A Convenient One-Stare Synthesis of Some Diiodoperfluoroalkanes By Using Tetrafluoraethylene Derived From Poly (tetrafluoroethylene) Waste

STEFAN V. KOTOV, GEORGI D. IVANOV and GEORGI K. KOSTOV

The Higher Institute of Chemical Technology, Laboratory of Fluoropolymers, 8010 Bourgas, (Bulgaria)

SUMMARY

Tetrafluoroethylene was prepared by a thermal depolymerization of poly (tetrafluoroethylene) waste. The gaseous mixture containing 95-97 \% tetrafluoroethylene has been used without further purification in a direct reaction with iodine to synthesize some α, ω-diiodoperfluoroalkanes at temperature $285 \pm 5^{\circ} \mathrm{C}$ for 8 h . Stoichiometric one to one ratio of the reagents has been founcl to produce higher diiodoperfluorom alkanes yield per unit reaction volume than synthesis in the presence of an excess of tetrafluoroethylene. This approach provides a rapid one-pot procedure to these valuable reagents without any dangerous step.
α, w-Diiodoperfluoroalkanes with general formula $I\left(\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{\mathrm{n}} \mathrm{I} \quad(\mathrm{n}=1,2,3)$ are known to be useful intermediates for preparation of certain perfluorovinyl functional monomers by multi-stage synthetic procedure:

$$
\mathrm{I}\left(\mathrm{CF}_{2}\right)_{2 \mathrm{n}} \mathrm{I} \longrightarrow \mathrm{CF}_{2}=\mathrm{CF}-\mathrm{O}\left(\mathrm{CF}_{2}\right)_{2 \mathrm{n}-1} \mathrm{COOR} \quad \mathrm{n}=1,2,3 ; \mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}
$$

(I)

These monomers have been copolymerizod with some fluoroolefins, such as tetrafluoroethylene into special fluoropolymers with excellont thermal and chemical resistance and cationexchange properties. Thus, compound (I) ($n=2$, methyl-perfluo-
ro - 5-oxa-ú-hexenoate) derived from 1,4-diiodoporflurobutane has been widoly used for tinis purposc (1) .
nifferent motiods for propacation of α, \sin-iinodoperflaoroal:anes have bean doveloped, most of these dealing with: (i) synthesis and separation or tio uistaple 1 , ?-diiociopor rivoioobinimo ame (ii) fiormal degratation or oligomerization of the latter with tetrafluoroethylene into higher products[2-5] Ie sisin to roport a comvenient one staise synthesis of diiodoperflioroalizancs by using totrafluoroethylenc 'stabilized' with small impurities derived from its preparation.

Tetrafluoroethylone (Tri) was prepared iy a tinermal depolymerization of poly(tetrafluoroetinylene) waste Hostanlon (FIRG) at $510-520^{\circ} \mathrm{O}$ and $5-10 \mathrm{~mm} \mathrm{HE}$. According to GC analysis the sas contained $95-97$ \& tetrafluorocthylene, 2.5-4 fiexaAluoropropylene and $0.5-1 \%$ porfluorocyclobutane. The gascous mixture was introduced without further purification into a reactor containing iodine. One stare synthetic procedire ivas enployed, bearing in mind that 1 , 2-diiodoperfluoroethane is formod in situ at first, undorgoing subsequently thermal degradation/tolomorization to hicher α, w-diiodoperflioroallanes. The inipurities (3-5 hexafluoropropylene and porfluorocyclobutanc) present appear to possess a 'stabilizing' effect on tetrafliforoethylene. Thus, potentially dangerous spontaneous polymerization of tetrafluoroethylene used in higher quantity within a limited reaction volume (ca. 200 g.dmen) was avoided. The reactions were carried out in stainlesssteel cylinders at $285 \pm 5^{\circ} \mathrm{C}$ for 3 h . The results were compared with those obtained in the presence of TFis excess towards iodine (Table I)

The gaseous products after reaction contained 3-4 in unreacted TFE, 50-60 \% perfluorocyclobutane and 35-40\% hexafluoropropylone (experiment with TFE/I I_{2} oquimolar ratio). The corresponding calculations based on the initial saseous mixture and Glc of the products did not indicate dny reaction of hexafluoropropylene. Higher than stoichiometric TFE/iodine mole ratios do not suggest any advances with respect to diiodoperfluoroallanes yield and composition. On the contrary, the yield per unit reaction volume is diminished, whereas the amount of ;aseous products increases signiricantly.

TADLD I
Reaction of Tット with iodine into α, ω-diiodoperfluoroalkanes

Tre/ S_{2} roole ratio	1	1,5	3

Diiodoper rluoroalsones
yield

-por wit readitor voluna, r. तin ${ }^{-3}$?93.

17:.0
13.3

Gaseons products vield
basm on Tra incroducod, 7.3 1.3.1 34.3
Diiouopexfluoronlmanes
miziture composition, ${ }^{\prime}$ (GLC)
$\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{I}_{2}$
38.4

15.3	26.9
39.8	37.1
23.8	23.7
10.4	8.3

Unidentificd (incl.higher
products) 7.25 .74 .0

Higher TFE/iodine mole ratio appears to favour a formation of more 1,6-diiodoperfluorohexane and 1,3-diiodoperfluorooctane, which are difficult to separate from the reaction mizture. Moreover, x, Uf-diiodoperfluoroalinanos $I\left(\Delta F_{2}-C F_{2}\right)_{n} I \quad(n \geqslant 3)$ are of lesser practical importance with respect to preparation of perfluorovinyl functional monomers.

We wish to thank Dr St. Doneva for her kind assistance in obtaining GLC data.

1. H. Jkihashi, Chemtech., 2 (1900) 113.

2 I.L. Inunyants, S. P. Khrlakyan, Y. V. Zeifman and V. V. Shokina, Izv.Akad. Nauk SSST, (1964) 334.

3 Ger. Offen. 2130378 (1972).
4 Jap. Pat. 53-144 507 (1978).
5.C.E. Bedford and K. Daum, J.Org. Chem.,45, (1980) 347.

