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Studies toward the total synthesis of Sch 202596, an antagonist of
the galanin receptor subtype GalR1: synthesis of geodin, the
spirocoumaranone subunit of Sch 202596
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Abstract

An efficient synthesis of ()-geodin [( )-2] corresponding to the spirocoumaranone subunit of Sch 202596
(1) was accomplished in a convergent manner by utilizing coupling reaction of the aryl aldéhyik the
aryl bromide6 and oxidative spirocyclization of the benzophendnas the key steps. The aromatic segments
5 and6 were prepared from commercially available methyl 3,5-dihydroxybenz@asan( 5-methylresorcinoBj,
respectively. © 2000 Elsevier Science Ltd. All rights reserved.
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Sch 202596 1), isolated from a fungal fermentation cultudspergillussp. by the Schering—Plough
research group in 1997, has been shown to be the first non-peptidic antagonist of the galanin receptor
subtype GalR1:2 Since the use of a galanin receptor antagonist can inhibit galanin-induced féeding,
this natural product is anticipated to be a promising agent for the treatment of feeding disorders involving
overeating and obesily? The gross structure df was revealed by extensive spectroscopic studies to
have a novel spirocoumaranone skeleton connected with a highly oxygenated cyclohexene ring via an
ether linkagé:® Its remarkable biological properties as well as its unique structural featuresInaake
exceptionally intriguing and timely target for total synthesis.

We embarked on a project directed at the total synthedisndl its congeners with the aim of exploring
the structure—activity relationships. Our synthetic strategyl faas designed as shown in Scheme 1, in
which the ether linkage it was disconnected retrosynthetically to give the spirocoumaranone s@bunit
and the cyclohexene subuBitincidentally, the spirocoumaranone subuhis identical with the known
antifungal antibiotic (+)-geodif.To the best of our knowledge, the total synthesi®dfas not been
reported to date. In this communication, we wish to report an efficient and facile method for the synthesis
of ( )-geodin [( )-2].
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Scheme 1. Synthetic plan for Sch 20259 (

The synthetic plan for ()-geodin [( )-2] is outlined in Scheme 2, which features the biogenetic-type
oxidative spirocyclizatiof® of the tetraertho-substituted benzophenodeand the coupling reaction
of the tetrasubstituted aryl aldehy8ewith the fully substituted aryl bromidé as the key steps. The
aromatic segmentS and 6 are anticipated to be prepared from commercially available methyl 3,5-
dihydroxybenzoate7) and 5-methylresorcinoBj, respectively.
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Scheme 2. Synthetic plan for §-geodin [( )-2]

At first, we pursued the synthesis of the aryl aldehgdgarting from methyl 3,5-dihydroxybenzoate
(7) as shown in Scheme 3. Thus, the known benzyl alcaBgbrepared fron? according to the reported
proceduré? was transformed to the benzyl etHe¥(88%, two steps) by regiospecific monobromination
using 1.0 equiv. oN-bromosuccinimide (NBS) followed by benzylation of the resulting benzyl alcohol
11. For introducing a formyl group, the aryl lithium generated in situ frb&was allowed to react with
N,N-dimethylformamide (DMF) to afford the 1,2,3,5-tetrasubstituted aryl aldeli&im 81% yield.
Direct conversion ofl3 to the methoxymethyl (MOM) ethet5 by selective deprotection met with
failure. Thereforel3 was first converted to the resorcirigl by complete deprotection of the two MOM
protecting groups, which was then subjected to selective monoprotediid®@MCl (1.0 equiv.), KCO3
(1.1 equiv.)], giving rise tdl5 in 68% yield for the two steps. Finally, methylation of the remaining
hydroxy group inl5led to the requisite aryl aldehydein 90% yield.

Next, the aryl bromidé, the coupling partner d&, was synthesized from 5-methylresorcing) yia
a three-step sequence of reactions (Scheme 4). Thus, bromination of the known dichlororeg6yéinol
prepared fron8 by reaction with sulfuryl chloride (2.5 equiv.) (38%), followed by protection of the two
hydroxy groups in the resulting resorciriof as its bis(MOM ether) provided the desired aryl bromide
(96%, two steps).
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Scheme 3. Synthesis of the aryl aldehyde segrietd) MOMCI, i-PLEtN, CH,Cl,, rt, 87%; (b) LiAlH,, ELO, rt, 98%; (c)
NBS, DMF, 0°C, 93%; (d) BnBr, NaH, DMF, rt, 95%; (e)BuLi, Et,0, 78°C; DMF, 78°CIrt, 81%; (f) 6 M HCI, THF, rt,
94%:; (g) MOMCI, K;CO;, acetone, rt, 72%; (h) Mel, CsGODMF, rt, 90%
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Scheme 4. Synthesis of the aryl bromide segne) SQCI,, CHCkL, 0°C¥ rt, 38%; (b) Bg, DMF, rt, 100%; (c) MOMCI,
i-PrLEtN, CH,Cl,, 96%

Having obtained both the aryl aldehy@&eand the aryl bromidés, our next efforts were devoted
to completion of the synthesis of the targeted)-geodin [( )-2] by assembling the two aromatic
segments and 6. As shown in Scheme 5, the critical coupling reaction5ofvith the aryl lithium
generated in situ froré proceeded smoothly, affording the desired coupling prod8dn 86% yield13
Subsequent oxidation 48 by the use of Dess—Martin periodinaf@rovided the tetrartho-substituted
benzophenond9 in 95% yield. The benzophenonkd was further converted to the methyl ester
23 (68%, four steps) via the benzyl alcoh20, the aldehyde21, and the carboxylic aci®2 by
sequential debenzylation, two-step oxidation, and esterification. The three MOM protecting groups in
23 were completely removed by treatment wittoluenesulfonic acidg-TsOH) in refluxing methanol
to provide the key cyclization precursdt® in 81% yield. After several experiment$,the crucial
oxidative spirocyclization ot was found to be effected by treatidgwith 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DD®)in dichloromethane-ethanol at ambient temperature, leading to the formation
of ( )-2'8 in 57% yield. The'H NMR spectrum of the synthetic sample)¢2 was identical to that
reported for (+)-p).°2

In summary, we have succeeded in developing a facile synthetic pathway)tge6din [( )-2]
corresponding to the spirocoumaranone subunit of Sch 20259 (@ convergent manner starting
from commercially available methyl 3,5-dihydroxybenzo&jead 5-methylresorcino8j. The explored
synthetic method features the coupling reaction of the aryl aldebydéh the aryl bromide6 and
oxidative spirocyclization of the benzophenah&Vork on the total synthesis dfis in progress and will
be reported shortly.
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Scheme 5. Synthesis of J-geodin [( )-2]. (a) n-BuLi, THF, 78°C;5, 78°CHrt, 86%; (b) Dess—Martin periodinane,
CH,Cly, rt, 98%; (c) B (1 atm), 10% Pd-C, EtOH, rt, 79%; (d) Dess—Martin periodinane;@H rt, 95%; (e) NaClQ,
NaH,PQy, 2-methyl-2-butene, THRert-BuOH-H0, rt; (f) CH;N,, ELO, 90% (two steps); (g-TsOH, MeOH, reflux, 81%;
(h) DDQ, CH,Cl,—EtOH, rt, 57%
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