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A B S T R A C T   

We describe the preparation of methyl 5α-methyl-α-D-glucopyranoside and of 5α-fluoro-β-D-glucopyranose per 
acetate and the NMR-based conformational analysis of their side chains. Both the 5α-methyl and 5α-fluoro 
substituents increase the population of the gauche,gauche side chain conformer to the extent that it becomes the 
predominant conformation. In the 5α-methyl series this is attributed to steric effects, whereas in the 5α-fluoro 
series the optimization of attractive gauche effects is the more likely reason.   

1. Introduction 

We and others are interested in the control of side conformation in 
glycosyl donors and glycosides as a means modulation of anomeric 
reactivity [1–9] and of influencing affinity for receptors, whether pro-
tein or nucleotide-based [10–17]. To this end, adding to the literature 
precedent [18], we have conducted NMR-based conformational analyses 
of variously substituted pyranosides with emphasis on substitutions at 
the 2-, 4-, and 6-positions [16,19,20]. Continuing this theme we now 
report on the influence of methylation and fluorination at the 5α-posi-
tion of glucopyranosides, and show both stabilize the gg-side chain 
conformation [21]. 

2. Results 

Synthesis. Adapting the method of Werz and coworkers [22], 
Dess-Martin oxidation of methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside 
1 followed by potassium carbonate promoted reaction with isobutyric 
anhydride gave the enol ether 2 as a 1:22 E:Z mixture in 62% yield. 
Simmons-Smith cyclopropanation with methylene iodide and dieth-
ylzinc then afforded the spirocyclic derivative 3 as an unassigned 
mixture of diastereomers in 71% yield. Treatment with aqueous meth-
anolic potassium carbonate led to saponification with concomitant ring 
opening and isolation of the 5β-methyl derivative 4 and its 5α-diaste-
reomer 5 in 15 and 77% yield, respectively, and was followed by 
reduction with sodium borohydride leading to 6 and 7 in 80 and 91% 

yield, respectively. Finally, hydrogenolysis of 7 afforded the target 
methyl 5α-methyl-α-D-glucopyranoside 8 in 92% yield (Scheme 1). 

Photolysis of β-D-glucopyranosyl pentaacetate 9 with N-bromo-
succinimide in tetrachloromethane according to Blattner and Ferrier 
afforded 5α-bromo-β-D-glucopyranosyl pentaacetate 10 in 89% yield 
[23]. Subsequent treatment with silver tetrafluoroborate in toluene 
following the method of Stick and coworkers then gave the desired 
5α-fluoro-β-D-glucopyranosyl pentaacetate 11 in 24% yield (Scheme 2) 
[24]. 

Conformational analysis of methyl 5α-methyl-α-D-glucopyr-
anoside 8. To gauge the side chain conformation of 8 we first measured 
the 3JC,H heteronuclear coupling constants from the 5α-methyl group to 
H6R and H6S (Table 1) [25], a technique widely applied in establishing 
anomeric configuration in the sialic and ulosonic acids [3,8,26,27]. 
These measurements were complemented by nOe measurements, with 
double irradiation of H4 and of the 5α-methyl group and inspection of 
the relative enhancements of the diastereotopic pro-R and pro-S H6R and 
H6S protons (Table 1). 

Both diastereotopic side chain protons displayed a 3JC,H coupling 
constant of <1 Hz to the 5α-methyl group ruling out a predominant 
antiperiplanar relationship of either hydrogen to the methyl group but 
suggestive of approximate gauche relationships [3,8,25–27]. Irradiation 
of H4 caused approximately twice the enhancement of the intensity of 
the side chain proton resonance at δ 3.45 than that at δ 3.40, while 
irradiation of the 5α-methyl group lead to comparable enhancements of 
the two side chain protons. Excluding eclipsed conformations from 
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consideration, this pattern is only consistent with the assignment of the 
resonance at δ 3.45 as the pro-R side chain proton, that at δ 3.40 as the 
pro-S hydrogen, and a predominant gg conformation of the side chain 
(Fig. 1). 

Conformational analysis of 5α-fluoro-β-D-glucopyranosyl pen-
taacetate 11. While it would have been preferable to study the influence 
of the 5α-fluoro substituent in aqueous solution in the absence of pro-
tecting groups, the known instability of 11 toward deprotection pre-
cluded this [24]. Previous work from our laboratory has shown that 
protecting groups at the 4- and 6-positions of glucopyranosides have 
only minor influence on the side chain conformation [7]. Likewise, we 
have demonstrated that solvents have no significant impact on the 
magnitude of coupling constants in conformationally locked systems 
[28], leading us to continue with the conformation analysis of 11 in 
deuteriomethanol with the acetates in place. To determine the side chain 
conformation of 11 we measured 3JH,F heteronuclear coupling constants 
from the axial fluorine atom to both side chain protons, relative nOe 
enhancements of the side chain protons on irradiation of H4, and relative 
HOESY enhancements of the side chain protons on irradiation of the 
fluorine atom (Table 2). 

In order to draw conclusions from the data presented in Table 2 it is 
first necessary to appreciate the magnitude of 3JH,F heteronuclear 
coupling constants. In decalinoid systems lacking electron-withdrawing 
C–O bonds likely to reduce their magnitude, coupling constants between 
a proton and a vicinal anti-periplanar fluorine are typically >40 Hz, 
whereas those between corresponding gauche pairs are 9–10 Hz [29]. A 
measure of the influence of an electron-withdrawing C–O bond on such 
coupling constants can be derived from the 3JH4,F heteronuclear 
coupling constant in 11, which is 22 Hz. The 3JH6,F heteronuclear 
coupling constants found in 11 are most consistent with a gauche rela-
tionship and indeed approximate those found between gauche hydrogen 
and fluorine atoms in multivicinal fluoroalkanes [30,31]. On this basis, 
we conclude that the major conformer of 11 approximates the gg 
conformation in which both diastereotopic protons at the 6-position 
have a gauche relationship to the fluorine atom (Fig. 2); significant 
population of either the gt or tg conformers is excluded on the grounds 
that this would require considerably larger 3JH,F couplings to H6R or H6S, 
respectively. This assignment allows attribution of the resonance at δ 
4.40 ppm in the 1H NMR spectra to the H6R proton, on the basis of the 
relatively large nOe to H4, and consequently of the signal at δ 4.03, with 
the smaller nOe to H4, to the H6S proton. 

3. Discussion 

The side chain of simple glucopyranosides is typically considered to 
be an approximately 50:50 mixture of the gg and gt conformers (Fig. 3a) 
depending on the analysis method [18,28,32–37]. The predominant gg 
conformation of the side chain in 8 (Fig. 3b) is readily understood in 
terms of the additional steric gauche interaction between the methyl 
group and the side chain hydroxyl group that destabilize the gt 

Scheme 1. Synthesis of methyl 5α-methyl-α-D-glucopyranoside 8.  

Scheme 2. Synthesis of 5α-fluoro-β-D-glucopyranosyl pentaacetate.  

Table 1 
Diagnostic NMR parameters for the side chain conformation of 8 in D2O.  

Resonance δH 

(ppm) 

2JH6R,H6S 

(Hz) 

3JC,H 

(Hz) 
nOe Enhancement Ratio 

H4 
Irradiation 

Me 
Irradiation 

H6R 3.45 12.0 <1 2.20 1.00 
H6S 3.40 12.0 <1 1.00 1.14  

Fig. 1. Predominant side chain conformation of 8.  

Table 2 
Diagnostic NMR parameters for the side chain conformation of 11 in CD3OD.  

Resonance δH 

(ppm) 

2JH6R,H6S 

(Hz) 

3JH,F 

(Hz) 
nOe/HOESY Enhancement 
Ratio 

H4 
Irradiation 

F 
Irradiation 

H6R 4.38 12.0 8.4 2.0 1.00 
H6S 4.03 12.0 5.4 1.0 0.89  

Fig. 2. Predominant side chain conformation of 11.  
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conformation. A comparable gauche interaction also further destabilizes 
the higher energy tg conformer in 8. 

In the case of 11, the preference for the gg conformation with its 
single stabilizing gauche interaction over the gt conformation with the 
potential for two stabilizing gauche interactions (Fig. 3c) can be un-
derstood in terms of the competing nature of the two interactions and 
the obviously high energy consequences of involving two geminal C–H 
bonds in hyperconjugative interactions at the same time (Scheme 3). 

4. Conclusion 

Through the influence of steric interactions the installation of a 
methyl group at the 5α-position of methyl α-D-glucopyranoside has the 
effect of changing the population of the side chain from an 

approximately 50:50 gg:gt mixture to one in which the gg conformation 
predominates. The 5α-methyl modification is therefore functionally 
equivalent to the replacement of the pro-S hydrogen at the D-glucopyr-
anose 6-position by a methyl group, as demonstrated recently with the 
aminoglycoside paromomycin [16]. The installation of a 5α-fluorine 
atom in a D-glucopyranosyl model also has the effect of strongly favoring 
the gg conformation of the side chain, but for reasons due to the opti-
mization of the attractive gauche effect. 5-Fluoropyranose derivatives 
have been widely studied as inhibitors of glycoside hydrolases and are 
considered to be effective as such because of the strongly 
electron-withdrawing effect of the fluorine atom on positive charge in 
the locus of the anomeric center [38]: it is now apparent that this 
electron-withdrawing effect is complemented by preorganization of the 
side chain into the gg conformation enforced by most GH’s acting on 
substrates with the glucose configuration. Indeed, inspection of X-ray 
crystal structures of the GH from Bacteroides thetaiomicrometer in com-
plex with the 5-fluoro-glucooxazolidine 12, and of the covalent enzyme 
bound 5-fluoro-N-acetylglucosamine 13 (PDB 2WZI), with the Salmo-
nella typhimurium NagZ (PDB 4GVH) reveal the side chain to be bound in 
the typical gg conformation enforced by these GHs from families 84 and 
3, respectively (Fig. 4) [15,39,40]. 

5. Experimental 

5.1. General experimental 

All experiments were carried out under a dry argon atmosphere 
unless otherwise specified. Chromatographic purifications were carried 
over silica gel (230–400 mesh). Thin layer chromatography was per-
formed with precoated glass backed plates (w/UV 254). TLC plates were 
visualized by UV irradiation (254 nm) and by charring with sulfuric acid 
in ethanol (20:80, v/v) or with ceric ammonium molybdate solution [Ce 
(SO4)2: 4 g, (NH4)6Mo7O24: 10 g, H2SO4: 40 mL, H2O: 360 mL]. Optical 
rotations were measured at 589 nm and 21 ◦C on a digital polarimeter 
with a path length of 10 cm. NMR spectra were recorded in CDCl3, C6D6, 
D2O, or CD3OD as indicated using a 500, 600, or 900 MHz instrument 
and assignments made with the help of COSY, HMBC, and HSQC spectra. 
Chemical shifts (δ) are given in ppm, with multiplicities abbreviated as 
follows: s (singlet), m (multiplet), br (broad), d (doublet), t (triplet), q 
(quartet) and sept (septet). High-resolution (HRMS) mass spectra were 
recorded in the electrospray mode with an Orbitrap analyzer. Heating of 
reaction mixtures was carried out on an aluminum heating block of 
appropriate size. 

Methyl 2,3,4-Tri-O-benzyl-6-O-isobutyroyl-α-D-glucohex-5-eno-
pyranoside (2). To a stirred solution of methyl 2,3,4-tri-O-benzyl-α-D- 
glucopyranoside (1.1 g, 2.34 mmol) in dry CH2Cl2 (15 mL) at 0 ◦C was 
added Dess Martin periodinane (1.21 g, 2.84 mmol). The resulting 
mixture was brought to room temperature and stirred for 2 h then 
quenched with 20% aqueous Na2S2O3 and extracted with CH2Cl2. The 
organic layer was dried over Na2SO4 and evaporated to dryness, and the 
crude compound was used for the next step without further purification. 
The crude aldehyde was dissolved in acetonitrile (20 mL) and potassium 
carbonate (1.96 g, 14.2 mmol) and isobutyric anhydride (2.36 mL, 14.2 
mmol) were added. The reaction mixture was refluxed for 1 h and after 
completion reaction, cooled to room temp., diluted with ethyl acetate 
(40 mL) and water (40 mL). The aqueous layer was extracted with ethyl 
acetate (3 x 40 mL) and the combined organic phases were dried over 
Na2SO4, filtered and evaporated to dryness. Purification by column 

Fig. 3. Staggered Side Chain Conformations of a) Glucopyranosides; b) 5α- 
Methylglucopyranosides; and c) 5α-Fluoroglucopyranosides. 

Scheme 3. Competing Hyperconjugative Interactions and a High Energy 
Double Hyperconjugative Interaction in the gt Conformer of 5α-Fluoropyranose 
Derivatives. 

Fig. 4. 5α-Fluoro-N-acetylglucosamine Derivatives Crystallographically Estab-
lished to Bind to GHs with the gg Side Chain Conformation. 

P. Rajasekaran et al.                                                                                                                                                                                                                           



Carbohydrate Research 500 (2021) 108254

4

chromatography (hexane:ethyl acetate, 10:1) afforded the enol ester as 
an E/Z mixture (1:22) (780 mg, 62% yield) as a yellow oil. 1H NMR (600 
MHz, CDCl3) δ 7.38–7.27 (m, 15H), 7.19 (d, J = 1.8 Hz, 1H, H-6), 
4.91–4.82 (m, 3H, PhCH2), 4.80–4.73 (m, 2H, PhCH2), 4.70 (d, J = 3.4 
Hz, 1H, H-1), 4.66 (d, J = 12.2 Hz, 1H, PhCH2), 4.03–3.93 (m, 2H, H-4, 
H-3), 3.59 (dd, J = 8.5, 3.4 Hz, 1H, H-2), 3.48 (s, 3H, OCH3), 2.66 (sept, 
J = 7.0 Hz, 1H, H-7), 1.21 (dd, J = 7.0, 1.8 Hz, 6H, CH(CH3)2)⋅13C NMR 
(151 MHz, CDCl3) δ 173.5 (CO), 138.5 (ArC), 138.0 (ArC), 137.6 (ArC), 
134.8 (ArC), 128.50 (ArC), 128.48 (ArC), 128.4 (ArC), 128.01 (ArC), 
128.0 (ArC), 127.97 (ArC), 127.9 (ArC), 127.7 (ArC), 123.1 (C-6), 99.7 
(C-1), 81.3 (C-3), 79.0 (C-2), 77.9 (C-4), 75.7 (PhCH2), 74.6 (PhCH2), 
73.7 (PhCH2), 56.1 (OCH3), 33.8 (C-7), 18.9 (CH(CH3)2), 18.7 (CH 
(CH3)2). HRMS (ESI): m/z calcd for C32H36O7Na [M + Na] 555.2353, 
found 555.2339. 

Methyl 2,3,4-Tri-O-benzyl-6-O-isobutyroyl-5,6-methanediyl- 
α-D-glucopyranoside (3). A solution of compound 2 (750 mg, 1.41 
mmol) in 1,2-dichloroethane (12 mL) was treated with 4 Å molecular 
sieves and diiodomethane (1.14 mL, 14.1 mmol), followed by stirring at 
room temperature for 0.5 h, before dropwise addition of a solution of 
diethylzinc (1 M in hexane, 7.05 mL, 7.05 mmol). The reaction mixture 
was heated to 50 ◦C for 24 h then was diluted with dichloromethane (30 
mL), filtered and quenched with saturated Na2CO3 solution. The 
aqueous layer was extracted with dichloromethane (3 x 15 mL), and the 
combined organic phases dried over Na2SO4 and evaporated to dryness. 
Purification by column chromatography (hexane:ethyl acetate, 10:1) 
afforded the target compound as an inseparable mixture of di-
astereomers (550 mg, 71% yield) as a yellow oil. Major isomer: 1H NMR 
(600 MHz, CDCl3) δ 7.48–7.13 (m, 15H), 4.97 (d, J = 11.0 Hz, 1H, 
PhCH2), 4.90 (d, J = 11.0 Hz, 1H, PhCH2), 4.85–4.80 (m, 2H, PhCH2), 
4.70–4.64 (m, 2H, PhCH2), 4.63 (d, J = 3.9 Hz, 1H, H-1), 3.97 (t, J = 9.3 
Hz, 1H, H-3), 3.90 (dd, J = 7.9, 4.4 Hz, 1H, H-6), 3.86 (d, J = 9.1 Hz, 1H, 
H-4), 3.66 (dd, J = 9.5, 3.9 Hz, 1H, H-2), 3.41 (s, 3H, OCH3), 2.60 (sept, 
J = 7.0 Hz, 1H, H-8), 1.52–1.45 (m, 1H, H-7a), 1.19 (dd, J = 7.0, 0.8 Hz, 
6H,-CH(CH3)2, 0.97 (dd, J = 7.7, 4.5 Hz, 1H, H-7b).13C NMR (151 MHz, 
CDCl3) δ 177.9 (CO), 138.8 (ArC), 138.2 (ArC), 138.1 (ArC), 128.5 
(ArC), 128.47 (ArC), 128.41 (ArC), 128.38 (ArC), 128.36 (ArC), 128.35 
(ArC), 128.1 (ArC), 128.09 (ArC), 127.97 (ArC), 127.95 (ArC), 127.9 
(ArC), 127.7 (ArC), 127.64 (ArC), 127.60 (ArC), 127.57 (ArC), 127.5 
(ArC), 100.3 (C-1), 81.1 (C-3), 80.0 (C-2), 77.6 (C-4), 75.7 (PhCH2), 75.3 
(PhCH2), 73.6 (PhCH2), 56.5 (C-5), 55.5 (OCH3), 49.7 (C-6), 33.7 (C-8), 
19.0 (CH(CH3)2), 18.8 (CH(CH3)2), 13.7 (CH2-7). HRMS (ESI): m/z calcd 
for C33H38O7Na [M + Na] 569.2510, found 569.2499. 

Methyl 2,3,4-Tri-O-benzyl-5-C-methyl-β-L-ido-hexodialdo-1,5- 
pyranoside 4 and Methyl 2,3,4-Tri-O-benzyl-5-C-methyl-α-D-gluco- 
hexodialdo-1,5-pyranoside 5. Potassium carbonate (556 mg, 4.03 
mmol) was added to a solution of 3 (220 mg, 0.40 mmol) in a 15:1 
mixture of methanol/water (5 mL). The reaction mixture was stirred for 
12 h at room temperature, then was diluted with ethyl acetate (20 mL) 
and water (20 mL). The aqueous layer was extracted with ethyl acetate 
(3x 10 mL). The combined organic layers were washed with brine, dried 
over Na2SO4, filtered and concentrated to dryness. Purification by col-
umn chromatography (hexane:ethyl acetate, 10:2) afforded both alde-
hydes 4 (30 mg, 15% yield) and 5 (148 mg, 77% yield) as colorless oils. 

4: [α]D
22 = +20.0 (c 0.10, CH2Cl2); 1H NMR (600 MHz, CDCl3) δ 9.90 

(s, 1H), 7.39–7.26 (m, 15H), 5.04 (d, J = 10.7 Hz, 1H, PhCH2), 4.98 (d, J 
= 11.3 Hz, 1H, PhCH2), 4.89–4.80 (m, 2H, PhCH2), 4.68 (dd, J = 13.2, 
11.6 Hz, 2H, PhCH2), 4.48 (d, J = 3.6 Hz, 1H, H-1), 4.31 (t, J = 9.6 Hz, 
1H, H-3), 3.53 (dd, J = 9.7, 3.6 Hz, 1H, H-2), 3.51 (d, J = 9.5 Hz, 1H, H- 
4), 3.24 (s, 3H, OCH3), 1.28 (s, 3H, CH3)⋅13C NMR (150 MHz, CDCl3) δ 
199.5 (CHO), 151.1, 138.5, 137.9, 137.8, 128.6, 128.5, 128.4, 128.1, 
128.0, 127.8, 127.8, 127.7, 99.3, 83.4, 80.1, 79.1, 77.3, 76.2, 75.9, 73.6, 
56.3, 21.4. HRMS (ESI): m/z calcd for C29H32O6Na [M + Na] 499.2097, 
found 499.2083. 

5: [α]D
22 =+104.0 (c 0.75, CH2Cl2); 1H NMR (600 MHz, CDCl3) δ 9.35 

(s, 1H), 7.42–7.26 (m, 15H), 5.01–4.80 (m, 4H, PhCH2), 4.75 (d, J = 3.9 
Hz, 1H, H-1), 4.65 (dd, J = 67.3, 11.5 Hz, 2H, PhCH2), 4.14 (t, J = 9.4 

Hz, 1H, H-3), 3.62 (d, J = 9.1 Hz, 1H, H-4), 3.58 (dd, J = 9.6, 3.9 Hz, 1H, 
H-2), 3.48 (s, 3H, OMe), 1.58 (s, 3H, CH3)⋅13C NMR (150 MHz, CDCl3) δ 
198.9 (CHO), 138.5 (ArC), 138.0 (ArC), 137.9 (ArC), 128.55 (ArC), 
128.46 (ArC), 128.44 (ArC), 128.43 (ArC), 128.41 (ArC), 128.39 (ArC), 
128.38, 128.15 (ArC), 128.13 (ArC), 128.09 (ArC), 128.05 (ArC), 
128.04 (ArC), 128.95 (ArC), 127.85 (ArC), 127.77 (ArC), 99.9 (C-1), 
81.3 (C-5), 79.6 (C-4), 78.4 (C-2), 78.3 (C-3), 75.9 (PhCH2), 75.3 
(PhCH2), 73.6 (PhCH2), 56.4 (OCH3), 16.4 (CH3). HRMS (ESI): m/z 
calcd for C29H32O6Na [M + Na] 499.2091, found 499.2077. 

Methyl 2,3,4-Tri-O-benzyl-5-C-methyl-β-L-idopyranoside 6. A 
solution of aldehyde 4 (20 mg, 0.1 mmol) in methanol (1 mL) was 
treated with sodium borohydride (5 mg, 0.34 mmol) at 0 ◦C and stirred 
for 1 h before the solvent was removed under vacuum and the residue 
purified by column chromatography (hexane:ethyl acetate, 3:1) to 
afford the alcohol 6 (16 mg, 80%) as colorless oil. [α]D

22 = − 12.9 (c 0.35, 
CH2Cl2); 1H NMR (600 MHz, CDCl3) δ 7.40–7.29 (m, 15H, ArH), 5.00 
(dd, J = 13.3, 10.9 Hz, 2H, PhCH2), 4.85 (dd, J = 12.5, 11.2 Hz, 2H, 
PhCH2), 4.67 (dd, J = 11.6, 7.1 Hz, 2H, PhCH2), 4.58 (d, J = 4.2 Hz, 1H, 
H-1), 4.27 (t, J = 9.7 Hz, 1H, H-3), 3.92 (dd, J = 12.0, 3.1 Hz, 1H, H-6a), 
3.65 (dd, J = 12.0, 10.4 Hz, 1H, H-6b), 3.55 (dd, J = 9.9, 4.2 Hz, 1H, H- 
2), 3.50 (s, 3H, OCH3), 3.45 (d, J = 9.5 Hz, 1H, H-4), 3.18 (dd, J = 10.4, 
3.2 Hz, 1H, OH), 1.25 (s, 3H, CH3). 13C NMR (151 MHz, CDCl3) δ 138.7 
(ArC), 138.07 (ArC), 138.04 (ArC), 128.55 (ArC), 128.48 (ArC), 128.44 
(ArC), 128.1 (ArC), 128.04 (ArC), 128.02 (ArC), 127.91 (ArC), 127.88 
(ArC), 127.7 (ArC), 99.4 (C-1), 86.0 (C-4), 80.2 (C-5), 79.2 (C-2), 78.9 
(C-3), 76.4 (PhCH2), 75.8 (PhCH2), 73.6 (PhCH2), 66.9 (C-6), 57.1 
(OCH3), 24.3 (CH3). HRMS (ESI): m/z calcd for C29H34O6Na [M + Na] 
501.2248, found 501.2232. 

Methyl 2,3,4-Tri-O-benzyl-5-C-methyl-α-D-glucopyranoside 7. A 
solution of aldehyde 5 (46 mg, 0.1 mmol) in methanol (2 mL) was 
treated with sodium borohydride (11 mg, 0.29 mmol) at 0 ◦C and stirred 
for 1 h before the solvent was removed under vacuum and the residue 
purified by column chromatography (hexane:ethyl acetate, 3:1) to 
afford the alcohol 7 (42 mg, 91%) as colorless oil. [α]D

22 = +8.4 (c 0.25, 
CH2Cl2); 1H NMR (600 MHz, C6D6) δ 7.33–7.01 (m, 15H, ArH), 
5.01–4.96 (m, 2H, PhCH2), 4.78 (d, J = 11.3 Hz, 1H, PhCH2), 4.64 (d, J 
= 11.3 Hz, 1H, PhCH2), 4.57 (d, J = 12.0 Hz, 1H, PhCH2), 4.54 (d, J =
4.0 Hz, 1H, H-1), 4.45 (d, J = 12.0 Hz, 1H, PhCH2), 4.26 (t, J = 9.8 Hz, 
1H, H-3), 3.89 (d, J = 9.7 Hz, 1H, H-4), 3.44–3.40 (m, 2H, H-2, H-6a), 
3.35–3.26 (m, 1H, H-6a), 3.11 (s, 3H, OCH3), 1.82–1.49 (m, 1H, OH), 
1.32 (s, 3H, CH3); 13C NMR (151 MHz, C6D6) δ 139.4 (ArC), 139.1 (ArC), 
139.0 (ArC), 128.2 (ArC), 128.13 (ArC), 128.09 (ArC), 127.9 (ArC), 
127.8 (ArC), 127.7 (ArC), 127.6 (ArC), 127.2 (ArC), 100.0 (C-1), 81.0 
(C-2), 79.0 (C-5), 78.8 (C-3), 78.7 (C-4), 75.5 (PhCH2), 75.2 (PhCH2), 
72.6 (PhCH2), 67.4 (C-6), 55.4 (OCH3), 18.4 (CH3). HRMS (ESI): m/z 
calcd for C29H34O6Na [M + Na] 501.2248, found 501.2237. 

Methyl 5-C-methyl-α-D-glucopyranoside 8. Pd(OH)2/C (30% w/ 
w, 5 mg) was added to a solution of 7 (15 mg, 0.03 mmol) in methanol 
(1 mL), and the suspension degassed and stirred vigorously under 1 atm 
of H2 (balloon) for 24 h, after which it was filtered through a Celite pad, 
which was washed with MeOH. Evaporation of the solvent which on 
repeated washing with hexane:ethyl acetate (3:1) gave the title com-
pound (8 mg, 92%). [α]D

22 = +60.0 (c 0.1, CH2Cl2); 1H NMR (900 MHz, 
D2O) δ 4.75 (d, J = 4.2 Hz, 1H, H-1), 3.78 (t, J = 9.9 Hz, 1H, H-3), 3.52 
(d, J = 9.8 Hz, 1H, H-4), 3.47 (dd, J = 10.0, 4.2 Hz, 1H, H-2), 3.46–3.38 
(m, 2H, H-6a, H-6b), 3.36 (s, 3H, OCH3), 1.17 (s, 3H, CH3). 13C NMR 
(225 MHz, D2O) δ 100.7 (C-1), 79.3 (C-5), 71.5 (C-2), 70.7 (C-4), 69.3 
(C-3), 66.2 (C-6), 55.7 (OCH3), 16.9 (CH3)). HRMS (ESI): m/z calcd for 
C8H16O6Na [M + Na] 231.0839, found 231.0833. 

Penta-O-acetyl-5-bromo-β-D-glucopyanose (10). This compound 
was prepared according to the literature method [23] from glucose 
pentaacetate in 89% yield as colorless syrup. [α]D

22 = − 28.8 (c 0.25, 
CH2Cl2); 1H NMR (600 MHz, CDCl3) δ 6.25 (d, J = 8.6 Hz, 1H), 5.59 (t, J 
= 9.7 Hz, 1H), 5.28 (dd, J = 9.7, 8.6 Hz, 1H), 5.26 (d, J = 9.7 Hz, 1H), 
4.59 (d, J = 12.3 Hz, 1H), 4.33 (d, J = 12.3 Hz, 1H), 2.14 (s, 3H), 2.13 (s, 
3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H); 13C NMR (151 MHz, CDCl3) 
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δ 169.7, 169.6, 169.3, 169.0, 168.3, 95.9, 91.4, 71.1, 69.4, 68.2, 65.7, 
20.7, 20.6, 20.5, 20.5. HRMS (ESI): m/z calcd for C16H21O11BrNa [M +
Na] 491.0159, found 491.0151. 

Penta-O-acetyl-5-fluoro-β-D-glucopyanose (11). This compound 
was prepared according to the literature method [24] from 10 in 24% 
yield as colorless syrup. [α]D

22 = +10.0 (c 0.2, CH2Cl2). 1H NMR (600 
MHz, CDCl3) δ 6.21 (dd, J = 8.3, 1.5 Hz, 1H, H-1), 5.53 (td, J = 9.7, 1.5 
Hz, 1H, H-3), 5.36 (ddd, J = 22.8, 9.9, 1.5 Hz, 1H, H-4), 5.31–5.24 (m, 
1H, H-2), 4.40 (ddd, J = 12.0, 7.0, 1.5 Hz, 1H, H-6a), 4.08–3.92 (m, 1H, 
H-6b), 2.16 (d, J = 1.5 Hz, 3H), 2.13 (s, 3H), 2.11 (s, 3H), 2.08 (s, 3H), 
2.04 (s, 3H). 1H NMR (600 MHz, CD3OD) δ 6.14 (d, J = 8.2 Hz, 1H), 5.44 
(t, J = 9.6 Hz, 1H), 5.37 (dd, J = 22.6, 9.9 Hz, 1H), 5.23 (dd, J = 9.3, 8.3 
Hz, 1H), 4.38 (dd, J = 12.0, 8.4 Hz, 1H), 4.04 (dd, J = 12.1, 5.4 Hz, 1H), 
2.10 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H). 19F 
NMR (470 MHz, CDCl3) δ − 131.34 (ddd, J = 22.7, 7.1, 4.2 Hz).13C NMR 
(150 MHz, CDCl3) δ 169.7, 169.7, 169.4, 169.2, 168.4, 110.3, 108.8, 
88.7, 88.6, 69.8, 69.4, 67.8, 67.7, 61.7, 61.4, 20.7, 20.5, 20.5, 20.5, 
20.4. HRMS (ESI): m/z calcd for C16H21O11FNa [M + Na] 431.0960, 
found 431.0948. 
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