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Abstract—A novel, simple, and straightforward process for the large-scale synthesis of oxcarbazepine, the active ingredient of
Trileptal�, a medicine for the treatment of epilepsy, has been developed. Starting from readily available 1,3-dihydro-1-phenyl-2H-
indol-2-one, a Friedel–Crafts cyclization strategy provides a direct route to the tricyclic framework of the target molecule. Crucial to
the success of the strategy was the choice of the proper nitrogen-protecting group.
� 2004 Elsevier Ltd. All rights reserved.
Figure 1. Oxcarbazepine 1 and its commonly used precursor 2.
1. Introduction

Oxcarbazepine 1, the active ingredient of Trileptal�, is
effective as monotherapy and as adjunctive therapy for
epilepsy, both in adults and children.1 A few syntheses
for 1 have been described in the literature.2 Most of
them start from o-nitrotoluene or o-nitrobenzyl chloride
to build first 10,11-dihydro-5H-dibenz[b,f]azepine 2,
which is then further functionalized by a cascade of
oxidation and reduction reactions.3

Since we wanted to avoid oxidation and reduction
reactions, which generally require special equipment, we
focused our efforts toward the investigation of two ring
closure strategies aiming at the formation of bond a or b
(Fig. 1). With such an approach, the proper function-
ality of 1 can be built into the precursor of the cycliza-
tion reaction, avoiding the need to perform
manipulations of the oxidation state in the ring closed
tricyclic system. Since 1 is readily oxidized to the diketo
compound 10,11-dihydro-10,11-dioxo-5H-dibenz-[b,f]-
azepine-5-carboxamide by exposure to air, a controlled
introduction of the mono-keto-functionality by a direct
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oxidation process into 2 or a derivative thereof is diffi-
cult to perform in a selective way.

For the formation of bond a, we have recently shown
that the core of 1 can be efficiently built by applying a
remote metalation approach in the key step.4 However,
since 1 will be produced on a multi-hundred-ton scale,
the remote metalation approach has its technical limits.5

We therefore felt that the formation of bond b in the key
step via a Friedel–Crafts cyclization strategy might be
the method of choice for the production of 1 on an
industrial scale. Our synthetic plan was to prepare the
parent and the nitrogen-protected 2-(phenylamino)benz-
eneacetic acid derivatives 3a–e, and to study their ten-
dency to form the tricyclic compounds 4a–e under
Friedel–Crafts reaction conditions (Scheme 1).

From the beginning, we were well aware that the choice
of a suitable nitrogen-protecting group would be crucial
for the success of this approach. Any cleavage of the
protecting group under the harsh cyclization conditions
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Scheme 1. Ring closure reaction with compounds 3a–e. Formation of

6 reflects the cleavage of the protecting group in the course of the

reaction.

 
 

Scheme 2. Possible transformations of 4a–e to 1.

5276 D. Kaufmann et al. / Tetrahedron Letters 45 (2004) 5275–5278
would not lead to the desired seven-membered ring
system, but rather to the c-lactam 6.6 Compared to its
seven membered ring isomer 4a (Scheme 2), 6 is not only
kinetically favored but also thermodynamically the
more stable compound.7;8 With the tricyclic products
4a–e in hand, three straightforward pathways to 1 are
conceivable depending on the nature of the nitrogen-
protecting group: (a) direct conversion of the protecting
group into the desired urea derivative by treatment with
ammonia, (b) cleavage of the protecting group to give 4a
followed by urea formation or (c) enol ether formation
and cleavage of the nitrogen protecting group leading to
10-methoxy-5H-dibenz[b,f]azepine 5, a compound,
which has already been transformed efficiently to 1.9 In
this communication, we would like to present the results
of our ring closure experiments, as well as the comple-
tion of the synthesis of oxcarbazepine 1 via the inter-
mediate 5 or 4a.
2. Preparation of the pre-cyclization compounds 3a–e

As starting material for the preparation of the pre-
cyclization compounds 3a–e, the easily accessible c-lac-
tam 6 was used.10 The unprotected acid 3a was obtained
via ring opening with sodium hydroxide to give 7 fol-
lowed by careful acidification to pH2. While 7 is a
stable, characterizable compound, 3a readily cyclizes to
6.11 Methylester 8a, obtained by treating 7 with either
methyl iodide or dimethyl sulfate, was used for the
preparation of the carbamate 3d, while the trifluoro-
acetyl-protected compound 3c was prepared via the
benzylester 8b. The use of esters 8a and 8b as interme-
diates was necessary, since the direct acylation of 7 with
either trifluoroacetic anhydride or methyl chloroformate
did not lead to 3c and 3d, respectively, but quantitatively
to 6, apparently via the formation of mixed anhy-
drides.12 Deprotonation of 7 with sodium hydride or
butyllithium and subsequent treatment of the resulting
dianion with benzyl bromide or acetic anhydride fur-
nished the benzyl protected compound 3b and the acetyl
protected compound 3e, respectively (Scheme 3).
3. Results of ring closure experiments

In order to achieve maximal throughput and easy han-
dling, polyphosphoric acid (PPA), requiring no addi-
tional solvent, was considered to be the reaction media
of choice for the cyclization of compounds 3a–e (Table
1).13

With both 3a and 3b the desired Friedel–Crafts ring
closure reaction was not observed, but instead quanti-
tative formation of 6. Whereas this finding was expected
in the case of the unprotected compound 3a,16 the out-
come with the benzyl-protected compound 3b was
somehow surprising; apparently the cleavage of the
benzyl group is much faster than the desired ring closure
reaction. In the case of 3e not only the formation of 6
was observed, but also 5-acetyl-1,3-dihydro-1-phenyl-
2H-indol-2-one was formed. The mechanism of this
migration of the nitrogen protecting group was not
investigated. The best results were obtained with the
trifluoroacetyl derivative 3c and with the methyl carba-
mate 3d. Since 1 is to be produced in a multi-hundred-
ton scale, the use of ecologically questionable reagents
or solvents should, whenever possible, be avoided.17

Thus, based on ecological and economical consider-
ations, 3d was selected as the starting material for the
development of the final synthesis of 1. Starting from 3d,
the cyclized product can be isolated either as 4d or as the
corresponding enol ether 9d (Scheme 4). The latter was
obtained by reaction of 4d with trimethyl orthoformate
under acid catalysis or by simply quenching the reaction
mixture of 4d with water and methanol.18
4. Completion of the synthesis of 1

At first glance, both 4d and 9d look like immediate
precursors of 1 requiring only a simple treatment with
ammonia (in the case of 4d) or ammonia followed by
hydrolysis of the enol ether function in the case of 9d.19

However, all attempts to convert the carbamate function
of 4d or 9d into a urea function by treatment with
ammonia failed. Under all applied reaction conditions
the nitrogen carbon bond, not the nitrogen–carbon
bond, was cleaved leading to 4a and 5, respectively.20



Scheme 3. Preparation of the precursors 3a–e for cyclization studies under Friedel–Crafts conditions. Reagents and conditions: (a) 3M aq NaOH,

100 �C, 6 h; (b) NaH, DMF, BnBr, 24 �C, 15 h; (c) BuLi, THF, Ac2O, )10 �C, 2 h; (d) 1.4 equiv MeI, DMF, 24 �C, 4 h or 1.6 equiv BnBr, DMF, 24 �C,
4 h; (e) With 8b, 2 equiv TFAA, 1.5 equiv Et3N, 5mol% DMAP, CH2Cl2, 20–40 �C, 3.5 h (98%); (f) H2, 2mol% Pd/C, MeOH, 30 �C, 3 h (95%); (g)
With 8a, 1.1 equiv COCl2, 1.2 equiv pyridine, toluene, 50 �C, 24 h (85%); (h) 1 equiv pyridine, MeOH, 100 �C, 22 h (90%); (i) 1.1 equiv 30% aq NaOH,

MeOH, 25 �C, 24 h (90%).
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Scheme 4. Cleavage of the carbamate function and further conversion

to 1. Reagents and conditions: (a) With 4d; KOH, H2O, ethylene

glycol, 30min, 108 �C (72%); (b) ClSO2NCO, CH2Cl2, 25 �C, 17 h, then
H2O (70%); (c) CH(OMe)3, cat. p-TsOH, MeOH, 60 �C, 5 h (99%); (d)
50% aq NaOH, PEG 200, 100 �C, 4 h (96%); (e) 1.5 equiv NaOCN,
AcOH, 25 �C, 7 h; (f) aq H2SO4 or aq HCl, 25 �C, 17 h (step e and f
84%).

Table 1. Results from Friedel–Crafts ring closure experiments with

compounds 3a–e

Pre-cyclization

compound

Conditionsa Yield of 4a–e

(%)

Product ratio

4a–e:6

3a a 0 <1:>99 (4a:6)

3b b 0 <1:>99 (4b:6)

3c a 40 (70)b 95:5 (4c:6)

3d b or c 70c 95:5 (4d:6)

3e c 0 <1:65d (4e:6)

aReaction conditions: (a) toluene, PPA, 110 �C, 11 h; (b) chlorobenz-
ene, 28 equiv PPA, 90 �C, 2 h; (c) 3d or 3e was added to PPA at 95 �C
and stirred for 3 h.14

b The protecting group of 4c was partly removed during work-up.

Complete hydrolysis yields 4a in 70% overall yield starting from 3c.15
cYield after isolation by crystallization. If 4d is not isolated but further

converted to 9d and then crystallized the optimized isolated yield over

two steps is 85%.
dBesides of 6, formation of 5-acetyl-1,3-dihydro-1-phenyl-2H-indol-2-

one (ca. 35% a, HPLC) was also observed.
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Apparently in the initially formed tetrahedral interme-
diate a more efficient release of steric constraints is ob-
tained when the tricyclic ring system and not methoxy
acts as the leaving group.21 The transformation to ox-
carbazepine 1 was therefore completed either by cleav-
age of the carbamate function of 9d to give 522 followed
by treatment with isocyanic acid and hydrolysis of the
enol ether function,23 or by reaction of 4a with chloro-
sulfonyl isocyanate and hydrolysis.24

In conclusion, starting from the commercially available
c-lactam 6, a new process for oxcarbazepine 1 has been
developed using, in the key-step, a Friedel–Crafts
cyclization strategy for the formation of the tricyclic
ring system 5,11-dihydro-10H-dibenz[b,f]azepin-10-one.
A suitable nitrogen-protecting group was essential to
obtain the desired ring closure reaction. Two protecting
groups, methoxycarbonyl and trifluoroacetyl, have been
identified as suitable. For the development of a large
scale process the methoxycarbonyl group was preferred.
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