl₂(PPh₃)₃]/PhIO.^[7] It was found that the procedure is simple and easy to use, and the major product here is the corresponding acid. Other products such as epoxides were detected but in a very low yields (5%).

The attempts to use other cooxidants, such as NaIO₄ and NaOCl, with cis-[RuCl₂(bipy)₂] · 2H₂O under the same conditions for oxidative cleavage of cyclohexene as representative example were all unsuccessful. We noticed that the presence of acetonitrile in the solvent system improves the yields of acids as has been observed for RuCl₃ · nH₂O/IO(OH)₅ and RuCl₃ · nH₂O/NaIO₄ systems respectively.^[2,6] Large-scale oxidation of alkenes to acids can be attained by this catalyst system; for example, oxidation of 20 mmol of styrene gave 19 mmol of benzoic acid with the catalytic turnover of 190.

Table 1. Oxidative cleavage of alkenes to carboxylic acids by cis-[RuCl₂(bipy)₂] · 2H₂O/IO(OH)₅

Substrate	Product	Yield (%) [TO]	Reaction time (h)
\square	Glutaric acid	85(170)	2
\bigcirc	Adipic acid	92(184)	2
\bigcirc	Suberic acid	75(150)	2
	Palmetic acid	80(160)	2
CH=CH ₂	Benzoic acid	90(180)	2
CH=CH-	Benzoic acid	90(180)	2
$\checkmark \checkmark \checkmark$	Pentanoic acid	90(180)	2
$\checkmark \checkmark \checkmark \checkmark$	Hexanoic acid	80(160)	2
\sim	Heptanoic acid	70(140)	2

Reaction conditions: alkene (2 mmol), catalyst (0.01 mmol), and periodic acid (10 mmol) were added to a mixture of $CCl_4: CH_3CN: H_2O$ (1:1:2 v/v), stirring at room temperature for 2 h. TO = turnover = moles of the product/moles of the catalyst.

NATURE OF THE ACTIVE SPECIES AND THE PROPOSED MECHANISM

Because the precise mechanistic study for reactions containing low-valent ruthenium complexes as catalysts suggests the formation of metal-oxo intermediates,^[8] we investigated the nature of the active species responsible for the cleavage by carrying out the electronic spectrum for the reaction mixture without addition of the substrate. We found that the electronic spectra of both the aqueous and CCl₄ layers showed the characteristic peaks of RuO₄ with attendant vibrational fine structure at about 463 nm and 387 nm for the organic layer (curve A) and at about 475 nm and 390 nm for the aqueous layer (curve B) (Figure 1). Similar results were reported for the oxoruthenate complexes containing RuO₄.^[9]

Figure 1. Electronic spectrum of the catalyst system; cis-[RuCl₂(bipy)₂] \cdot 2H₂O (0.01 mmol) and IO(OH)₅ (10 mmol) were added in a biphasic solvent system [CH₃CN (5 cm³), CCl₄ (5 cm³), and H₂O (10 cm³)] with stirring. The electronic spectrum of organic layer is A and the electronic spectrum of aqueous layer is B.

The oxidative cleavage of alkenes to acids by the present catalyst system is likely to proceed through a similar mechanism as that suggested for RuO_4 .^[10] In this mechanism, the produced RuO_4 cleaves the alkene to acid and converted into RuO_2 , which in turn will be further oxidized to RuO_4 by excess IO(OH)₅ according to the following equations.

> $Cis-[RuCl_{2}(bipy)_{2}] + 3 IO(OH)_{5} \rightarrow RuO_{4}$ + 3HIO_{3} + 2bipy + 2HCl + 5H_{2}O 2 Cyclohexene + RuO_{4} \rightarrow 2 cyclohexene epoxide + RuO_{2} RuO_{2} + 2 IO(OH)_{5} \rightarrow RuO_{4} + 2HIO_{3} + 4H_{2}O 2 Cyclohexene epoxide + RuO_{4} \rightarrow 2 adipic acid + RuO_{2}

Scheme 1. Catalytic cycle for oxidative cleavage of alkenes to acids by cis-[RuCl₂(-bipy)₂] \cdot 2H₂O/IO(OH)₅.

Ruthenium-Catalyzed Oxidative Cleavage

This catalytic cycle will continue until all the substrate is completely consumed (Scheme 1).

CONCLUSION

We conclude that the complex cis-[RuCl₂(bipy)₂] · 2H₂O can be used as an effective catalyst for oxidative cleavage of alkenes to acids with IO(OH)₅ as a cooxidant at room temperature, and the active catalyst species seems to be RuO₄. This procedure can eliminate our current need for the use of stoichiometric oxidants.

EXPERIMENTAL

Instrumentation and Chemicals

Instrumentation

The ¹H NMR spectra were made in CDCl₃ solutions on a high-resolution Bruker AM 300L spectrometer with tetramethylsilane (TMS) as internal standard at Cairo University. The infrared spectra were recorded on a Mattson 5000 FT-IR and the electronic spectra on a UV-visible vision software V 3.2 at Mansoura University. Microanalysis was carried out at Cairo University Microanalytical Unit.

Chemicals

All chemicals were obtained from Aldrich and used as received. The complex cis-[RuCl₂(bipy)₂] · 2H₂O was prepared using Sullivan's procedure.^[11]

Oxidative Cleavage of Alkenes

An alkene (2 mmol), *cis*-[RuCl₂(bipy)₂] \cdot 2H₂O (0.01 mmol), and IO(OH)₅ (10 mmol) were added in a biphasic solvent system [CH₃CN (5 cm³), CCl₄ (5 cm³), and H₂O (10 cm³)] with stirring. The reaction mixture was stirred at room temperature for the times specified in Table 1. The products were extracted with diethylether (3 × 10 cm³), dried over MgSO₄, and evaporated under reduced pressure.

Large-Scale Oxidation of Styrene

Styrene (20 mmol) was added to a solution of CCl_4 (50 cm³), CH_3CN (50 cm³), and H_2O (100 cm³) containing IO(OH)₅ (100 mmol) and

cis-[RuCl₂(bipy)₂] · 2H₂O (0.1 mmol). The mixture was stirred at room temperature for 2 h. The product was isolated as described to give benzoic acid (19 mmol) (95% yield).

ACKNOWLEDGMENTS

I thank W. P. Griffith (Department of Chemistry, Imperial College, London University) for his helpful discussion.

REFERENCES

- 1. Wolfe, S.; Hasan, S. K.; Campbell, J. R. J. Chem. Soc. Chem. Commun. 1970, 1420.
- Carlesen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
- 3. Huang, B.; Khrapov, M.; Hansen, K. C.; Idoux, J. P. Synth. Commun. 1995, 25, 2709.
- 4. Chakraborti, A. K.; Ghatak, M. R. J. Chem. Soc. Perkin 2 Trans. 1985, 2605.
- Griffith, W. P.; Reddy, B.; Shoair, A. G. F.; Suriaatmaja, M.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1998, 2819.
- 6. Griffith, W. P.; Shoair, A. G.; Suriaatmaja, M. Synth. Commun. 2000, 30, 3091.
- 7. Muller, P.; Godoy, J. Helv. Chim. Acta 1981, 64, 2531.
- Murahashi, S.-I.; Komiya, N.; Hayashi, Y. H.; Kumano, T. Pure Appl. Chem. 2001, 73 (2), 311.
- 9. Connick, R. E.; Hurley, C. R. J. Am. Chem. Soc. 1952, 74, 5012.
- Hansen, K. C.; Lin, Q.; Aminabhavi, T. M. J. Chem. Soc., Faraday Trans. 1996, 92 (19), 3643.
- 11. Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Inorg. Chem. 1978, 17, 3334.