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Abstract: A metal-free, mild and efficient method for the synthesis of 2-methylquinolines was
successfully developed by condensation of anilines with vinyl ethers in the presence of catalytic
amount of iodine. Modification of both pyridine and benzene moieties was easily achieved by
changing only the vinyl ether and aniline. In this reaction, the iodine species was revealed to show
dual behavior; molecular iodine serves as an oxidant, while its reduced form, hydrogen iodide,
activates the vinyl ether. The redox reaction between these iodine species enables the use of a catalytic
amount of iodine in this synthetic method.
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1. Introduction

Iodine-catalyzed reactions have attracted much attention as environmentally sustainable
alternatives to transition metal catalysis in industrial chemistry for producing commodity and specialty
chemicals, foods, medicines, and pharmaceuticals [1]. Iodine undergoes oxidative addition, ligand
exchange, reductive elimination, and ligand coupling, playing a role similar to that of transition
metal catalysts [2]. In contrast to poisonous and expensive transition metals, molecular iodine is
an environmentally friendly, inexpensive, and readily available reagent. The mild Lewis acidity of
iodine also facilitates its use in organic synthesis, from stoichiometric levels to catalytic amounts. Thus,
iodine-mediated reactions have been explored as a powerful method for the synthesis of many organic
compounds [3–8].

Meanwhile, the importance and usefulness of quinoline derivatives has considerably increased
in the pharmaceutical industry. Among them, 2-methylquinoline derivatives have versatile
pharmacological properties such as antibacterial [9], antimalarial [10,11], anti-tumor [12] and
anti-HIV [13,14] properties, and can act as nociceptin receptor antagonists [15]. 2-Methylquinolines
can also be used as precursors in the synthesis of styrylquinolines, which are potential inhibitors of
HIV-1 integrase and the replication of HIV-1 in cell culture [16]. Various quinolines for the treatment
of protozoal and retroviral co-infection are also synthesized from 2-methylquinoline [17]. Furthermore,
the 7-methoxy derivative is known to be a non-peptide bradykinin B2 receptor antagonist [18], and
the 8-methoxy derivative is used as an anti-neurodegenerative agent, a radioprotective [19] and an
antibiotic against Staphylococcus aureus [20]. In addition to the aforementioned pharmaceutical uses,
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substituted 2-methylquinolines are often employed as precursors for electronic and optoelectronic
materials [21,22].

Despite their great importance, 2-methylquinolines are commonly prepared using traditional
methods developed by Doebner-von Miller [23], Skraup [24], Conrad-Limpach-Knorr [25],
Friedlaender [26] and Pfitzinger [27]. Unfortunately, these methods suffer from several disadvantages
such as low yields due to side reactions; harsh reaction conditions, including the use of strong acids;
multi-step reactions; and low regioselectivity. Although an acid-free approach using transition metal
catalysts overcomes these disadvantages [28–30], an additional purification step is required to remove
metal contaminants from the product. Furthermore, limited functional group tolerance diminishes
the generality of this method [28–30]. Several researchers have reported synthetic methods using
inexpensive Lewis acids such as iron(III) chloride, magnesium perchlorate, and zinc chloride [26,31–36];
however, these methods still have drawbacks, including the need for harsh reaction conditions, difficult
work-up procedures, low yields, and high catalyst loadings.

Recently, an iodine-mediated reaction was applied to the synthesis of quinoline derivatives.
Wang and co-workers reported a molecular iodine-catalyzed reaction for the synthesis of
substituted quinolines from imines and aldehydes [37]. Furthermore, they reported the highly
efficient multi-component synthesis of quinoline derivatives using catalytic amounts of molecular
iodine [38–41]. Later, Wu et al. improved this method for the synthesis of quinolines and polycyclic
quinolines [42]. Owing to the numerous advantages of molecular iodine over transition metals, an
iodine-catalyzed quinoline synthesis was also reported in which anilines were condensed with cyclic
vinyl ethers, such as 2,3-dihydrofuran and 3,4-dihydro-2H-pyran [43]. In this reaction, iodine was
reported as serving only as a Lewis acid. In contrast, we report here a metal-free and efficient method
for the synthesis of substituted 2-methylquinolines using low toxicity, low cost, commercially available
iodine, anilines, and acyclic ethers under mild reaction conditions. We also suggest that the molecular
iodine serves as an oxidant, which has not been proposed previously. In addition, a reaction mechanism
is proposed, which includes the dual behavior of iodine species.

2. Results and Discussion

2.1. Iodine-Catalyzed Synthesis of 6-Substituted 2-Methylquinolines

Initially, the reaction of p-methoxyaniline 1a with ethyl vinyl ether 2a in dichloromethane was
used as model reaction to optimize conditions (Table 1). The reaction did not proceed in the absence
of iodine, with 88% of 1a recovered (entry 1). On the other hand, quinoline 3a [44] was successfully
synthesized in 44% yield when the reaction was carried out in the presence of 5 mol % iodine, indicating
that iodine was necessary for the construction of quinoline 3a (entry 2). Among the three solvents
tested, benzene was found to be the most suitable for this reaction (entries 2–4). While 5 mol % iodine
was enough for the reaction to operate efficiently, the yield of quinoline 3a decreased along with a 71%
recovery of 1a, when the catalyst loading was reduced to 1 mol % (entries 4´6). Consequently, the
reaction conditions used in entry 4 were determined to be the optimal conditions.

With the optimized conditions in hand, we applied the reaction to the syntheses of
2-methylquinolines 3b–h [29,45–50] using anilines 1b–h (Table 2). The reaction was influenced by
substituents on the benzene ring. When m-methoxyaniline 1b and o-methoxyaniline 1c were used, the
reactions proceeded in a similar fashion, affording corresponding quinolines 3b and 3c in lower yields,
presumably due to the electron-withdrawing inductive effect and steric hindrance of the methoxy
group (entries 2 and 3). In contrast, aniline possessing both o- and m-methoxy groups (1d) had a higher
product yield, indicating that high electron density on the benzene ring overcomes the aforementioned
disadvantages (entry 4). In the case of aminophenol 1e, no detectable 3e was produced due to side
reactions, such as the oxidation of 1e (entry 5). Anilines connected to another electron-donating
group, 1f and 1g, reacted efficiently to afford aminoquinoline 3f and methylquinoline 3g, respectively
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(entries 6 and 7). Unsubstituted aniline 1h was also a suitable substrate in this reaction, but with
somewhat lower efficiency.

Table 1. Synthesis of 6-methoxy-2-methylquinoline 3a.
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To further demonstrate the scope of this reaction, various vinyl ethers, 2a–f, were subjected to 
the reaction with p-methoxyaniline 1a (Table 3). Interestingly, quinoline 3a was produced despite the 
ether alkoxy group being changed from ethoxy to isobutoxy (entries 1 and 2), indicating that the 
pyridine moiety in quinolines 3 was derived from the vinyl group. Indeed, propenyl ether 2c afforded 
2-ethyl-3-methylquinoline 4 [51] in good yield, which is employed in the preparation of metal acid 
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To further demonstrate the scope of this reaction, various vinyl ethers, 2a–f, were subjected to 
the reaction with p-methoxyaniline 1a (Table 3). Interestingly, quinoline 3a was produced despite the 
ether alkoxy group being changed from ethoxy to isobutoxy (entries 1 and 2), indicating that the 
pyridine moiety in quinolines 3 was derived from the vinyl group. Indeed, propenyl ether 2c afforded 
2-ethyl-3-methylquinoline 4 [51] in good yield, which is employed in the preparation of metal acid 
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To further demonstrate the scope of this reaction, various vinyl ethers, 2a–f, were subjected to
the reaction with p-methoxyaniline 1a (Table 3). Interestingly, quinoline 3a was produced despite
the ether alkoxy group being changed from ethoxy to isobutoxy (entries 1 and 2), indicating that the
pyridine moiety in quinolines 3 was derived from the vinyl group. Indeed, propenyl ether 2c afforded
2-ethyl-3-methylquinoline 4 [51] in good yield, which is employed in the preparation of metal acid
corrosion inhibitors, sorbents, and cyanine dyes [52]. When 2,3-dihydrofuran 2d was used, a quinoline
possessing acetal functions, 5, was synthesized (See the Supplementary Materials). Desired quinolines
6 and 7 were not detected when electron-poor vinyl ethers 2e and 2f were employed (entries 5 and 6).

Table 3. Modification of the pyridine ring of quinoline 3.
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2.2. Study on the Mechanism

In the reaction of o-methoxyaniline 1d with vinyl ether 2a, several products were formed. In order
to gain insight into the mechanism, the reaction mixture was subjected to column chromatography
and the products were identified as 4-ethoxy-1,2,3,4-tetrahydro-8-methoxy- 2-methylquinoline (8)
as single diastereomer [53] and N-ethyl-2-methoxyaniline (9) [54] (Scheme 1). Although elucidation
of the stereochemistry of compound 8 was attempted by 1H-NMR, it was not achieved due to two
protons at the 3-position having the same coupling constant (12.0 Hz) with a proton at the 2-position.
Considering steric repulsion, the stereochemistry was predicted to be the cis-isomer because the
ethoxy and methyl groups are located at the equatorial position. Indeed, DFT calculation using B3LYP
6-31G(d,p) revealed that the cis-isomer was more stable than the trans-isomer, with 1.887 kcal/mol.
Interestingly, tetrahydroquinoline 8 was converted to 3d in 77% yield by heating in the presence of
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iodine. In contrast, no reaction was observed for 9 under the same conditions. These results suggest
that 8 is an intermediate in the formation of 3d, and that N-alkylaniline 9 is a by-product (Scheme 1).

The reaction of 1a with vinyl ether 2a was monitored by 1H-NMR (Figure 1). As starting material
1a was consumed, product 3a formed. Just after the reaction started, the formation of 10 [55] was
observed, which gradually decreased over time. In addition, a small amount of 11 [54] was formed, but
the amount was unchanged, even after 72 h. Thus, it was confirmed that 10 was a reaction intermediate
and 11 was a by-product.Molecules 2016, 21, 827 5 of 10 
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Figure 1. Monitoring the reaction of 1a and 2a by 1H-NMR.

In addition, hydriodic acid and p-toluenesulfonic acid were employed as catalysts in this reaction
instead of iodine (Scheme 2). Hydriodic acid catalyzed this reaction, but gave a lower yield of 3a.
p-Toluenesulfonic acid did not catalyze the reaction at 80 ˝C, and it was necessary to heat at 120 ˝C.
Although the reaction proceeded in the presence of an acid catalyst, iodine was necessary to accelerate
the reaction smoothly under milder conditions.



Molecules 2016, 21, 827 6 of 11

Molecules 2016, 21, 827 5 of 10 

 

 
Scheme 1. Reactions of by-products 8 and 9 with iodine under the same conditions. 

 
Figure 1. Monitoring the reaction of 1a and 2a by 1H-NMR. 

In addition, hydriodic acid and p-toluenesulfonic acid were employed as catalysts in this 
reaction instead of iodine (Scheme 2). Hydriodic acid catalyzed this reaction, but gave a lower yield 
of 3a. p-Toluenesulfonic acid did not catalyze the reaction at 80 °C, and it was necessary to heat at 
120 °C. Although the reaction proceeded in the presence of an acid catalyst, iodine was necessary to 
accelerate the reaction smoothly under milder conditions.  

 
Scheme 2. Synthesis of quinoline 3a in the presence of acid catalyst. 

  

OMe

NH2
OEt

N N
H

OMe

OEt

OMe

N
H

Benzene
80 °C, 2 h

+
I2 (5 mol%)

OMe

+ +

3d (40%) 8 (21%) 9 (20%)

2a
1d

N
H

OEt

OMe

I2 (5 mol%)

Benzene
80 °C

N

OMe

I2 (5 mol%)

Benzene
80 °C 

N
H

8 3d (77%)

9
OMe

no reactionOEt+

2a

H
N Me

H

H

H

EtO

H
MeO

8

1 2

34

Acid

Benzene
N

1a 3a

MeO

NH2

OEt+

MeO

2a

HI        19% (80 °C)

p-TsOH       0% (80 °C) 

37% (120 °C)

Scheme 2. Synthesis of quinoline 3a in the presence of acid catalyst.

Based on these experimental results, the reaction mechanism in Scheme 3 was proposed. At
first, iodine generates a trace amount of hydrogen iodide by reacting with water present in the
reaction mixture [56], initiating the reaction. Aniline 1h attacks the activated vinyl group of 2a,
leading to an N,O-acetal, from which ethanol is eliminated to afford iminium intermediate 12.
Iminium 12 is considered a common intermediate for both N-ethylaniline 14 and tetrahydroquinoline
15. Tetrahydroquinoline 15 is formed by the attack of another molecule of 2a to iminium ion 12
followed by intramolecular cyclization, while dihydroquinoline 16 is obtained as a result of ethanol
elimination. Oxidation of 16 by iodine affords the final product, quinoline 3h. In this process, iodine is
reduced to hydrogen iodide, which then returns to iodine upon contact with air. Indeed, when the
reaction was conducted under Ar atmosphere, the product was obtained in lower yield. Thus, oxygen
may assist the reaction. Therefore, a catalytic amount of iodine is enough to produce this reaction.
In contrast, when intermediate 12 is reduced by dihydroquinoline 16, N-alkylaniline 14 is formed
as a by-product.
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3. Materials and Methods

3.1. General Information

All the reagents and solvents were commercially available and used as received. The 1H-NMR
spectra were measured on a Bruker Ascend-400 (Bruker, Billerica, MA, USA) at 400 MHz with TMS as
an internal standard. The 13C-NMR spectra were measured on a Bruker Ascend-400 at 100 MHz, and
assignments of 13C-NMR spectra were performed by DEPT experiments. The high resolution mass
spectra were measured on a AB SCIEX Triple TOF 4600 (AB Sciex, Framingham, MA, USA).
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3.2. Procedures

Iodine-Mediated Synthesis of 2-Methylquinolines 3

To a solution of vinyl ether 2a (192 µL, 2 mmol) in benzene (10 mL), were added p-methoxyaniline
(1a, 123.2 mg, 1 mmol) and iodine (12.7 mg, 0.05 mmol), and the resultant mixture was heated at 80 ˝C
for 2 h. The reaction mixture was washed with saturated sodium thiosulfate solution (1 ˆ 10 mL) to
remove unreacted iodine, and dried over magnesium sulfate. After removal of solvent, the residue
was subjected to silica gel column chromatography (eluent: hexane/ethyl acetate = 95/5) to afford 3a
(110.7 mg, 0.64 mmol, 64%).

The reactions of the aniline 1 with other vinyl ether 2 were performed in a similar manner.

3.3. Compound Characterizations

6-Methoxy-2-methylquinoline (3a) [44]: 1H-NMR (400 MHz, CDCl3): δ 7.94 (d, J = 8.3 Hz,1H), 7.91(d,
J = 9.1 Hz,1H), 7.33 (dd, J = 9.1, 2.8 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.04 (d, J = 2.8 Hz, 1H), 3.91 (s,
3H), 2.70 (s, 3H).

7-Methoxy-2-methylquinoline (3b) [45]: 1H-NMR (400 MHz, CDCl3): δ 7.95 (d, J = 8.2 Hz, 1H), 7.63 (d,
J = 8.8 Hz, 1H), 7.37 (s, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.13 (d, J = 8.8 Hz, 1H), 3.93 (s, 3H), 2.71 (s, 3H).

8-Methoxy-2-methylquinoline (3c) [46]: 1H-NMR (400 MHz, CDCl3): δ 8.00 (d, J = 8.4 Hz, 1H), 7.38 (dd,
J = 8.4, 8.1 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 4.08 (s, 3H),
2.80 (s, 3H).

5,8-Dimethoxy-2-methylquinoline (3d) [47]: 1H-NMR (400 MHz, DMSO): δ 7.45 (d, J = 8.8 Hz,1H), 7.09
(d, J = 8.8 Hz,1H), 6.87 (d, J = 6.8 Hz, 1H), 6.66 (d, J = 6.8 Hz, 1H), 3.90 (s, 3H), 3.75 (s, 3H), 2.68 (s, 3H).

6-(N,N-dimethylamino)-2-methylquinoline (3f) [49]: 1H-NMR (400 MHz, DMSO): δ 7.98 (d, J = 8.4 Hz,
1H), 7.76 (d, J = 9.2 Hz,1H), 7.37 (dd, J = 9.2, 2.8 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 2.8 Hz,
1H), 2.97 (s, 6H), 2.56 (s, 3H).

2,6-Dimethylquinoline (3g) [29]: 1H-NMR (400 MHz, CDCl3): δ 7.96 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.3 Hz,
1H), 7.52 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.24 (d, J = 8.3 Hz, 1H), 2.74 (s, 3H), 2.51 (s, 3H).

2-Methylquinoline (3h) [50]: 1H-NMR (400 MHz, CDCl3): δ 8.04 (d, J = 5.0 Hz, 1H), 8.02 (d, J = 5.0 Hz,
1H), 7.77 (d, J = 8.0 Hz, 1H), 7.68 (dd, J = 8.4, 7.0 Hz, 1H), 7.48 (dd, J = 8.0, 7.0 Hz, 1H), 7.28 (d, J = 8.4 Hz,
1H), 2.75 (s, 3H).

2-Ethyl-6-methoxy-3-methylquinoline (4) [27]: 1H-NMR (400 MHz, CDCl3): δ 7.91 (d, J = 9.2 Hz, 1H), 7.69
(s, 1H), 7.25 (dd, J = 9.2, 2.8 Hz, 1H), 6.94 (d, J = 2.8 Hz, 1H), 3.87 (s, 3H), 2.94 (q, J = 7.5 Hz, 2H), 2.43 (s,
3H), 1.35 (t, J = 7.5 Hz, 3H).

Compound 5: 1H-NMR (400 MHz, CDCl3): δ 7.89 (d, J = 9.2 Hz, 1H), 7.81 (s, 1H), 7.27 (d, J = 9.2 Hz,
1H), 6.99 (s, 1H), 5.14 (t, J = 2.0 Hz, 2H), 4.01´3.93 (m, 1H), 3.91 (s, 3H), 3.88´3.67 (m, 6H), 3.54´3.48
(m, 1H), 3.07´3.00 (m, 4H), 2.13´2.06 (m, 2H), 2.03´1.78 (m, 8H); 13C-NMR (100 MHz, CDCl3) 23.4
(CH2), 23.5 (CH2), 29.3 (CH2), 32.1 (CH2), 32.3 (two CH2 signals overlapped), 32.4 (CH2), 55.4 (CH3),
66.8 (four CH2 signals overlapped), 103.8 (CH), 103.9(CH), 104.7 (CH), 121.0 (CH), 127.9 (C), 130.0
(CH), 130.9 (C), 134.6 (CH), 142.8 (C), 157.2 (C), 158.9 (C); HRMS Calcd for C23H31NO5: 402.2275.
Found: 402.2272.

Cis-4-Ethoxy-1,2,3,4-tetrahydro-8-methoxy-2-methylquinoline (8) [29]: 1H-NMR (400 MHz, CDCl3): δ 7.00
(dd, J = 4.8, 4.8 Hz, 1H), 6.64 (d, J = 4.8 Hz, 2H), 4.70 (dd, J = 10.4, 5.6 Hz, 1H), 4.1 (br, 1H), 3.82 (s, 3H),
3.69–3.55 (m, 1H), 3.51 (dq, J = 9.2, 7.2 Hz, 2H), 2.21 (ddd, J = 12.0, 5.6, 2.4 Hz, 1H), 1.70 (ddd, J = 12.0,
10.4, 2.4 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H), 1.27 (dd, J = 7.2, 7.2 Hz, 3H).
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N-Ethyl-2-methoxyaniline (9) [30]: 1H-NMR (400 MHz, CDCl3): δ 6.87 (dd, J = 7.6, 7.6 Hz, 1H), 6.76 (d,
J = 7.6 Hz, 1H), 6.65 (dd, J = 7.6, 7.6 Hz, 1H), 6.60 (d, J = 7.6 Hz, 1H), 4.08 (br s, 1H), 3.84 (s, 3H), 3.16 (q,
J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H).

4. Conclusions

In conclusion, we have successfully developed an environmentally benign and efficient method
for the construction of quinolines 3 from substituted anilines 1 and vinyl ethers 2 in the presence of an
iodine catalyst. This protocol can be performed with simple manipulations in one step under mild
conditions for both the reaction and work-up. Furthermore, no transition metals are used, which
eliminates the need for a product decontamination step, thus considerably reducing the cost. Hence,
this is a new synthetic method for quinoline derivatives that can be applied in various fields.

Furthermore, the roles of iodine species were also studied, finding that the iodine species had
dual behavior, with molecular iodine serving as an oxidant, and its reduced form, hydrogen iodide,
activating the vinyl ether. The redox reaction between these iodine species enables the use of a catalytic
amount of iodine in this reaction.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
7/827/s1.
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