Cite this: Org. Biomol. Chem., 2014, 12, 3721

Received 17th February 2014, Accepted 3rd April 2014
DOI: 10.1039/c4ob00364k
www.rsc.org/obc

Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors \dagger

Jimin Xu, \ddagger^{a} Jing Ai, \ddagger^{b} Sheng Liu, ${ }^{\mathrm{a}}$ Xia Peng, ${ }^{\mathrm{b}}$ Linqian Yu, ${ }^{\text {a }}$ Meiyu Geng ${ }^{\star \mathrm{b}}$ and Fajun Nan*a

Abstract

A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC_{50} values of 107 nM and 30 nM , respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

Introduction

c-Met is a receptor tyrosine kinase that is normally activated by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF). ${ }^{1}$ The HGF/c-Met axis plays an important role in normal embryonic development and organ regeneration. However, aberrant c-Met activation has been frequently found in many human solid tumours and hematologic malignancies. Overactivation of c-Met is known to initiate tumorigenesis and promote metastasis, and also cause therapeutic resistance. ${ }^{2-5}$ Importantly, both c-Met and HGF elevation have been associated with poor clinical outcome or metastatic progression in many major human cancers. ${ }^{6-9}$ As a result, c-Met is considered to be a potential target for cancer treatment.

A variety of approaches have previously been used to target Met signaling. These include HGF antagonists, ${ }^{10-12}$ anti-HGF humanized antibodies, ${ }^{13}$ and MET extracellular domain monoclonal antibodies. ${ }^{14,15}$ Additionally, a large number of smallmolecule kinase inhibitors targeting c-Met are now in clinical trials; most of them target the ATP binding site in an ATP-competitive manner. ${ }^{3,16-18}$ Here, we report our efforts toward the development of 3,3 '-biscoumarin analogues as novel, potent and non-ATP-competitive kinase inhibitors.

Daphnetin 1, a derivative of coumarin, is a protein kinase inhibitor which inhibits tyrosine-specific protein kinase, EGFR $\left(\mathrm{IC}_{50}=7.67 \mu \mathrm{M}\right)$, and serine/threonine-specific protein kinases,

[^0]

1 (Daphnetin)

2

3

Fig. 1 Daphnetin derivatives.
including PKA $\left(\mathrm{IC}_{50}=9.33 \mu \mathrm{M}\right)$ and PKC $\left(\mathrm{IC}_{50}=25.01 \mu \mathrm{M}\right) .{ }^{19}$ During our initial efforts to synthesize a diverse library of coumarin derivatives, we found that the simple dimeric analogue 3 displayed potent c-Met inhibitory activity with an IC_{50} of 151 nM . Daphnetin 1 and 4-hydroxyl daphnetin 2, in contrast, showed weak inhibitory activity $\left(\mathrm{IC}_{50}=100 \mu \mathrm{M}\right)$. Compound 3, which has a novel structure type compared to other reported c-Met inhibitors, is a dimer of 2 through a one-carbon linker (Fig. 1). Its acetoxy derivative has been reported as a tool to study protein transacetylase, ${ }^{20}$ and similar coumarin dimers with different linkers have been reported as Hsp90 inhibitors by Blagg et al. ${ }^{21,22}$ The c-Met inhibitory activities of these compounds, however, have not previously been reported. As most kinase inhibitors to date are ATP competitive, we examined whether compound 3 functions in a similar manner. PF2341066, a typical ATP-competitive inhibitor, was used as a reference control. ${ }^{23}$ In contrast to PF 2341066 , the IC_{50} values of 3 remained unchanged with increasing ATP concentration. This suggests that 3 is an ATP non-competitive inhibitor of c-Met (Fig. 2). These initial results encouraged us to pursue a medicinal chemistry program to further optimize 3 as a novel c-Met inhibitor.

Results and discussion

To explore the SAR of 3 , simple modifications were made to its structure. These changes, as shown in Scheme 1, yielded

Fig. 2 Compound 3 is an ATP non-competitive inhibitor of Met kinase activity. Inhibition assays with recombinant c-Met protein and different concentrations of 3 (A) or ATP-competitive PF2341066 (B) were performed in the presence of various concentrations of ATP.

Scheme 1 Synthesis of biscoumarin compounds 3-8. Reagents and conditions: (a) $\mathrm{CO}(\mathrm{OEt})_{2}, \mathrm{NaH}$, toluene, $80^{\circ} \mathrm{C}$; (b) $\mathrm{HCl}-\mathrm{AcOEt}$; (c) paraformaldehyde, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}$; (d) i. $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$; ii. $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, \mathrm{THF}$; (e) $70 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.
compounds 3-8 (Table 1). To this end, condensation of differently substituted starting materials 9a-e with diethyl carbonate in the presence of sodium hydride formed coumarin monomers 10a-e. Subsequent deprotection of $\mathbf{1 0 b}$ under acidic conditions gave monomer 2. The monomers ($2,10 \mathrm{a}, 10 \mathbf{c}-\mathbf{e}$) were then

Table 1 c-Met enzymatic activity of compounds 3-8

Compound	R_{1}	R_{2}	R_{3}	R_{4}	$\mathrm{IC}_{50}{ }^{a}(\mathrm{nM})$
$\mathbf{3}$	OH	H	OH	OH	150.9 ± 5.8
$\mathbf{4}$	OCH_{3}	H	OH	OH	112.2 ± 23.6
$\mathbf{5}$	OH	H	OCH_{3}	OCH_{3}	$0 \% @ 10 \mu \mathrm{M}$
$\mathbf{6}$	Me	H	OH	OH_{2}	62.5 ± 6.9
7	OH	OH	OH	H	3545.7 ± 159.7
$\mathbf{8}$	OH	H	H	H	$0 \% @ 10 \mu \mathrm{M}$

[^1]treated with formaldehyde in ethanol to provide the corresponding dimers ($\mathbf{3}, \mathbf{1 1 a}, \mathbf{5}, \mathbf{1 1 b}, \mathbf{8}$, respectively). 11a was converted into compound 4 via methylation with diazomethane and subsequent debenzylation using $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}$. Deprotection of $\mathbf{1 1 b}$ under acidic conditions afforded compound 7. The Pechmann reaction of pyrogallol 12 with compound 13 in 70% sulfuric acid provided compound 6 directly.

Compounds 4 and 6 showed potent inhibitory activities, with IC_{50} of 112 nM and 63 nM respectively. Modifying the bis-(7,8-dihydroxyl) moiety (R_{3} and R_{4}, Table 1) with hydrogen or methoxy groups led to a complete loss of potency (8 and 5). Moving the phenolic hydroxyl groups from the $8,8^{\prime}$-position to the $5,5^{\prime}$-position (R_{2}), as in compound 7 , also led to a large loss of activity $\left(\mathrm{IC}_{50}=3.5 \mu \mathrm{M}\right)$. These results indicate that retaining the bis-(7,8-dihydroxy) moiety of 3 is important for maintaining its inhibitory activity, and that methoxy and methyl groups are well-tolerated at the $\mathrm{C}-4,4^{\prime}$ position $\left(\mathrm{R}_{1}\right)$.

Next, we explored c-Met's inhibitory activity as it relates to the linker between the two coumarin moieties (Table 2). Compounds 14-18 were prepared as outlined in Scheme 2. Coumarin acids 20 and 25 were formed by reaction of compounds 19 and 24, respectively, with isopropylidene malonate and piperidinium acetate in ethanol. Aminocoumarin 21 was similarly accessed from 19 via a nitrocoumarin intermediate, which was converted into aminocoumarin 21 by hydrogenation. With intermediates 20, 21, and 25 in hand, the desired compounds were readily synthesized by a series of condensations and deprotections. To this end, condensation of aminocoumarin 21 with acid 20 using EDCI in 30% pyridine/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 14 upon acidic deprotection. ${ }^{24}$ Compounds 15 and 16 were accessed under the same coupling

Table 2 c-Met enzymatic activity of compounds 14-18
16

[^2]

Scheme 2 Synthesis of biscoumarin compounds 14-18 with modified linkers. Reagents and conditions: (a) isopropylidene malonate, piperidinium acetate, EtOH, $60^{\circ} \mathrm{C}$; (b) 1-Boc-piperazine, EDCI, DMAP, DCM; (c) $\mathrm{HCl}-\mathrm{AcOEt}$; (d) 20, EDCI, DMAP, DCM; (e) Pd/C, $\mathrm{H}_{2}, \mathrm{AcOEt}$; (f) ethyl nitroacetate, piperidine, benzene, Dean-Stark trap, reflux; (g) EDCI, 30% pyridine, $D C M$; (h) piperidine, $\mathrm{CH}_{3} \mathrm{CN}$; (i) HCOOH ; (j) TFA, DCM.
conditions, by condensation of 21 with 0.5 equiv. of the corresponding di-acids 22 and 23, respectively, followed by the removal of the MOM groups. Condensation of 25 with 1-Bocpiperazine was followed by Boc deprotection under acidic conditions to provide intermediate 26. Subsequent condensation of 26 with coumarin acid 20 afforded 27, which was converted to compound 17 via hydrogenolytic cleavage and acid deprotection. Fmoc-Leu-OH 28 was also condensed with 21 to give an intermediate which was transformed to 29 via piperidine deprotection. The coupling reaction between 29 and 20 was followed by acid deprotection to give compound 18.

Biological testing revealed that compounds with cyclo-hexane-1,2-dicarboxamide linkers $(\mathbf{1 5}, \mathbf{1 6})$ had potent inhibitory activities, with IC_{50} of 169 nM and 134 nM respectively. Compounds with piperazine-1,4-diyl (17) and amide linkers (14) displayed reduced potency, with IC_{50} of $1.40 \mu \mathrm{M}$ and $0.62 \mu \mathrm{M}$ respectively. Use of c-leucine as a linker (18) retained potency against c-Met $\left(\mathrm{IC}_{50}=122 \mathrm{nM}\right)$. These results indicate that the length of the linker can be adjusted and that substitution on the linker has a great impact on inhibitory activity.

Considering the inhibitory activity of 18 , we further explored the effect of the substitution on the linker moiety using various α-amino acids. Compounds 30-50 were synthesized by a method analogous to that used to access 18, starting from different Fmoc-protected amino acids (Scheme 2). Their biological activities are shown in Table 3.

Table 3 c-Met enzymatic activity of compounds 30-50

Compound	R_{1}	R_{2}	$\mathrm{IC}_{50}{ }^{a}(\mathrm{nM})$
30	H	H	3620.7 ± 444.1
31	H	Me	62.5 ± 5.4
32	H	$n-\mathrm{Pr}$	40.8 ± 3.7
33	H	i-Pr	72.2 ± 1.2
34	H	$n-\mathrm{Bu}$	70.9 ± 13.6
35	Et	H	21.9 ± 1.2
36	$n-\mathrm{Pr}$	H	36.6 ± 2.6
37	$n-\mathrm{Bu}$	H	168.8 ± 7.0
38	i-Bu	H	107.0 ± 1.3
39	n-Pen, H		48.3 ± 13.1
40	n-Hex, H		30.2 ± 0.7
41	Me	Me	38.8 ± 6.3
42			115.4 ± 8.4
43	H	15	129.0 ± 14.0
44	H	\checkmark	21.7 ± 0.7
45	H		24.5 ± 0.8
46	H		121.8 ± 10.2
47	H		14.9 ± 4.2
48	H	\mathcal{N}	90.6 ± 1.7
49	H		62.5 ± 5.4
50	H	-	4805.8 ± 1300.9

${ }^{a} \mathrm{IC}_{50} \mathrm{~S}$ were calculated by the logit method from the results of at least two independent tests with eight concentrations each and expressed as means \pm SD.

Compounds 30-45 were evaluated to determine the effect of size and chirality of linker substitution on c-Met inhibitory potency. Use of an unsubstituted glycine linker ($\mathbf{3 0}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$) resulted in weak inhibitory activity $\left(\mathrm{IC}_{50}=3.6 \mu \mathrm{M}\right)$. Alkyl substitution significantly increased potency compared to 30; linkers with (S)-methyl, dimethyl, (R)-ethyl, and (S)-isopropyl substitution (31, 41, 35, 33) displayed potent c-Met inhibition with IC_{50} of $63 \mathrm{nM}, 39 \mathrm{nM}, 22 \mathrm{nM}$ and 72 nM , respectively. Compounds 42-45 with cycloalkyl or benzyl substitution also showed potent inhibition $\left(\mathrm{IC}_{50}=22-130 \mathrm{nM}\right)$. While the size of the alkyl group is of significant importance to the enzymatic inhibition potency, its configuration proved unimportant. Compound $38\left((R)\right.$-isobutyl, $\left.\mathrm{IC}_{50}=107 \mathrm{nM}\right)$ was as potent as its epimer $18\left((S)\right.$-isobutyl, $\left.\mathrm{IC}_{50}=122 \mathrm{nM}\right)$; (R) - and (S)-n-propyl substituted compounds 32 and 36 also showed similar inhibitory potencies $\left(\mathrm{IC}_{50}=41 \mathrm{nM}\right.$ and 37 nM , respectively), while 37 $\left((R)\right.$ - n-butyl, $\left.\mathrm{IC}_{50}=169 \mathrm{nM}\right)$ was slightly less potent than 34 $\left((S)\right.$ - n-butyl, $\left.\mathrm{IC}_{50}=71 \mathrm{nM}\right)$. Racemic compounds 39 and 40 with n-Pen and n-Hex substituents displayed potent inhibitory activities with IC_{50} of 48 nM and 30 nM respectively.

Analogues 46-50 investigated the effect of heteroatom introduction on the side chain. Compound 46, which bears a thioether, retained potency ($\mathrm{IC}_{50}=122 \mathrm{nM}$) in comparison with 34. The ester analogue ($47, \mathrm{IC}_{50}=15 \mathrm{nM}$) offered potent inhibitory activity, presenting 8 -fold higher potency than the corresponding acid (48, $\left.\mathrm{IC}_{50}=119 \mathrm{nM}\right)$. For nitrogen-bearing substituents, the amide analogue (49) retained inhibitory potency $\left(\mathrm{IC}_{50}=63 \mathrm{nM}\right)$ relative to acid 48 . The amine analogue (50), however, showed 65 -fold lower potency $\left(\mathrm{IC}_{50}=4.8 \mu \mathrm{M}\right)$ than 34.

Using d-leucine as a linker, the effect of modifying the hydroxyl groups on the two coumarin rings was explored. Compounds 51-55 were synthesized according to the procedures outlined in Scheme 3. Known compounds 56a-c were transformed into coumarin acids 59a-c and aminocoumarins 21 and 57a by condensation. Coupling of Fmoc-d-Leu-OH with 57a and 21, followed by piperidine deprotection, provided $\mathbf{5 8 a} \mathbf{- b}$ respectively. Condensation of $\mathbf{5 8 a} \mathbf{- b}$ with 59a-c followed by deprotection afforded compounds 51-55.

As shown in Table 4, methylation of two hydroxyl groups on one coumarin ring (51) led to a significant loss of potency. Removal of a hydroxyl group $(52,53)$ decreased the inhibitory effects on c-Met, with IC_{50} of $1.37 \mu \mathrm{M}$ and $0.93 \mu \mathrm{M}$, respectively. Upon removal of one hydroxyl group on each coumarin ring $(\mathbf{5 4}, \mathbf{5 5})$, no inhibition of the enzyme expressing the c-Met receptor was observed. These results are consistent with our initial modification results (Table 1), which showed that the existence of four hydroxyl groups is important to retain good inhibitory activity.

Subsequently, compounds with different structures were selected to evaluate their effect on c-Met phosphorylation in BaF3/TPR-Met and EBC-1 NSCLC cell lines. BaF3/TPR-Met cells stably express a constitutively active, ligand-independent, oncogenic form of c-Met derived from chromosomal rearrangement, whereas EBC-1 NSCLC cells harbor amplified MET genes. As shown in Fig. 3, at the concentration of $10 \mu \mathrm{M}$, 38 and 40 markedly inhibited c-Met phosphorylation in both cell lines; 42 and 48 only effectively inhibited c-Met phosphorylation in EBC-1 NSCLC cells. Other compounds (3, 35 and 52)

Scheme 3 Synthesis of compounds 51-55 with D-leucine linker. Reagents and conditions: (a) (i) ethyl nitroacetate, piperidine, benzene, Dean-Stark trap, reflux; (ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{AcOEt}$; (b) (i) Fmoc-d-Leu-OH, EDCI, 30% pyridine, DCM ; (ii) piperidine, $\mathrm{CH}_{3} \mathrm{CN}$. (c) isopropylidene malonate, piperidinium acetate, EtOH, $60^{\circ} \mathrm{C}$; (d) (i) EDCI, DMAP, DCM; (ii) $\mathrm{HCl}-\mathrm{AcOEt}$.

Table 4 c-Met enzymatic activity of compounds 51-55

Compound	R_{1}	R_{2}	R_{3}	$\mathrm{IC}_{50}{ }^{a}(\mathrm{nM})$
$\mathbf{5 1}$	OH	OCH_{3}	OCH_{3}	$51.8 \% @ 10 \mu \mathrm{M}$
$\mathbf{5 2}$	OH	H	OH	1370.9 ± 208.5
$\mathbf{5 3}$	OH	OH	H	927.9 ± 98.7
$\mathbf{5 4}$	H	H	OH	$0 \% @ 10 \mu \mathrm{M}$
$\mathbf{5 5}$	H	OH	H	$0 \% @ 10 \mu \mathrm{M}$

${ }^{a} \mathrm{IC}_{50} \mathrm{~S}$ were calculated by the logit method from the results of at least two independent tests with eight concentrations each and expressed as means \pm SD.

EBC-1

BaF3/TPR-Met

Fig. 3 The effect of selected compounds on c-Met phosphorylation in EBC-1 and BaF3/TPR-Met cells.
failed to inhibit c-Met phosphorylation in either cell line. The poor cell potencies of these compounds can be attributed to their poor permeability, as they have many hydrophilic groups. The relatively good cell potencies of 38 and $\mathbf{4 0}$, in contrast, can be ascribed to improved liposolubility due to their large alkyl substituents (isobutyl and n-Hex, respectively).

Conclusions

In summary, we have developed a series of $3,3^{\prime}$-biscoumarinbased, non-ATP competitive c-Met inhibitors initiated from $3,3^{\prime}$-methylenebis(4,7,8-trihydroxy-coumarin). Among these compounds, 38 and 40 showed potent enzyme activities with IC_{50} of 107 nM and 30 nM respectively. Significantly, they inhibit c-Met phosphorylation in BaF3/TPR-Met and EBC-1 NSCLC cell lines. These compounds represent a novel structural type for non-ATP competitive c-Met inhibitors, and are
worth developing further thorough investigation of the SAR. Such efforts are currently underway, and will be reported in due course.

Experimental section

Chemistry

Starting materials, reagents, and solvents were purchased from commercial suppliers and used without further purification, unless otherwise stated. Anhydrous THF, benzene, diethyl ether and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained by distillation over sodium wire or CaH_{2}. All non-aqueous reactions were run under an argon atmosphere with exclusion of moisture from reagents, and all reaction vessels were oven-dried. The progress of reactions was monitored by TLC on SiO_{2}. Spots were visualized by UV or by dipping into KMnO_{4} solution followed by heating. SiO_{2} for flash chromatography was of $230-400$ mesh particle size. Petroleum ether refers to the fraction with boiling range $60-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian MercuryVx 300M Fourier transform spectrometer at a frequency of 300 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra at $75 \mathrm{MHz} .{ }^{1} \mathrm{H}$ chemical shifts are reported in $\delta(\mathrm{ppm})$ using the $\delta 7.26$ signal of CDCl_{3}, the $\delta 3.31$ signal of $\mathrm{CD}_{3} \mathrm{OD}$ or the $\delta 2.50$ signal of DMSO- d_{6} as an internal standard. ${ }^{13} \mathrm{C}$ chemical shifts are reported in δ (ppm) using the $\delta 77.23$ signal of CDCl_{3}, the $\delta 49.15$ signal of $\mathrm{CD}_{3} \mathrm{OD}$, or the $\delta 39.51$ signal of DMSO- d_{6} as an internal standard. The purity of final compounds was assessed by the analytical HPLC method and found to be $>95 \%$. An Agilent 1200 series HPLC with a Zorbax SB-C18 ($4.6 \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle sizes) reversed-phase column was used for analytical HPLC analyses. The elution buffer was an A / B gradient, where $\mathrm{A}=0.1 \%$ HCOOH in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{B}=\mathrm{CH}_{3} \mathrm{OH}$.
1-(3,4-Bis(benzyloxy)-2-hydroxyphenyl)ethanone (9a). ${ }^{\mathbf{2 5}}$ 1-(2,3,4-Trihydroxyphenyl)ethanone ($6.0 \mathrm{~g}, 35.7 \mathrm{mmol}$) was added to a suspension of benzyl bromide ($6.0 \mathrm{~g}, 35.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(8.0 \mathrm{~g}, 58.0 \mathrm{mmol})$ and $\mathrm{KI}(0.3 \mathrm{~g}, 1.5 \mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 4 h . Upon completion, $200 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and 300 mL EtOAc were added. The aqueous phase was extracted with EtOAc and the combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified through column chromatography (eluent, $\mathrm{PE}-\mathrm{EtOAc}=$ $4: 1$) to afford 1-(2,3,4-tris(benzyloxy)phenyl)ethanone (15.6 g, 100%). Magnesium bromide etherate ($5.3 \mathrm{~g}, 20.5 \mathrm{mmol}$) was added portionwise to a solution of 1-(2,3,4-tris(benzyloxy) phenyl)ethanone ($9.0 \mathrm{~g}, 20.5 \mathrm{mmol}$) in ether (50 mL). The mixture was stirred at room temperature for 14 h , and then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with 1 M aqueous $\mathrm{HCl}(100 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc and the combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography ($\mathrm{PE}-\mathrm{EtOAc}$) to give compound $9 \mathrm{a}(5.3 \mathrm{~g}, 74 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.62(\mathrm{~s}$, H), $7.46-7.28(\mathrm{~m}, 11 \mathrm{H}), 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H})$, $5.11(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.

1-(2-Hydroxy-3,4-bis(methoxymethoxy)phenyl)ethanone (9b). Compound $\mathbf{9 b}$ was prepared utilizing the same synthetic route as compound 9d starting from 1-(2,3,4-trihydroxyphenyl)ethanone. Yellow oil ($2.3 \mathrm{~g}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.63(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 ($\mathrm{s}, 2 \mathrm{H}$), 5.19 ($\mathrm{s}, 2 \mathrm{H}$), 3.63 (s, 3H), 3.50 ($\mathrm{s}, 3 \mathrm{H}), 2.57$ ($\mathrm{s}, 3 \mathrm{H}$).

1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone (9c). ${ }^{26}$ Compound 9c was prepared utilizing the same synthetic route as compound 56c starting from 1-(2,3,4-trihydroxyphenyl)ethanone. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.97(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H})$.

1-(2-Hydroxy-4,6-bis(methoxymethoxy)phenyl)ethanone (9d). ${ }^{27}$ To a mixture of 1-(2,4,6-trihydroxyphenyl)ethanone $(2.15 \mathrm{~g}, 12.8 \mathrm{mmol})$ and DIPEA in 50 mL DCM at $0^{\circ} \mathrm{C}$ was added MOMCl ($2.14 \mathrm{~mL}, 28.13 \mathrm{mmol}$) dropwise. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the mixture was diluted with 100 mL DCM and washed with 10% aqueous citric acid $(2 \times 30 \mathrm{~mL})$ and brine. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified through column chromatography (eluent, PE-EtOAc $=10: 1$) to afford 9d as a beige solid ($2.1 \mathrm{~g}, 64.1 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 13.71(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$.

7,8-Bis(benzyloxy)-4-hydroxy-2H-chromen-2-one (10a). To a solution of 1-(3,4-bis(benzyloxy)-2-hydroxyphenyl)ethanone 9a ($5.30 \mathrm{~g}, 15 \mathrm{mmol}$) and diethyl carbonate ($3.54 \mathrm{~g}, 30 \mathrm{mmol}$) in 80 mL toluene was added $\mathrm{NaH}(2.40 \mathrm{~g}, 60 \%$ in oil, 60 mmol$)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The solution was then cooled to rt and $30 \mathrm{~mL} 5 \%$ aqueous NaOH was added. After stirring for 10 min , the solution was acidified with 10% aqueous citric acid. The pale precipitate was collected and dried under reduced pressure to give $\mathbf{1 0 a}(4.6 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.26$ (m, 10H), $7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H})$, 5.13 ($\mathrm{s}, 2 \mathrm{H}$).

Compounds 10b-e were prepared utilizing the same synthetic route as compound 10a starting from 9b-e, respectively.

4-Hydroxy-7,8-bis(methoxymethoxy)-2H-chromen-2-one (10b). White solid ($1.0 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.60(\mathrm{br}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.13$ (s, 2H), 3.58 (s, 3H), 3.43 ($\mathrm{s}, 3 \mathrm{H}$).

4-Hydroxy-7,8-dimethoxy-2H-chromen-2-one (10c). ${ }^{28}$ Pale solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.41(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H})$.

4-Hydroxy-5,7-bis(methoxymethoxy)-2H-chromen-2-one (10d). Pale solid ($100 \mathrm{mg}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.

4-Hydroxy-2H-chromen-2-one (10e). ${ }^{29}$ Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H})$.

4,7,8-Trihydroxy-2 \boldsymbol{H}-chromen-2-one (2). $\mathbf{1 0 b}$ ($2.0 \mathrm{~g}, 7.1 \mathrm{mmol}$) was dissolved in $20 \mathrm{~mL} 3 \mathrm{~N} \mathrm{HCl}-E t O A c$ and 0.5 mL MeOH .

The reaction mixture was stirred at room temperature for 4 h . The white solid was isolated by filtration to afford 2 ($1.3 \mathrm{~g}, 94.5 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.10$ ($\mathrm{s}, 1 \mathrm{H}$), 9.97 (br s, 1H), $9.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 166.5, 162.3, 149.7, 143.9, 132.0, 113.3, 111.8, 108.4, 87.8.

3,3'-Methylenebis(4,7,8-trihydroxy- $\mathbf{2 H}$-chromen-2-one) (3). To a solution of $2(500 \mathrm{mg}, 2.58 \mathrm{mmol})$ and paraformaldehyde $(50 \mathrm{mg}, 0.56 \mathrm{mmol})$ in 10 mL EtOH was added $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . The resulting pale solid was isolated by filtration, washed with 10% aqueous citric acid, and dried under vacuum to afford 3 ($460 \mathrm{mg}, 89 \%$). Mp: $>280^{\circ} \mathrm{C}$. HPLC: $99.37 \%, t_{\mathrm{R}}=5.408 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.01$ (br s, 6H), 7.27 (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 165.8,163.3,149.4,142.3,132.0,113.5$, 112.5, 109.0, 99.5, 18.9. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{10} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 423.0328$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 423.0321$.

Compounds 11a-b, 5 (ref. 28) and 8 (ref. 30) were prepared utilizing the same synthetic route as compound 3 starting from 10a,c-e.
3,3'-Methylenebis(7,8-bis(benzyloxy)-4-hydroxy-2H-chromen-2-one) (11a). White solid ($80 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.26(\mathrm{~m}, 20 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 4 \mathrm{H}), 5.12(\mathrm{~s}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H})$.

3,3'-Methylenebis(4-hydroxy-5,7-bis(methoxymethoxy)-2H-chromen-2-one) (11b). White solid ($54 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.55(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 4 \mathrm{H}), 5.19(\mathrm{~s}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.55$ (s, 6H), 3.47 ($\mathrm{s}, 6 \mathrm{H}$).

3,3'-Methylenebis(4,5,7-trihydroxy-2 H -chromen-2-one) (7). Compound 11b ($50 \mathrm{mg}, 0.0867 \mathrm{mmol}$) was dissolved in 3 mL $2 \mathrm{~N} \mathrm{HCl}-E t O A c$ and stirred at room temperature for 1 h . The reaction mixture was evaporated to afford 7 as a brown solid $(27 \mathrm{mg}, 80 \%) . \mathrm{Mp}:>280{ }^{\circ} \mathrm{C}$. HPLC: $95.51 \%, t_{\mathrm{R}}=3.911 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.03$ (s, 2H), $6.05(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, 2 H), 5.99 (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.45(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 169.1,163.1,160.7,158.0,154.6,98.3,98.2,97.6$, 93.4, 17.7. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 423.0328. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 423.0316$.

3,3'-Methylenebis(4-hydroxy-7,8-dimethoxy-2H-chromen-2-one) (5). Pale solid ($100 \mathrm{mg}, 86 \%$). Mp: 286-287 ${ }^{\circ} \mathrm{C}$. HPLC: 95.58%, $t_{\mathrm{R}}=7.945 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.63(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$, 3.71 (s, 2H). HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$, 457.1135. Found: $[\mathrm{M}+\mathrm{H}]^{+}, 457.1119$.

3,3'-Methylenebis(4-hydroxy- $2 \boldsymbol{H}$-chromen-2-one) (8). White solid ($400 \mathrm{mg}, 90 \%$). Mp: $264-265{ }^{\circ} \mathrm{C}$. HPLC: $97.52 \%, t_{\mathrm{R}}=$ $11.516 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \quad$ DMSO- d_{6}) δ 163.7, 162.7, 151.9, 131.7, 123.9, 123.4, 116.9, 116.1, 102.3, 19.4. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 459.0532. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 459.0521 .

3,3'-Methylenebis(7,8-dihydroxy-4-methoxy-2H-chromen-2-one) (4). To a solution of 11a ($90 \mathrm{mg}, 0.118 \mathrm{mmol}$) in 6 mL THF
was added $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{M}, 3.4$ eq., 0.4 mL$)$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 2 h , the reaction was quenched with 0.1 mL AcOH and concentrated under reduced pressure. The residue was purified through column chromatography (eluent, PE-EtOAc $=2: 1$) to afford 3,3'-methylenebis(7,8-bis(benzyloxy)-4-methoxy-2H-chromen-2-one) ($45 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.29(\mathrm{~m}, 22 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}$, 8H), 4.06 (s, 6H), 3.93 (s, 2H). 3,3'-methylenebis(7,8 -bis(benzyl-oxy)-4-methoxy-2H-chromen-2-one) ($40 \mathrm{mg}, 0.0507 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OH})_{2}(5 \mathrm{mg})$ in 10 mL THF were placed under a hydrogen atmosphere ($\mathrm{H}_{2}, 1 \mathrm{~atm}$.) and stirred for 2 h . The mixture was then filtered through a Celite pad. The Celite pad was washed with $4 \times 10 \mathrm{~mL}$ of MeOH . The filtrate was concentrated and purified through column chromatography on reverse phase $\mathrm{C}-18$ silica gel (eluent, $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}=3: 2$ to $1: 1$). After lyophilization, 4 was obtained as a yellowish brown solid (12 mg , $55.3 \%)$. Mp: $262-264{ }^{\circ} \mathrm{C}$. HPLC: $98.28 \%, t_{\mathrm{R}}=4.005 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}\right) \delta 167.2,165.7,150.4,143.8,133.6$, 115.2, 113.5, 112.3, 111.3, 62.7, 21.2. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 451.0641. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 451.0637.

Diethyl 2,4-diacetylpentanedioate (13). ${ }^{31} \mathrm{~A}$ mixture of $\mathrm{Et}_{2} \mathrm{NH}(412 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}(2.1 \mathrm{~mL}, 30.0 \mathrm{mmol})$ was heated to $50{ }^{\circ} \mathrm{C}$ for 1.5 h and then cooled to rt . The mixture was added to a solution of ethyl acetoacetate $(258 \mathrm{mg}$, 2.0 mmol) in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at rt. Upon completion (2 h), the reaction mixture was concentrated, and the crude mixture was purified by column chromatography on silica gel (EtOAc-PE) to give the desired product 13 as a colorless oil ($123 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.27-4.13$ (m, 4H), 3.53 (t, J = 7.2 Hz, 1H), 2.46-2.29 (m, 2H), 2.26 (s, 6H), 1.34-1.22 (m, 6H).

3,3'-Methylenebis(7,8-dihydroxy-4-methyl-2H-chromen-2-one) (6). To a mixture of pyrogallol $12(500 \mathrm{mg}, 4 \mathrm{mmol})$ and diethyl 2,4-diacetylpentanedioate $13(544 \mathrm{mg}, 2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added $70 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture was stirred at room temperature for 30 min , and then poured into water $(50 \mathrm{~mL})$. The \tan solid was isolated by filtration and dried under vacuum to afford $6(50 \mathrm{mg}, 5 \%)$. Mp: $>280{ }^{\circ} \mathrm{C}$. HPLC: $96.23 \%, t_{\mathrm{R}}=2.799 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.12$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.41$ (s, 6H). HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 419.0743$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 419.0735$.

3,4-Bis(benzyloxy)-2-hydroxybenzaldehyde (24). ${ }^{32}$ Compound 24 was prepared utilizing the same synthetic route as compound 9a starting from 2,3,4-trihydroxybenzaldehyde. White solid ($2.4 \mathrm{~g}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.24$ (s, $1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H})$.

Compounds 19 (ref. 25) and 56a-b (ref. 33,34) were prepared utilizing the same synthetic route as compound 9d starting from different salicylaldehydes.

2-Hydroxy-3,4-bis(methoxymethoxy)benzaldehyde (19). White solid ($2.26 \mathrm{~g}, 29 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.29(\mathrm{~s}, 1 \mathrm{H})$,
9.76 (s, 1H), 7.28 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.30 ($\mathrm{s}, 2 \mathrm{H}$), $5.20(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.51$ ($\mathrm{s}, 3 \mathrm{H})$.

2-Hydroxy-4-(methoxymethoxy)benzaldehyde (56a). White solid ($4.0 \mathrm{~g}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.36(\mathrm{~s}, 1 \mathrm{H})$, $9.74(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.

2-Hydroxy-3-(methoxymethoxy)benzaldehyde (56b). White solid ($300 \mathrm{mg}, 15 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.12$ (s, $1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H})$.

2-Hydroxy-3,4-dimethoxybenzaldehyde (56c). ${ }^{35}$ To a solution of 2,3,4-trihydroxybenzaldehyde ($2.1 \mathrm{~g}, 13.6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(6.6 \mathrm{~g}, 47.7 \mathrm{mmol})$ in 50 mL acetone was added $\mathrm{CH}_{3} \mathrm{I}(3.0 \mathrm{~mL}$, 47.7 mmol). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , and then cooled to rt. The residue was diluted with 100 mL EtOAc and $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with EtOAc. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give 2,3,4-trimethoxybenzaldehyde ($2.6 \mathrm{~g}, 97.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 7.59$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$. To a solution of 2,3,4-trimethoxybenzaldehyde ($546 \mathrm{mg}, 2.78 \mathrm{mmol}$) in 20 mL benzene was added anhydrous AlCl_{3} ($408 \mathrm{mg}, 3.06 \mathrm{mmol}$). After stirring for 5 min at room temperature, the mixture was heated to $80^{\circ} \mathrm{C}$ for 6 h , and then cooled to rt. 30 mL ice water and 3 mL concentrated HCl were added with stirring. The aqueous phase was extracted with EtOAc. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified through column chromatography (eluent, PE-EtOAc $=10: 1$ to $8: 1$) to give 56c as a white solid ($398 \mathrm{mg}, 78.6 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (s, 3H), 3.90 (s, 3H).

General procedures for the preparation of acidcoumarins ($20,25,59 a-c)$. A mixture of the corresponding salicylaldehydes 19,24 or $56 a-c$ (2 mmol), isopropylidene malonate $(2.4 \mathrm{mmol})$ and piperidinium acetate (0.1 mmol) in 30 mL anhydrous ethanol was heated to $60{ }^{\circ} \mathrm{C}$ for 24 h . Then the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the precipitate was collected by filtration, washed with 5 mL cold ethanol and dried in vacuo to afford the corresponding acidcoumarins (20, 25, 59a-c).

7,8-Bis(methoxymethoxy)-2-oxo-2H-chromene-3-carboxylic acid (20). White solid ($780 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.25(\mathrm{br}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, 3.53 ($\mathrm{s}, 3 \mathrm{H}$).

7,8-Bis(benzyloxy)-2-oxo-2H-chromene-3-carboxylic acid (25). White solid ($550 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.23(\mathrm{br}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H})$.

8-(Methoxymethoxy)-2-oxo-2H-chromene-3-carboxylic acid (59a). Beige solid ($145 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.35(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$.

7-(Methoxymethoxy)-2-oxo-2 H -chromene-3-carboxylic acid (59b). White solid ($237 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76$ (s, 1H), 7.63 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.30$ ($\mathrm{s}, 2 \mathrm{H}$), $3.51(\mathrm{~s}, 3 \mathrm{H})$.

7-(Methoxymethoxy)-2-oxo-2H-chromene-3-carboxylic acid (59c). Yellowish-white solid (367 mg, 67\%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$.

3-Amino-7,8-bis(methoxymethoxy)-2H-chromen-2-one (21). To a mixture of 2-hydroxy-3,4-bis(methoxymethoxy)benzaldehyde $19(2.26 \mathrm{~g}, 8.80 \mathrm{mmol})$ and ethyl nitroacetate $(1.40 \mathrm{~g}$, 10.6 mmol) in 60 mL dry benzene was added piperidine $(174 \mu \mathrm{~L}, 1.76 \mathrm{mmol})$. The reaction mixture was heated to reflux for 6 h with a Dean-Stark trap to collect the water. The reaction was then cooled to rt and purified by flash chromatography (eluent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 7,8 -bis(methoxymethoxy)-3-nitro- $2 \mathrm{H}^{-}$ chromen-2-one as a yellow solid ($1.90 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.55$ (s, 3 H). 7,8-Bis(methoxymethoxy)-3-nitro-2H-chromen-2-one ($350 \mathrm{mg}, 1.07 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(14 \mathrm{mg})$ in 15 mL EtOAc was stirred under hydrogen $\left(\mathrm{H}_{2}, 1 \mathrm{~atm}\right.$.) for 2 h . The mixture was collected through a Celite pad. The Celite pad was washed with $4 \times 20 \mathrm{~mL}$ of EtOAc. The filtrate was concentrated and purified by flash chromatography column (PE-EtOAc) to provide aminocoumarin 21 as a yellow solid ($190 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{br}$, 2H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$.
N-(7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)-7,8-dihydroxy-2-oxo$2 H$-chromene-3-carboxamide (14). Acid $20(55 \mathrm{mg}$, $0.177 \mathrm{mmol})$, aminocoumarin $21(50 \mathrm{mg}, 0.177 \mathrm{mmol})$ and EDCI ($52 \mathrm{mg}, 0.267 \mathrm{mmol}$) were dissolved in 3 mL of 30% pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at rt for 2 h . The solvent was evaporated and the residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone $=50: 1$ to $\left.40: 1\right)$ to give N-(7,8-bis(methoxy-methoxy)-2-oxo-2H-chromen-3-yl)-7,8-bis(methoxymethoxy)-2-oxo- 2 H -chromene-3-carboxamide ($17 \mathrm{mg}, 17 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.46(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$. This intermediate ($17 \mathrm{mg}, 0.0296 \mathrm{mmol}$) was dissolved in 3 mL 2 M HCl in EtOAc and stirred at rt for 2 h . The yellow solid was isolated by filtration to afford 14 ($10 \mathrm{mg}, 85 \%$). Mp: >280 ${ }^{\circ} \mathrm{C}$. HPLC: 95.35%, $t_{\mathrm{R}}=2.868 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.22(\mathrm{~s}, 1 \mathrm{H})$, $10.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $8.89(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 161.3, 160.6, 158.0, 152.9, 149.6, 148.1, 144.3, 139.9, 132.2, 132.0, 125.1, 122.0, 120.7, 118.2, 113.8, 113.2, 112.3, 112.2, 112.0. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{NO}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 420.0332$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 420.0312$.
trans- N^{1}, N^{2}-Bis(7,8-dihydroxy-2-oxo- $2 H$-chromen-3-yl)cyclo-hexane-1,2-dicarboxamide (16). trans-1,2-Cyclohexanedicarboxylic acid 23 ($26 \mathrm{mg}, 0.151 \mathrm{mmol}$), aminocoumarin 21
($85 \mathrm{mg}, 0.302 \mathrm{mmol}$) and EDCI ($87 \mathrm{mg}, 0.453 \mathrm{mmol}$) were dissolved in 3 mL of 30% pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was heated to $50{ }^{\circ} \mathrm{C}$ for 40 h . The solvent was evaporated and the residue was purified by column chromatography (PE-EtOAc) to give trans- N^{1}, N^{2}-bis(7,8 -bis(methoxymethoxy)-2-oxo- $2 H^{-}$ chromen-3-yl)cyclohexane-1,2-dicarboxamide ($25 \mathrm{mg}, 23.7 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 7.14$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.24 (s, 4H), 5.22 (s, 4H), 3.69 (s, 6H), 3.49 (s, 6H), 2.81-2.69 (m, 2H), 2.14-2.02 (m, 2H), 1.95-1.85 (m, 2H), 1.65-1.50 (m, 2H), 1.45-1.35 (m, 2H). LS-MS: $m / z: 721.2[\mathrm{M}+\mathrm{Na}]^{+}$. This intermediate $(25 \mathrm{mg}$, 0.0358 mmol) was dissolved in 3 mL of 2 M HCl in EtOAc and stirred at rt for 2 h . The mixture was concentrated and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}=20: 1\right)$ to provide 16 as a yellow solid ($14 \mathrm{mg}, 75 \%$). Mp: 284-285 ${ }^{\circ} \mathrm{C}$. HPLC: $95.07 \%, t_{\mathrm{R}}=2.648 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.45$ (s, 2H), $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.94-2.86 (m, 2H), 2.14-2.04 (m, 2H), 1.94-1.80 (m, 2H), 1.62-1.38 (m, 4H). LS-MS: $m / z: 523.1[\mathrm{M}+\mathrm{H}]^{+}, 545.1[\mathrm{M}+\mathrm{Na}]^{+}$.
cis- N^{1}, N^{2}-Bis(7,8-dihydroxy-2-oxo-2H-chromen-3-yl)cyclo-hexane-1,2-dicarboxamide (15). This compound was prepared utilizing the same synthetic route as compound 16 starting from cis-1,2-cyclohexanedicarboxylic acid 22 and aminocoumarin 21. Yellow solid ($3 \mathrm{mg}, 3 \%$). $\mathrm{Mp}=216-218{ }^{\circ} \mathrm{C}$. HPLC: $95.33 \%, t_{\mathrm{R}}=2.851 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.47(\mathrm{~s}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}$, 2H), 2.32-2.20 (m, 2H), 1.92-1.76 (m, 4H), 1.62-1.46 (m, 2H). LS-MS: $m / z: 523.2[\mathrm{M}+\mathrm{H}]^{+}, 545.2[\mathrm{M}+\mathrm{Na}]^{+}$.
7,8-Bis(benzyloxy)-3-(piperazine-1-carbonyl)-2H-chromen-2-one (26). A mixture of 25 ($100 \mathrm{mg}, 0.249 \mathrm{mmol}$), 1-Boc-piperazine ($46 \mathrm{mg}, 0.249 \mathrm{mmol}$), EDCI ($72 \mathrm{mg}, 0.373 \mathrm{mmol}$) and DMAP ($6 \mathrm{mg}, 0.049 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was stirred at room temperature for 4 h and then concentrated. The residue was purified by flash chromatography column (PE-EtOAc) to give tert-butyl 4-(7,8-bis(benzyloxy)-2-oxo-2H-chromene-3-car-bonyl)piperazine-1-carboxylate (130 mg , 91.7%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.19(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}$, 2 H), 3.73 ($\mathrm{s}, 2 \mathrm{H}$), 3.57-3.47 (m, 4H), $3.34(\mathrm{~s}, 2 \mathrm{H}), 1.47$ (s, 9H). This intermediate was dissolved in 3 mL of 2 M HCl in EtOAc at $0^{\circ} \mathrm{C}$ and then warmed to rt. After stirring at room temperature for 1 h , the mixture was concentrated to give 26 as its hydrochloride salt.

7,8-Bis(benzyloxy)-3-(4-(7,8-bis(methoxymethoxy)-2-oxo-2H-chromene-3-carbonyl)piperazine-1-carbonyl)- 2 H -chromen-2-one (27). To a mixture of 26 hydrochloride (0.228 mmol), 20 ($85 \mathrm{mg}, 0.274 \mathrm{mmol}$), EDCI ($66 \mathrm{mg}, 0.342 \mathrm{mmol}$) and DMAP $(5 \mathrm{mg}, 0.041 \mathrm{mmol})$ in $10 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added $\mathrm{Et}_{3} \mathrm{~N}(95 \mu \mathrm{~L}$, 0.684 mmol). The reaction mixture was stirred at room temperature overnight, and then concentrated and purified by flash chromatography column (PE-acetone) give 27 ($70 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H})$, $7.54-7.07(\mathrm{~m}, 13 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.15(\mathrm{~m}, 8 \mathrm{H})$, 3.87 (s, 4H), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), $3.51(\mathrm{~s}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.

3,3'-(Piperazine-1,4-dicarbonyl)bis(7,8-dihydroxy-2H-chromen-2-one) (17). 27 ($40 \mathrm{mg}, 0.0524 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ in
$2 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{OH}$ and 2 mL EtOAc were hydrogenated $\left(\mathrm{H}_{2}, 1 \mathrm{~atm}\right.$.) for 4 h . The mixture was filtered through a Celite pad. The Celite pad was washed with $4 \times 10 \mathrm{~mL}$ of MeOH . The filtrate was concentrated and purified by flash chromatography column (eluent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}=20: 1$) to give 3-(4-(7,8-bis-(methoxymethoxy)-2-oxo-2H-chromene-3-carbonyl)piperazine-1-carbonyl)-7,8-dihydroxy- 2 H -chromen-2-one ($27 \mathrm{mg}, 90 \%$). This intermediate was dissolved in 2 mL DCM and 3 drops of MeOH , then 2 mL of 2 M HCl in EtOAc was added. The mixture was stirred at room temperature for 2 h , then the yellow solid was isolated by filtration to afford $17(21 \mathrm{mg}$, $91 \%) . \mathrm{Mp}:>280{ }^{\circ} \mathrm{C} . \mathrm{HPLC}: 97.06 \%, t_{\mathrm{R}}=2.825 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.31(\mathrm{~s}, 2 \mathrm{H}), 9.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.08$ (s, $2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66-3.38$ $(\mathrm{m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 163.8,158.0,150.6$, 144.0, 143.7, 132.0, 119.7, 119.2, 113.0, 111.5, 46.7, 46.1, 41.7, 41.2. HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 517.0859. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 517.3680$.
(S)-2-Amino-N-(7,8-bis(methoxymethoxy)-2-oxo-2H-chromen-3-yl)-4-methylpentanamide (29). Fmoc-Leu-OH 28 (227 mg, 0.641 mmol), aminocoumarin $21(120 \mathrm{mg}, 0.427 \mathrm{mmol})$ and EDCI ($164 \mathrm{mg}, 0.854 \mathrm{mmol}$) were dissolved in 5 mL of 30% pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at rt for 36 h . The solvent was evaporated and the residue was purified by column chromatography (PE-EtOAc) to give (R)-($9 H$-fluoren-9-yl)methyl (1-((7,8-bis(methoxymethoxy)-2-oxo-2H-chromen-3-yl)-amino)-4-methyl-1-oxopentan-2-yl)carbamate as a white solid ($190 \mathrm{mg}, 72.1 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~s}, 1 \mathrm{H})$, 8.57 (br, 1H), $7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m} 2 \mathrm{H}), 7.38(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.18(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}$, $3 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H})$. To a solution of this intermediate ($190 \mathrm{mg}, 0.308 \mathrm{mmol}$) in 10 mL acetonitrile was added piperidine $(31 \mu \mathrm{~L}, 0.308 \mathrm{mmol})$. The reaction mixture was stirred at rt for 6 h . The solvent was evaporated and the residue was purified by column chromatography ($\mathrm{PE}-\mathrm{EtOAc}=$ 2:1 to $1: 1$) to give 29 as a white solid ($85 \mathrm{mg}, 70.1 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}$, $2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.63(\mathrm{~m}$, 5H), 1.06-0.88 (m, 6H).
(S)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3carboxamide (18). Compound 29 ($85 \mathrm{mg}, 0.216 \mathrm{mmol}$), 20 $(80 \mathrm{mg}, 0.259 \mathrm{mmol})$, EDCI ($62 \mathrm{mg}, 0.324 \mathrm{mmol}$) and DMAP $(6 \mathrm{mg}, 0.049 \mathrm{mmol})$ were dissolved in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at rt for 2 h . The solvent was evaporated and the residue was purified by column chromatography (PE-EtOAc $=$ $2: 1$ to $1: 1)$ to give $(R)-N$-(1-((7,8-bis(methoxymethoxy)-2-oxo2 H -chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-7,8-bis-(methoxymethoxy)-2-oxo-2H-chromene-3-carboxamide (120 mg , $81 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.88$ $(\mathrm{s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 4 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.78-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$,
$3.68(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 3 \mathrm{H})$, $1.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. This intermediate ($140 \mathrm{mg}, 0.175 \mathrm{mmol}$) was dissolved in 2 mL DCM and 2 mL of 2 M HCl in EtOAc, and stirred at rt for 2 h . The yellow solid was isolated by filtration to afford 18 ($96 \mathrm{mg}, 92 \%$). Mp: $180-184{ }^{\circ} \mathrm{C}$. HPLC: $97.97 \%, t_{\mathrm{R}}=3.511 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.66$ (br s, 1H), 9.92 ($\mathrm{s}, 2 \mathrm{H}$), 9.59 (br s, 1H), 9.32 (br s, 1H), 9.04 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.77 ($\mathrm{s}, 1 \mathrm{H}$), 8.46 (s, 1H), 7.33 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 1 \mathrm{H})$, 1.68-1.66 (m, 3H), $0.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 171.8,161.4,161.1,157.7,152.3,149.1,148.1$, $144.2,140.3,132.0,131.9,127.8,121.6,120.2,118.1,113.6$, 113.1, 112.7, 112.1, 111.8, 52.0, 41.4, 24.6, 23.1, 21.8. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 533.1172$. Found: [M $+\mathrm{Na}]^{+}$, 533.1167.
3-Amino-7-(methoxymethoxy)-2H-chromen-2-one (57a). This compound was prepared utilizing the same synthetic route as compound 21, starting from 2-hydroxy-4-(methoxymethoxy) benzaldehyde 56a. Yellow solid ($780 \mathrm{mg}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H})$, 3.48 ($\mathrm{s}, 3 \mathrm{H}$).

Compounds 30-47, 49a, 50a and 51-55 were prepared utilizing the same synthetic route as compound 18 starting from the appropriate Fmoc-amino acids, 57a (or 21), and 20 (or 59a-c).
N -(2-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-2-oxoethyl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (30). Yellow solid. Mp: >280 ${ }^{\circ} \mathrm{C}$. HPLC: $95.91 \%, t_{\mathrm{R}}=2.772 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.65$ (s, 1H), 9.94 (s, 1H), 9.78 ($\mathrm{s}, 1 \mathrm{H}$), $9.60(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.50(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (d, $J=$ $5.1 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 168.6, 161.9, $160.8,157.7,152.3$, 149.0, 148.0, 144.3, 140.1, 132.1, 131.9, 126.5, 121.6, 120.4, 118.0, 113.6, 113.1, 112.8, 112.1, 111.8, 43.6. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 477.0546. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 477.0543$.
(S)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-propan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (31). Yellow solid. Mp: $>280{ }^{\circ} \mathrm{C}$. HPLC: 97.36%, $t_{\mathrm{R}}=$ $2.043 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 9.96$ (s, 1H), $9.86(\mathrm{~s}, 1 \mathrm{H}), 9.61(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~d}, J=7.2$ Hz, 1H), 8.77 (s, 1H), 8.49 (s, 1H), 7.34 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1H), 5.03-4.86 (m, 1H), 1.42 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 172.0,161.1,161.0,157.7,152.3,149.0$, 148.1, 144.3, 140.2, 132.1, 131.9, 127.5, 121.6, 120.2, 118.1, 113.6, 113.1, 112.7, 112.1, 111.8, 49.1, 18.9. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 497.0703. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 497.0695.
(S)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-pentan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (32). Yellow solid. Mp: $>280{ }^{\circ} \mathrm{C}$. HPLC: $98.37 \%, t_{\mathrm{R}}=$ $2.807 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 10.10-9.75 (br s, 1H), 9.89 (s, 1H), 9.70-9.44 (br s, 1H),
9.43-9.20 (br s, 1H), 9.10 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.77$ (s, 1H), 8.47 $(\mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.93(\mathrm{~m}, 1 \mathrm{H})$, $1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 171.5, 161.3, 161.1, 157.7, 152.3, 149.0, 148.1, 144.2, 140.3, 132.0, 131.9, 127.7, 121.6, 120.2, 118.1, 113.6, 113.1, 112.8, 112.1, 111.8, 53.0, 34.8, 18.3, 13.7. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 519.1016. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 519.1012$.
(S)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-3-methyl-1-oxobutan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (33). Yellow solid. Mp: 179-183 ${ }^{\circ} \mathrm{C}$. HPLC: $96.66 \%, t_{\mathrm{R}}=$ $2.653 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 9.94$ (s, 1H), $9.90(\mathrm{~s}, 1 \mathrm{H}), 9.60(\mathrm{~s}, 1 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.78$ (s, 1H), 8.46 (s, 1H), $7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.90(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.85$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.89,161.5,161.2$, 157.7, 152.3, 149.1, 148.1, 144.2, 140.3, 132.0, 131.9, 127.9, 121.5, 120.1, 118.1, 113.6, 113.0, 112.8, 112.1, 111.9, 57.7, 31.3, 19.2, 17.4. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 519.1016. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 519.1003$.
(S)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-hexan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (34). Yellow solid. Mp: $246-250{ }^{\circ} \mathrm{C}$. HPLC: $97.35 \%, t_{\mathrm{R}}=$ $3.667 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}$), 9.11 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~s}$, $4 \mathrm{H}), 0.86(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 171.5,161.4,161.1,157.7,152.3,149.0,148.2,144.3,140.3$, 132.1, 131.9, 127.7, 121.6, 120.2, 118.1, 113.6, 113.1, 112.8, 112.1, 111.9, 53.2, 40.3, 40.1, 39.8, 39.5, 39.2, 39.0, 38.7, 32.4, 27.1, 21.9, 13.8. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 533.1172$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 533.1166$.
(R)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-butan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (35). Yellow solid. Mp: $>280{ }^{\circ} \mathrm{C}$. HPLC: 98.61%, $t_{\mathrm{R}}=$ $2.294 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.66$ (br s, 1 H), 9.93 (br s, 1H), 9.88 (s, 1H), 9.61 (br s, 1H), 9.33 (br s, 1H), 9.13 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.83(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.70(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 171.3$, 161.4, 161.1, 157.7, 152.3, 149.0, 148.1, 144.2, 140.3, 132.0, 131.9, 127.7, 121.6, 120.1, 118.1, 113.6, 113.1, 112.8, 112.1, 111.8, 54.2, 25.9, 9.6. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 505.0859$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 505.0850$.
(R)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-pentan-2-yl)-7,8-dihydroxy-2-oxo- 2 H -chromene-3-carboxamide (36). Yellow solid. Mp: $>280{ }^{\circ} \mathrm{C}$. HPLC: $95.90 \%, t_{\mathrm{R}}=$ $2.843 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 9.11$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.88(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.27$ $(\mathrm{m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})
$\delta 171.5,161.4,161.1,157.7,152.3,149.0,148.1,144.2,140.3$, $132.1,131.9,127.7,121.6,120.2,118.1,113.6,113.1,112.8$, 112.1, 111.9, 53.0, 34.8, 18.3, 13.7. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 519.1016$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 519.1011.
(R)- N -(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-hexan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (37). Yellow solid. Mp: $252-255^{\circ} \mathrm{C}$. HPLC: $96.79 \%, t_{\mathrm{R}}=3.660 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.30-9.25$ (br s, 3H), $9.89(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H})$, $8.47(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 171.5, 161.3, 161.1, 157.7, $152.3,149.0,148.1,144.2,140.3,132.0,131.9,127.7,121.5$, $120.2,118.1,113.6,113.1,112.8,112.1,111.8,53.2,32.4,27.1$, 21.9, 13.8. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 533.1172. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 533.1166$.
$(R)-N$-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (38). Yellow solid. Mp: $174-178{ }^{\circ} \mathrm{C}$. HPLC: $98.99 \%, t_{\mathrm{R}}=3.519 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.65$ $(\mathrm{s}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 2 \mathrm{H}), 9.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.04(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.94(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 171.8, 161.4, $161.0,157.7,152.3,149.1,148.1,144.2,140.3,132.0,131.9$, $127.7,121.6,120.2,118.1,113.6,113.0,112.7,112.1,111.8$, 52.0, 41.4, 24.5, 23.1, 21.8. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 533.1172$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 533.1165.
\boldsymbol{N}-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxohep-tan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (39). Grey solid. Mp: $266-267{ }^{\circ} \mathrm{C}$. HPLC: $98.06 \%, t_{\mathrm{R}}=5.512 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 10.64$ (br s, 1H), 9.93 (br s, 1H), 9.87 (s, 1H), $9.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99-4.90 (m, 1H), 1.90-1.65 (m, 2H), 1.40-1.20 (m, 6H), 0.85 $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 172.6,163.1,162.2$, 159.0 , 153.2, 150.3, 149.0, 145.0, 141.2, 132.8, 132.7, 129.8, $122.9,120.8,119.4,114.7,114.1,113.3,113.0,112.7,54.6,33.0$, 31.6, 25.3, 22.7, 14.6. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 547.1329$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 547.1323$.
N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-octan-2-yl)-7,8-dihydroxy-2-oxo- 2 H -chromene-3-carboxamide (40). Grey solid. Mp: $252-254{ }^{\circ} \mathrm{C}$. HPLC: $98.68 \%, t_{\mathrm{R}}=7.652 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.64(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H}), 9.88(\mathrm{~s}$, $1 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}$, $1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.15(\mathrm{~m}, 8 \mathrm{H}), 0.84(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 171.5,161.3,161.1$, $157.7,152.3,149.0,148.1,144.2,140.3,132.0,131.9,127.6$, $121.6,120.1,118.1,113.6,113.0,112.8,112.1,111.8,53.2,32.7$,
31.0, 28.3, 24.8, 21.9, 13.8. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 561.1485. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 561.1480.

N -(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-2-methyl-1-oxopropan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (41). Yellow solid. Mp: $273-276{ }^{\circ} \mathrm{C} . \mathrm{HPLC}: 95.24 \%, t_{\mathrm{R}}=$ 2.228 min. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.70$ (br s, 1H), 9.97 (br s, 1H), 9.61 (br s, 1H), 9.33 (br s, 1H), $9.12(\mathrm{~s}, 1 \mathrm{H}), 9.00$ $(\mathrm{s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 174.0,162.4$, $161.7,158.9,152.9,149.5,148.7,144.7,140.8,132.6$, 132.5, 128.5, 122.3, 120.7, 118.9, 114.3, 113.8, 113.7, 112.7, 112.4, 57.8, 25.3. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 505.0859. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 505.0855$.

N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)carbamoyl)cyclo-hexyl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (42). Yellow solid. Mp: $170-172{ }^{\circ} \mathrm{C}$. HPLC: $95.13 \%, t_{\mathrm{R}}=3.883 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.73$ (br s, 1H), 9.94 (br s, $1 \mathrm{H}), 9.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H})$, $8.72(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28-2.18 (m, 2H), 1.88-1.74 (m, 2H), 1.72-1.56 (m, 3H), 1.54-1.36 (m, 2H), 1.35-1.20 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) δ 173.0, 161.5, 161.4, 158.0, 152.4, 148.9, 148.0, $144.2,140.0,132.1,131.9,126.4,121.6,120.3,118.0,113.8$, 113.2 (two carbons), 112.1, 111.8, 59.9, 31.28 (two carbons), 24.71, 20.92 (two carbons). HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 545.1172. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 545.1166.
(S)-N-(1-Cyclohexyl-2-((7,8-dihydroxy-2-oxo-2H-chromen-3-yl)-amino)-2-oxoethyl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (43). Yellow solid. Mp: 190-203 ${ }^{\circ} \mathrm{C}$. HPLC: $97.83 \%, t_{\mathrm{R}}=$ 2.992 min. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 9.13$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.85(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.26-1.00$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 170.8,161.4,161.2$, $157.7,152.4,149.1,148.1,144.2,140.3,132.0,131.9,127.8$, $121.6,120.1,118.1,113.6,113.0,112.7,112.1,111.8,57.3,41.0$, 29.2, 27.8, 25.7, 25.6 (two carbons). HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 559.1329. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 559.1325.
(S)-N-(3-Cyclohexyl-1-((7,8-dihydroxy-2-oxo-2H-chromen-3-yl)-amino)-1-oxopropan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (44). Yellow solid. Mp: 151-154 ${ }^{\circ} \mathrm{C}$. HPLC: $97.17 \%, t_{\mathrm{R}}=7.583 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.89$ $(\mathrm{s}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.33$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.55$ $(\mathrm{m}, 6 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.04(\mathrm{~m}, 4 \mathrm{H}), 1.02-0.84(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 171.9, 161.4, 161.1, 157.7, $152.3,149.1,148.1,144.2,140.3,132.0,131.9,127.7,121.6$, $120.2,118.1,113.6,113.0,112.7,112.1,111.8,51.5,33.8,33.2$, 32.0, 25.9, 25.7, 25.6. HRMS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 573.1485$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 573.1476$.
(S)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-1-oxo-3-phenylpropan-2-yl)-7,8-dihydroxy-2-oxo- 2 H -chromene-3-carboxamide (45). Orange solid. Mp: 225-228 ${ }^{\circ} \mathrm{C}$. HPLC: 95.21%, $t_{\mathrm{R}}=3.219 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.65(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.99(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.46$ (s, 1H), 7.35-7.15 (m, 6H), 6.99 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 1 \mathrm{H}), 3.22$ $(\mathrm{dd}, J=13.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 170.6,161.3,160.9,157.7,152.4$, $149.1,148.1,144.2,140.2,136.8,132.1,131.9,129.3$ (two carbons), 128.1 (two carbons), 127.3, 126.5, 121.6, 120.2, 118.1, 113.7, 113.1, 112.4, 112.1, 111.8, 54.6, 38.0. HRMS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 567.1016 . Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 567.1005.
(S)- N -(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-4-(methylthio)-1-oxobutan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene3 -carboxamide (46). Yellow solid. Mp: 174-176 ${ }^{\circ} \mathrm{C}$. HPLC: $95.60 \%, t_{\mathrm{R}}=2.580 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.60$ (br s, 1H), 10.30-9.25 (br s, 3H), $9.88(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 1 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 170.7,161.6,161.0,157.7,152.3,149.0,148.2,144.2,140.3$, 132.1, 131.9, 127.8, 121.6, 120.1, 118.1, 113.6, 113.1, 112.8, 112.1, 111.8, 52.8, 32.6, 29.3, 14.7. HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$, 551.0736. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 551.0732.
(S)-tert-Butyl 4-((7,8-dihydroxy-2-oxo-2H-chromen-3-yl)amino)-3-(7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamido)-4-oxobutanoate (47). Yellow solid. Mp: 255-258 ${ }^{\circ} \mathrm{C}$. HPLC: 95.80%, $t_{\mathrm{R}}=3.192 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H})$, $9.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.37$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.6,169.2$, 161.8, 160.9, 157.7, 152.6, 149.4, 148.2, 144.3, 140.2, 132.1, 131.9, 126.8, 121.8, 120.2, 118.2, 113.7, 113.2, 112.4, 112.1, 111.8, 80.7, 50.5, 37.5, 27.6. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 591.1227$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 591.1222$.
(S)-4-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-3-(7, 8-dihydroxy-2-oxo-2H-chromene-3-carboxamido)-4-oxobutanoic acid (48). Compound 47 ($40 \mathrm{mg}, 0.0704 \mathrm{mmol}$) was dissolved in 4 mL formic acid and stirred at rt for 6 h . The solvent was evaporated and the residue was purified by column chromatography ($\mathrm{DCM}-\mathrm{MeOH}-\mathrm{AcOH}=10: 1: 1$) to give 48 as a yellow solid ($13 \mathrm{mg}, 36 \%$). Mp: $>280{ }^{\circ} \mathrm{C}$. HPLC: 95.57%, $t_{\mathrm{R}}=$ $2.364 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 9.40$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 535.0601. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 535.0598.
(S)- N^{1}-(7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)-2-(7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamido)- N^{4}-tritylsuccinamide (49a). White solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~s}$,

1H), 8.48 (s, 1H), 7.27-7.05 (m, 16H), 6.89 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 2 \mathrm{H})$.
(S)- \mathbf{N}^{1}-(7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)-2-(7,8-dihydroxy-2-oxo- 2 H -chromene-3-carboxamido)succinamide (49). To a solution of compound 49a ($46 \mathrm{mg}, 0.0704 \mathrm{mmol}$) in 3 mL DCM was added 2 mL TFA. The mixture was stirred at rt for 2 h and the yellow solid was isolated by filtration to afford $49(24 \mathrm{mg}$, $77 \%)$. Mp: $273-274{ }^{\circ} \mathrm{C}$. HPLC: $95.92 \%, t_{\mathrm{R}}=2.004 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.67$ (br s, 1H), 9.92 (br s, 1H), $9.64(\mathrm{~s}, 2 \mathrm{H}), 9.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.80(\mathrm{~s}$, $1 \mathrm{H}), 8.48$ ($\mathrm{s}, 1 \mathrm{H}$), 7.52 ($\mathrm{s}, 1 \mathrm{H}), 7.35$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (s, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 171.6, 170.1, 161.7, 160.8, 157.7, $152.4,149.2,148.0,144.3,140.0,132.1,131.9,126.0,121.7$, $120.3,118.0,113.6,113.1,112.5,112.1,111.8,50.6,37.0$. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 534.0761. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 534.0765.
(S)-tert-Butyl (5-((7,8-bis(methoxymethoxy)-2-oxo-2H-chromen-3-yl)amino)-4-(7,8-bis(methoxymethoxy)-2-oxo- 2 H -chromene-3-carboxamido)-5-oxopentyl)carbamate (50a). ${ }^{1} \mathrm{H} \quad$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.87$ $(\mathrm{s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ $(\mathrm{s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 4 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.85-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, $3.28-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.68$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
(S)-N-(5-Amino-1-((7,8-dihydroxy-2-oxo-2H-chromen-3-yl)-amino)-1-oxopentan-2-yl)-7,8-dihydroxy-2-oxo-2H-chromene-3-carboxamide (50). To a solution of compound $50 \mathrm{a}(28 \mathrm{mg}$, 0.0458 mmol) in 2 mL DCM was added 2 mL of 2 M HCl in EtOAc. The mixture was stirred at rt for 2 h and the solvent was evaporated to afford 50 as a yellow solid ($18 \mathrm{mg}, 72 \%$). Mp: 233-235 ${ }^{\circ} \mathrm{C}$. HPLC: $95.81 \%, t_{\mathrm{R}}=1.520 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.51(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.91$ (m, 1H), 1.90-1.78 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.4,164.8,163.2,160.0,154.1,151.1,149.8,145.8$, $141.8,133.6,133.5,129.6,123.1,121.5,119.8,115.0$, 114.4, 113.9, 113.7, 113.6, 54.9, 40.6, 30.7, 25.0. HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}, 512.1305$. Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 512.1293.
(R)-N-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-7,8-dimethoxy-2-oxo-2H-chromene-3-carboxamide (51). Pale solid. Mp: 199-200 ${ }^{\circ} \mathrm{C}$. HPLC: $95.70 \%, t_{\mathrm{R}}=6.199 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.95$ $(\mathrm{s}, 1 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.84$ (s, 1H), $8.46(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.96$ $(\mathrm{m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.60(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO) $\delta 171.8,161.1,160.6$, 157.7, 157.2, 148.5, 148.1, 147.8, 140.3, 134.8, 132.0, 127.8,
$126.1,120.2,118.1,114.6,113.1,113.0,112.1,110.3,60.8,56.6$, 52.0, 41.3, 24.5, 23.2, 21.8. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 561.1485$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 561.1476.
$(R)-N$-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-7-hydroxy-2-oxo-2H-chromene-3-carboxamide (52). Pale solid. Mp: 192-193 ${ }^{\circ} \mathrm{C}$. HPLC: $97.67 \%, t_{\mathrm{R}}=5.108 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.14$ $(\mathrm{s}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 2 \mathrm{H})$, 5.02-4.92 (m, 1H), 1.75-1.62 (m, 3H), $0.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 171.9, 163.9, 161.4, 161.2, $157.8,156.4,148.6,148.2,140.3,132.2,132.1,127.9,120.2$, $118.2,114.5,113.1$ (two carbons), 112.1, 111.2, 101.9, 52.0, 41.4, 24.6, 23.2, 21.8. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 517.1223$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 517.1215$.
$(R)-N$-(1-((7,8-Dihydroxy-2-oxo-2H-chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-8-hydroxy-2-oxo-2H-chromene-3-carboxamide (53). Pale solid. Mp: $179-182{ }^{\circ} \mathrm{C} . \mathrm{HPLC}: 97.89 \%, t_{\mathrm{R}}$ $=4.291$ min. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.45(\mathrm{~s}, 1 \mathrm{H})$, $9.95(\mathrm{~s}, 2 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H})$, $8.46(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.96(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.62(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) δ 171.7, 160.9, 160.4, 157.7, 148.4, 148.2, 144.4, $142.6,140.3,132.0,127.8,125.1,120.3,120.2$ (two carbons), 118.1, 113.0, 112.1, 52.0, 41.4, 24.52, 23.1, 21.8. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 517.1223. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 517.1217$.
(R)-7-Hydroxy-N-(1-((7-hydroxy-2-oxo-2H-chromen-3-yl)amino)-4-methyl-1-oxopentan-2-yl)-2-oxo-2H-chromene-3-carboxamide (54). Beige solid. Mp: 175-176 ${ }^{\circ} \mathrm{C}$. HPLC: 96.22\%, $t_{\mathrm{R}}=$ $6.802 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 10.39$ $(\mathrm{s}, 1 \mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.50$ $(\mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.03-4.98(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.66(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 171.8,163.8,161.3,161.1,159.8,157.8$, $156.4,151.7,148.5,132.1,129.1,127.2,120.4,114.4,113.6$, $113.0,111.2,111.1,101.9,101.8,52.0,41.4,24.5,23.1,21.8$. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 501.1274$. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 501.1264$.
$(R)-8-H y d r o x y-N-(1-((7-h y d r o x y-2-o x o-2 H-c h r o m e n-3-y l) a m i n o)-~$ 4-methyl-1-oxopentan-2-yl)-2-oxo-2H-chromene-3-carboxamide (55). Pale solid. Mp: 158-160 ${ }^{\circ} \mathrm{C}$. HPLC: 98.90\%, $t_{\mathrm{R}}=$ $5.604 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.45(\mathrm{~s}, 1 \mathrm{H}), 10.38$ $(\mathrm{s}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.50$ $(\mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.06-4.96(\mathrm{~m}$, 1H), 1.74-1.62 (m, 3H), $0.94(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 171.7,160.9,160.4,159.8,157.8,151.8$, $148.4,144.4,142.6,129.1,127.3,125.1,120.4,120.3,120.1$, $119.3,118.1,113.6,111.2,101.9,52.0,41.4,24.5,23.1,21.8$. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 501.1274. Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 501.1270$.

ELISA kinase assay

Met tyrosine kinase activity was evaluated according to the following procedure: briefly, in enzyme-linked-immunosorbent assay (ELISA), $20 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ poly ($\left.\mathrm{Glu}, \mathrm{Tyr}\right)_{4: 1}$ (Sigma) was precoated as a substrate in 96 -well plates. $50 \mu \mathrm{~L}$ of $10 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ ATP solution diluted in kinase reaction buffer ($50 \mathrm{mmol} \mathrm{L}{ }^{-1}$ HEPES pH 7.4, $50 \mathrm{mmol} \mathrm{L}{ }^{-1} \mathrm{MgCl}_{2}, 0.5 \mathrm{mmol} \mathrm{L}{ }^{-1} \mathrm{MnCl}_{2}$, $0.2 \mathrm{mmol} \mathrm{L}{ }^{-1} \mathrm{Na}_{3} \mathrm{VO}_{4}, 1 \mathrm{mmol} \mathrm{L}{ }^{-1}$ DTT) was added to each well. $1 \mu \mathrm{~L}$ of various concentrations of indicated compounds diluted in 1% DMSO (v / v) (Sigma) was added to each reaction well. 1\% DMSO (v/v) was used as a negative control. The kinase reaction initiated after the addition of purified tyrosine kinase proteins diluted in $49 \mu \mathrm{~L}$ of kinase reaction buffer solution. After incubation for 60 min at $37^{\circ} \mathrm{C}$, the plate was washed three times with phosphate buffered saline (PBS) containing 0.1% Tween 20 (T-PBS). $100 \mu \mathrm{~L}$ anti-phosphotyrosine (PY99) antibody (1:500 diluted in $5 \mathrm{mg} \mathrm{mL}{ }^{-1}$ BSA T-PBS) was then added. After 30 min incubation at $37^{\circ} \mathrm{C}$, the plate was washed three times. $100 \mu \mathrm{~L}$ horseradish peroxidase-conjugated goat anti-mouse $\operatorname{IgG}\left(1: 2000\right.$ diluted in $5 \mathrm{mg} \mathrm{mL}^{-1}$ BSA T-PBS) was added. The plate was then incubated at $37^{\circ} \mathrm{C}$ for 30 min , and washed 3 times. $100 \mu \mathrm{~L}$ of a solution containing 0.03% $\mathrm{H}_{2} \mathrm{O}_{2}$ and $2 \mathrm{mg} \mathrm{ml}{ }^{-1} o$-phenylenediamine in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ citrate buffer, pH 5.5 , was added. The reaction was terminated by the addition of $50 \mu \mathrm{~L}$ of $2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ as the color changed, and the plate was read using a multi-well spectrophotometer (SpectraMAX 190, Molecular Devices) at 490 nm . The inhibition rate (\%) was calculated using the following equation: $\left[1-\left(A_{490} / A_{490}\right.\right.$ control $\left.)\right] \times 100 \% . \mathrm{IC}_{50}$ values were calculated from the inhibition curves from two separate experiments. For ATP competition assay, various concentrations of ATP were diluted for the kinase reaction.

Western blot analysis

EBC-1 and BaF3/TPR-Met cells were treated with indicated compounds for 4 h at $37^{\circ} \mathrm{C}$ and then lysed in $1 \times$ SDS sample buffer. The cell lysates were subsequently resolved on 10% SDS-PAGE and transferred to nitrocellulose membranes. Membranes were probed with appropriate primary antibodies (c-Met [Santa Cruz] and phospho-c-Met [Cell Signaling Technology], and GAPDH [KangChen Biotech] antibody), and then subsequently with horseradish peroxidase-conjugated antirabbit or anti-mouse IgG. Immunoreactive proteins were detected using enhanced chemiluminescence detection reagent (Thermo Fisher).

Abbreviations

NSCLC Non-small cell lung cancer
EGFR Epidermal growth factor receptor
PKA Protein kinase A
PKC Protein kinase C
SAR
Leu Structure-activity relationship
Leucine
DMF N, N-Dimethylformamide

DCM	Dichloromethane
DMAP	4-Dimethylaminopyridine
BOC	t-Butyloxycarbonyl
EDCI	N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide
	hydrochloride
Fmoc	Fluorenylmethoxycarbonyl
MOM	Methoxymethyl

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (30725049, 81321092, 81102461, 91229205), the National Science and Technology Major Projects for Major New Drugs Innovation and Development (2012ZX09304011), the National Program on Key Basic Research Project of China (no. 2012CB910704), and the National S\&T Major Projects (2012ZX09301001-007).

Notes and references

1 D. Bottaro, J. Rubin, D. Faletto, A. Chan, T. Kmiecik, G. Vande Woude and S. Aaronson, Science, 1991, 251, 802804.

2 L. Trusolino, A. Bertotti and P. M. Comoglio, Nat. Rev. Mol. Cell Biol., 2010, 11, 834-848.
3 P. M. Comoglio, S. Giordano and L. Trusolino, Nat. Rev. Drug Discovery, 2008, 7, 504-516.
4 J. A. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland, J. O. Park, N. Lindeman, C.-M. Gale, X. Zhao, J. Christensen, T. Kosaka, A. J. Holmes, A. M. Rogers, F. Cappuzzo, T. Mok, C. Lee, B. E. Johnson, L. C. Cantley and P. A. Jänne, Science, 2007, 316, 1039-1043.
5 R. Straussman, T. Morikawa, K. Shee, M. Barzily-Rokni, Z. R. Qian, J. Du, A. Davis, M. M. Mongare, J. Gould, D. T. Frederick, Z. A. Cooper, P. B. Chapman, D. B. Solit, A. Ribas, R. S. Lo, K. T. Flaherty, S. Ogino, J. A. Wargo and T. R. Golub, Nature, 2012, 487, 500-504.

6 H.-L. Cheng, B. Trink, T.-S. Tzai, H.-S. Liu, S.-H. Chan, C.-L. Ho, D. Sidransky and N.-H. Chow, J. Clin. Oncol., 2002, 20, 1544-1550.
7 E. Lengyel, D. Prechtel, J. H. Resau, K. Gauger, A. Welk, K. Lindemann, G. Salanti, T. Richter, B. Knudsen, G. F. Vande Woude and N. Harbeck, Int. J. Cancer, 2005, 113, 678-682.
8 L. Lo Muzio, A. Farina, C. Rubini, E. Coccia, M. Capogreco, G. Colella, R. Leonardi, G. Campisi and F. Carinci, Tumor Biol., 2006, 27, 115-121.
9 K. Sawada, A. R. Radjabi, N. Shinomiya, E. Kistner, H. Kenny, A. R. Becker, M. A. Turkyilmaz, R. Salgia, S. D. Yamada, G. F. Vande Woude, M. S. Tretiakova and E. Lengyel, Cancer Res., 2007, 67, 1670-1679.

10 K. Matsumoto and T. Nakamura, Biochem. Biophys. Res. Соттип., 2005, 333, 316-327.

11 T. Otsuka, J. Jakubczak, W. Vieira, D. P. Bottaro, D. Breckenridge, W. J. Larochelle and G. Merlino, Mol. Cell. Biol., 2000, 20, 2055-2065.
12 K. Matsumoto, T. Nakamura, K. Sakai and T. Nakamura, Proteomics, 2008, 8, 3360-3370.
13 T. Burgess, A. Coxon, S. Meyer, J. Sun, K. Rex, T. Tsuruda, Q. Chen, S.-Y. Ho, L. Li, S. Kaufman, K. McDorman, R. C. Cattley, J. Sun, G. Elliott, K. Zhang, X. Feng, X.-C. Jia, L. Green, R. Radinsky and R. Kendall, Cancer Res., 2006, 66, 1721-1729.
14 H. Jin, R. Yang, Z. Zheng, M. Romero, J. Ross, H. Bou-Reslan, R. A. D. Carano, I. Kasman, E. Mai, J. Young, J. Zha, Z. Zhang, S. Ross, R. Schwall, G. Colbern and M. Merchant, Cancer Res., 2008, 68, 4360-4368.
15 E. H. van der Horst, L. Chinn, M. Wang, T. Velilla, H. Tran, Y. Madrona, A. Lam, M. Ji, T. C. Hoey and A. K. Sato, Neoplasia, 2009, 11, 355-364.
16 T. L. Underiner, T. Herbertz and S. J. Miknyoczki, Anticancer Agents Med. Chem., 2010, 10, 7-27.
17 X. Liu, R. C. Newton and P. A. Scherle, Expert Opin. Invest. Drugs, 2011, 20, 1225-1241.
18 J. Porter, Expert Opin. Ther. Pat., 2010, 20, 159-177.
19 E. B. Yang, Y. N. Zhao, K. Zhang and P. Mack, Biochem. Biophys. Res. Commun., 1999, 260, 682-685.
20 A. Kumar, B. K. Singh, N. K. Sharma, K. Gyanda, S. K. Jain, Y. K. Tyagi, A. S. Baghel, M. Pandey, S. K. Sharma, A. K. Prasad, S. C. Jain, R. C. Rastogi, H. G. Raj, A. C. Watterson, E. Van der Eycken and V. S. Parmar, Eur. J. Med. Chem., 2007, 42, 447-455.
21 J. A. Burlison and B. S. J. Blagg, Org. Lett., 2006, 8, 48554858.

22 B. R. Kusuma, L. B. Peterson, H. Zhao, G. Vielhauer, J. Holzbeierlein and B. S. J. Blagg, J. Med. Chem., 2011, 54, 6234-6253.
23 H. Y. Zou, Q. Li, J. H. Lee, M. E. Arango, S. R. McDonnell, S. Yamazaki, T. B. Koudriakova, G. Alton, J. J. Cui, P.-P. Kung, M. D. Nambu, G. Los, S. L. Bender, B. Mroczkowski and J. G. Christensen, Cancer Res., 2007, 67, 4408-4417.
24 X. Wan and M. M. Joullié, J. Am. Chem. Soc., 2008, 130, 17236-17237.
25 S. Saito and J. Kawabata, Tetrahedron, 2005, 61, 81018108.

26 Z.-T. Du, Z.-T. Du, J. Lu, J. Lu, H.-R. Yu, H.-R. Yu, Y. Xu, Y. Xu, A.-P. Li and A.-P. Li, J. Chem. Res., 2010, 34, 222227.

27 J. D. S. Denis, J. S. Gordon IV, V. M. Carroll and R. Priefer, Synthesis, 2010, 1590-1592.
28 N. J. Desai and S. Sethna, J. Org. Chem., 1957, 22, 388390.

29 J.-C. Jung, Y.-J. Jung and O.-S. Park, Synth. Commun., 2001, 31, 1195-1200.
30 K. M. Khan, S. Iqbal, M. A. Lodhi, G. M. Maharvi, Z. Ullah, M. I. Choudhary, A.-u. Rahman and S. Perveen, Bioorg. Med. Chem., 2004, 12, 1963-1968.

31 Y.-S. Hon, T.-R. Hsu, C.-Y. Chen, Y.-H. Lin, F.-J. Chang, C.-H. Hsieh and P.-H. Szu, Tetrahedron, 2003, 59, 15091520.

32 K. C. Nicolaou, P. K. Sasmal and H. Xu, J. Am. Chem. Soc., 2004, 126, 5493-5501.
33 K. Rikimaru, T. Wakabayashi, H. Abe, T. Tawaraishi, H. Imoto, J. Yonemori, H. Hirose, K. Murase, T. Matsuo, M. Matsumoto, C. Nomura, H. Tsuge, N. Arimura,
K. Kawakami, J. Sakamoto, M. Funami, C. D. Mol, G. P. Snell, K. A. Bragstad, B.-C. Sang, D. R. Dougan, T. Tanaka, N. Katayama, Y. Horiguchi and Y. Momose, Bioorg. Med. Chem., 2012, 20, 3332-3358.
34 K. Mori, T. Kawasaki, S. Sueoka and T. Akiyama, Org. Lett., 2010, 12, 1732-1735.
35 P. Magnus and I. S. Mitchell, Tetrahedron Lett., 1998, 39, 9131-9134.

[^0]: ${ }^{a}$ Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, Republic of China.
 E-mail: fjnan@simm.ac.cn
 ${ }^{b}$ Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai 201203, Republic of China. E-mail: mygeng@simm.ac.cn
 \dagger Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ob00364k \$These two authors contributed equally to this work.

[^1]: ${ }^{a} \mathrm{IC}_{50}$ s were calculated by the logit method from the results of at least two independent tests with eight concentrations each and expressed as means \pm SD.

[^2]: ${ }^{a} \mathrm{IC}_{50} \mathrm{~S}$ were calculated by the logit method from the results of at least two independent tests with eight concentrations each and expressed as means \pm SD.

