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A B S T R A C T

A series of new quinolizino[1,9-hi]phenoxazinium dyes built on julolidine and naphthalen-1-amine derivatives
or anthracen-1-amine were prepared. The N-terminal of these quinolizino[1,9-hi]phenoxazinium chlorides
contains aromatic or aliphatic substituents, along with the functionalities such as chloro, hydroxyl and carboxyl.
The photophysical behaviour of these compounds was studied in anhydrous ethanol and aqueous medium under
acidic and basic conditions. These fluorophores display absorption and emission maxima up to 675 and 712 nm,
respectively, can serve as alternative sensing tools in biological assays.

All the quinolizino[1,9-hi]phenoxazinium chlorides were evaluated against the yeast Saccharomyces cerevisiae
in a broth microdilution assay. It was found that their antifungal activity depended on the substituent at 14-
amino position in benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chlorides, and also on the addition of
a fused benzene ring, which occurs in naphtho[2,3-a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chloride.
The highest activity, with a MIC of 0.78 μM, was obtained for benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-
iminium chloride with a 3-chloropropyl substituent at the 14-amino position of the heterocycle core.

1. Introduction

Small fluorescent molecules serve as central tools in the field of
biosciences [1]. The emerging need of fluorescent probes requires de-
sign and strategic synthesis of new fluorescent dyes. Nile Blue (NB) and
their derivatives are studied and used as markers due to their fluor-
escent and solvatochromic characteristics [2–9]. In this context, ben-
zophenoxazinium dyes are structurally compact with high molar ex-
tinction coefficients and exhibit strong fluorescence in the near-infrared
(NIR) region with high photochemical stability, which indicates the
efficacy of these dyes as fluorophores for biological applications [10].
Benzophenoxazinium chlorides function as potential photosensitizers
for photodynamic therapy [11,12], pH sensors for simultaneous far-red
and near-infrared live bioimaging [13], promising drugs for malaria
[14] and reversing vinca alkaloid resistance in multidrug-resistant
cancer cells [15], among other promising biological applications
[16–18].

Julolidine based dyes serve as important tools in photochemical,
biological systems due to low toxicity, displaying good chemical and

thermal stability [19,20]. These compounds are used as sensitizers in
dye sensitized solar cells due to their large π-conjugated system and
high electron donating property [21]. In addition, they are also used as
photoconductive materials [22], chemiluminescence substances [23],
chromogenic substrates in analytical redox reactions [24,25], nonlinear
optical materials [26], phototriggers in the release of neurotransmitters
[27], potential anti-depressants and tranquilizers [28]. Julolidine de-
rivatives function as chemosensors for the selective detection of metals
such as Cu2+ [29], Fe3+ [30], Al3+ [31], Zn2+ [32], and also act as
fluorescent molecular rotors [33]. Moreover, 8-hydroxyjulolidine was
used for the synthesis of bridged phenoxazinium salts and some of these
compounds function as acid-base indicators as reported by Kanitz et al.
[34]. However, Kanitz publication is the only one so far using julolidine
system in the preparation of phenoxazinium dyes.

Keeping in mind the importance and in continuation of our research
interest towards the synthesis and applications of benzophenoxazinium
salts [2–8,12,17,18,35–37], we herein report a new series of benzo[a]
quinolizino[1,9-hi]phenoxazin-14(5H)-iminium and naphtho[2,3-a]
quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chlorides obtained by
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condensation of nitroso derivative of 8-hydroxyjulolidine with naph-
thalen-1-amine derivatives and anthracen-1-amine, respectively. The
introduction of the julolidine nucleous into the polycyclic system is
expected to result in maxima absorption and emission wavelengths of
fluorophores higher than those obtained from similar unbridged ani-
lines [34].

The new compounds synthesised possesses aromatic or aliphatic
substituents, along with the functionalities such as chloro, hydroxyl and
carboxyl at 14-amino position of the heterocyclic system. The choice of
these substituents, namely the propyl and chloropropyl groups, was
based on the fact that benzo[a]phenoxazines previously reported by our
research group possessing these groups on the 5-amino positions dis-
played the best biological activities against the yeast Saccharomyces
cerevisiae [17,18]. On the other hand, the presence of chloro as well as
hydroxyl and carboxyl as side chain termini will increase the versatility
of these compounds, particularly in terms of fluorescent labeling, al-
lowing their use as covalent markers of biomolecules, in addition to
their intrinsic ability as non-covalent markers due to the ionic character
of their structures.

Fundamental photophysical studies of these cationic fluorophores
were carried out in anhydrous ethanol and aqueous medium under
acidic and basic conditions.

The antifungal activity of these phenoxazinium chlorides was assesd
by using the yeast Saccharomyces cerevisiae as a model organism.
Comparison of MIC values of all the compounds revealed that benzo[a]
quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chloride with a 3-
chloropropyl substituent at the 14-amino position of the heterocycle
core exhibits the best activity.

2. Experimental section

2.1. Synthesis general

All melting points were measured on a Stuart SMP3 melting point
apparatus. TLC analysis was carried out on 0.25mm thick precoated
silica plates (Merck Fertigplatten Kieselgel 60F254), and spots were vi-
sualised under UV light. Chromatography on silica gel was carried out
on Merck Kieselgel (230–240 mesh). IR spectra were determined on a
BOMEM MB 104 spectrophotometer. NMR spectra were obtained on a
Bruker Avance III 400 at an operating frequency of 400MHz for 1H and
100.6MHz for 13C using the solvent peak as internal reference at 25 °C.
All chemical shifts are given in ppm using δH Me4Si= 0 ppm as re-
ference and J values are given in Hz. Assignments were made by
comparison of chemical shifts, peak multiplicities and J values, and
were supported by spin decoupling-double resonance and bidimen-
sional heteronuclear correlation techniques. Mass spectrometry analysis
were performed at the “CACTI - Unidad de Espectrometria de Masas”, at
University of Vigo, Spain. All commercial reagents were used as re-
ceived.

2.2. Synthetic method for the preparation of 9-nitroso-1,2,3,5,6,7-
hexahydropyrido[3,2,1-ij]quinolin-8-ol hydrochloride 1

1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]quinolin-8-ol (8-hydro-
xyjulolidine) (0.300 g, 1.58mmol) was weighed in a round bottom flask
and dissolved in ethanol (5 mL) which was placed in an ice bath with
continuous stirring. After a period of 15min, concentrated hydrochloric
acid (0.419mL) was added. A solution of sodium nitrite (0.123 g,
1.73mmol) in water (1 mL) was prepared and added to the ice cold
acidic solution over a period of 30min. The reaction mixture turns
brown and stirring was continued for more 5 h and then filtered with
the sintered glass funnel. To avoid excess of acid it was washed with
small amounts of water and ethanol. The precipitate was dried to get a
fine brownish red powder (0.345 g), whose 1H NMR spectrum sug-
gested the presence of compound 1 in a mixture with the corresponding
isomer, 10-nitroso-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol

hydrochloride, in the 7:3 ratio. 1H NMR (DMSO, 400MHz): δH
1.79–1.87 (m, 4 H, 2-H and 6-H, isomer), 1.88–2.0 (m, 4 H, 2-H and 6-
H), 2.45 (t, J=5.6 Hz, 2 H, 1-H or 7-H, isomer), 2.58 (t, J=5.6 Hz,
2 H, 1-H or 7-H), 2.65 (t, J=5.6 Hz, 2 H, 1-H or 7-H, isomer), 2.71 (t,
J=5.6 Hz, 2 H, 1-H or 7-H), 3.40–3.50 (m, 4 H, 3-H and 5-H, isomer),
3.73–3.80 (m, 4 H, 3-H and 5-H), 6.79 (s, 1 H, 9-H, isomer), 7.30 (s, 1 H,
10-H) ppm.

2.3. Synthetic method for the preparation of N-phenylnaphthalen-1-amine
2b

To a solution of naphthalen-1-amine (1.0 g, 6.98mmol) in ethanol
(3 mL), chlorobenzene (0.783 g, 6.98mmol) was added, and the re-
sulting mixture was refluxed for 6 h. The reaction progress was mon-
itored by TLC (dichloromethane/methanol, 9.5:0.5 vol). After comple-
tion of the reaction, solvent was evaporated and the mixture was
purified by column chromatography on silica using dichloromethane
and dichloromethane/methanol (99:1), as the eluent. N-phe-
nylnaphthalen-1-amine 2b was obtained as pink solid (1.357 g, yield
88%). Mp 59–61 °C. Rf = 0.40 (dichloromethane/methanol,
9.0:1.0 vol): 1H NMR (CDCl3, 400MHz): δH 6.81 (dd, J=6.8 and
1.6 Hz, 2 H, 2-H and 4-H Ph), 7.32–7.41 (m, 4 H, 3-H Ph, 5-H Ph, 2-H Ph
and 6-H Ph), 7.48–7.54 (m, 3 H, 4-H, 6-H, 3-H), 7.82–7.89 (m, 3 H, 7-H,
5-H and 8-H) ppm. 13C NMR (CDCl3, 100.6 MHz): δC 109.61 (C-2 and
1×Ar–C), 118.89 (2×Ar–C), 120.74 (2×Ar–C), 123.59 (C-8a),
124.78 (1×Ar–C), 125.78 (1×Ar–C), 126.28 (3×ArC), 128.48
(1×Ar–C), 134.33 (C-4a and C-1 Ph), 142.02 (C-1) ppm.

2.4. General procedure for the synthesis of quinolizino[1,9-hi]phenoxazin-
6-iminium chlorides 4a-f and 5

To a cold solution (ice bath) of 9-nitroso-1,2,3,5,6,7-hexahy-
dropyrido[3,2,1-ij]quinolin-8-ol(9-nitroso-8-hydroxyjulolidine hydro-
chloride) 1 (2 equiv) in ethanol (2–3mL), precursors 2a-f or 3 (1 equiv)
and concentrated hydrochloride acid (0.25 equiv) were added. The
reaction mixture was refluxed during the time mentioned below, and
monitored by TLC. Upon completion, the solvent was evaporated under
reduced pressure and column chromatography purification was per-
formed on silica gel with dichloromethane and dichloromethane/me-
thanol, mixtures of different polarity, as the eluents and dyes 4a-f or 5
were obtained as green blue solids.

2.4.1. 2,3,6,7-Tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-
14(5H)-iminium chloride 4a

The product of the reaction of 1 (0.115 g, 0.525mmol) in ethanol
(1 mL) and concentrated hydrochloric acid (0.014mL) with naph-
thalen-1-amine 2a (0.037 g, 0.262mmol) (reflux time 19 h), was
chromatographed with dichloromethane and dichloromethane/me-
thanol 9.0:1.0, to give compound 4a as a green blue solid (0.037 g,
yield 19%). Mp 218–221 °C. Rf = 0.34 (dichloromethane/methanol,
9:1 vol). FTIR (KBr 1%): νmax 3417, 3122, 2920, 2927, 2856, 1641,
1586, 1532, 1473, 1437, 1385, 1354, 1317, 1286, 1215, 1175, 1140,
1098, 1033, 778 cm−1. 1H NMR δH (CD3OD, 400MHz), 1.98–2.08 (m,
4H, 2-H and 6-H), 2.75 (t, J=6.4 Hz, 2H, 1-H), 2.83 (t, J=6.0 Hz, 2H,
7-H), 3.50–3.60 (m, 4H, 5-H and 3-H), 6.62 (s, 1H, 15-H), 7.16 (s, 1H,
8-H), 7.70–7.74 (m, 1H, 12-H), 7.80 (t, J=7.2 Hz, 1H, 11-H), 8.17 (d,
J=8.4 Hz, 1H, 13-H), 8.62 (d, J=8.0 Hz, 1H, 10-H) ppm. 13C NMR δC
(CD3OD, 100.6MHz), 20.07 (C-1), 20.38 (C-6), 21.47 (C-2), 28.38 (C-
7), 51.88 (C-3), 52.41 (C-5), 96.55 (C-15), 106.54 (Ar–C), 124.20 (C-
13), 124.97 (C-10), 128.48 (Ar–C), 129.78 (C-12), 130.03 (C-8), 131.39
(Ar–C), 132.08 (C-11), 132.75 (Ar–C), 132.92 (C–Ar), 133.41 (Ar–C),
144.43 (Ar–C), 151.43 (Ar–C), 152.47 (Ar–C), 159.94 (C-14) ppm.
HRMS: m/z (ESI): Found [M+1]+: 378.1375; C22H20ClN3O requires [M
+1]+: 378.1375.
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2.4.2. N-(2,3,6,7-Tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-
14(5H)-ylidene) benzenaminium chloride 4b

The product of the reaction of 1 (0.115 g, 0.525mmol) in ethanol
(1 mL) and concentrated hydrochloric acid (0.014mL) with N-phe-
nylnaphthalen-1-amine 2b (0.057 g, 0.262mmol) (reflux time 17 h),
was chromatographed with dichloromethane and dichloromethane/
methanol 9.5:0.5, to give compound 4b as green blue solid (0.047 g,
yield 20%). Mp 118.7–120 °C. Rf = 0.44 (dichloromethane/methanol,
9:1 vol). FTIR (KBr 1%): νmax 3439, 3000, 1643, 1469, 1284, 1205,
1141, 1098, 1033, 770 cm−1. 1H NMR δH (CD3OD, 400MHz),
2.04–2.18 (m, 4H, 2-H and 6-H), 2.51 (t, J=6.4 Hz, 2H, 7-H), 2.92–3.0
(m, 2H, 1-H), 3.60–3.70 (m, 2H, 3-H), 3.82 (t, J=6.4 Hz, 2H, 5-H),
6.83 (s, 1H, 15-H), 7.48 (s, 1H, 8-H), 7.73–7.84 (m, 4H, 4×Ar–H),
7.87–7.95 (m, 2H, 12-H and 1×Ar–H), 8.10 (t, J=7.6 Hz, 1H, 11-H),
8.27 (d, J=8.4 Hz, 1H, 13-H), 8.89 (d, J=7.2 Hz, 1H, 10-H) ppm. 13C
NMR δC (CD3OD, 100.6MHz), 20.26 (C-1), 20.60 (C-6), 21.66 (C-2),
28.53 (C-7), 51.92 (C-3), 52.41 (C-5), 96.70 (C-15), 106.54 (Ar–C),
119.29 (Ar–C), 123.76 (Ar–C), 124.30 (C-13), 125.24 (C-10), 128.62
(Ar–C), 129.10 (Ar–C), 129.92 (2xAr-C), 130.27 (C-8), 132.14 (C-11),
132.64 (Ar–C, C-12), 133.27 (2×Ar–C), 144.97 (2xAr-C), 152.16
(Ar–C), 152.65 (Ar–C), 159.18 (C-14), 160.62 (Ar–C) ppm. HRMS: m/z
(ESI): Found [M+1]+: 454.1691; C28H24ClN3O requires [M+1]+:
454.1688.

2.4.3. N-(2,3,6,7-Tetrahydro-1H-benzo[a]quinolizino[1,9-hi]phenoxazin-
14(5H)-ylidene)propan-1-aminium chloride 4c

The product of the reaction of 1 (0.115 g, 0.525mmol) in ethanol
(1 mL) and concentrated hydrochloric acid (0.014mL) with N-pro-
pylnaphthalen-1-amine 2c (0.048 g, 0.262mmol) (reflux time 17 h),
was chromatographed with dichloromethane and dichloromethane/
methanol 9.5:0.5, to give compound 4c as blue green solid (0.047 g,
yield 20%). Mp 223–225 °C. Rf 0.35 (dichloromethane/methanol,
9.5:0.5 vol). FTIR (KBr 1%): νmax 3438, 3000, 1642, 1468, 1285, 1207,
1150, 1090, 1030, 774 cm−1. 1H NMR δH (CD3OD, 400MHz): 1.14 (t,
J=7.6 Hz, 3H NHCH2CH2CH3), 1.90 (sext, J=7.2 Hz, 2H,
NHCH2CH2CH3), 2.04–2.16 (m, 2H, 6-H and 2-H), 2.90–2.99 (m, 2H, 7-
H and 1-H), 3.58–3.66 (m, 4H, 3-H, 5-H and NHCH2CH2CH3), 6.82 (s,
1H, 15-H), 7.40 (s, 1H, 8-H), 7.77 (td, J=7.2 and 1.6 Hz, 1H, 12-H),
7.86 (td, J=7.6 and 1.2 Hz, 1H, 11-H), 8.28 (d, J=8.0 Hz, 1H, 13-H),
8.79 (d, J=7.6 Hz, 1H, 10-H) ppm. 13C NMR δC (CD3OD, 100.6MHz),
11.80 (NHCH2CH2CH3), 20.31 (C-1), 20.57 (C-6), 21.64 (C-2), 22.99
(NHCH2CH2CH3), 28.56 (C-7), 47.09 (NHCH2CH2CH3), 51.94 (C-3),
52.43 (C-5), 93.48 (C-15), 106.72 (Ar–C), 123.42 (C-13), 124.29
(Ar–C), 125.18 (C-10), 128.68 (Ar–C), 130.04 (C-12), 130.13 (C-8),
131.88 (Ar–C), 132.14 (C-11), 132.54 (Ar–C), 133.31 (Ar–C), 144.89
(Ar–C), 152.20 (Ar–C), 152.53 (Ar–C), 157.40 (C-14) ppm. HRMS: m/z
(ESI): Found [M+1]+: 420.1855; C25H26ClN3O requires [M+1]+:
420.1845.

2.4.4. 3-Chloro-N-(2,3,6,7-tetrahydro-1H-benzo[a]quinolizino[1,9-hi]
phenoxazin-14(5H)-ylidene)propan-1-aminium chloride 4d

The product of the reaction of 1 (0.335 g, 0.153mmol) in ethanol
(1 mL) and concentrated hydrochloric acid (0.040mL) with N-(3-
chloropropyl)naphthalen-1-amine 2d (0.167 g, 0.076mmol) (reflux
time 24 h), was chromatographed with dichloromethane and di-
chloromethane/methanol 9.5:0.5, to give compound 4d as blue green
solid (0.017 g, yield 5%). Mp 209.3–210.8 °C. Rf = 0.60 (di-
chloromethane/methanol, 9:1 vol). IR (KBr 1%): νmax= 3428, 3223,
3027, 2961, 2929, 1707, 1640, 1588, 1543, 1472, 1438, 1385, 1358,
1314, 1282, 1217, 1176, 1136, 1099, 1047, 893, 780 cm−1. 1H NMR δH
(CD3OD, 400MHz), 2.05–2.14 (m, 4H, H-2 and H-6), 2.33 (quint,
J=6.4 Hz, 2H, NHCH2CH2CH2Cl), 2.83–2.92 (m, 2H, H-1), 2.95 (t,
J=6.0 Hz, 2H, H-7), 3.60–3.69 (m, 4H, H-3 and H-5), 3.78 (t,
J=6.8 Hz, 2H, NHCH2CH2CH2Cl), 3.83 (t, J=6.4 Hz, 2H,
NHCH2CH2CH2Cl), 6.73 (s, 1H, H-15), 7.33 (s, 1H, H-8), 7.71 (t,
J=7.2 Hz, 1H, H-12), 7.82 (t, J=7.6 Hz, 1H, H-11), 8.21 (d,

J= 8.0 Hz, 1H, H-13), 8.68 (d, J=7.6 Hz, 1H, H-10) ppm. 13C NMR δC
(CD3OD, 100.6MHz), 20.21 (C-1), 20.46 (C-6), 21.56 (C-2), 28.53 (C-
7), 32.47 (NH2CH2CH2CH2Cl), 42.71 (NHCH2CH2CH2Cl), 43.30
(NHCH2CH2CH2Cl), 52.06 (C-3), 52.56 (C-5), 93.28 (C-15), 106.75
(Ar–C), 123.44 (C-13), 124.01 (Ar–C), 124.97 (C-10), 129.22 (Ar–C),
129.89 (C-12), 130.14 (C-8), 131.24 (Ar–C), 132.02 (C-11), 132.26
(Ar–C), 133.76 (Ar–C), 144.78 (Ar–C), 151.73 (Ar–C), 152.82 (Ar–C),
156.92 (C-14) ppm. HRMS: m/z (EI): Found [M+1]+: 454.3900;
C25H25Cl2N3O requires [M+1]+: 454.3905.

2.4.5. 3-Hydroxy-N-(2,3,6,7-tetrahydro-1H-benzo[a]quinolizino[1,9-hi]
phenoxazin-14(5H)-ylidene)propan-1-aminium chloride 4e

The product of the reaction of 1 (0.115 g, 0.525mmol) in ethanol
(1 mL) and concentrated hydrochloric acid (0.014mL) with 3-(naph-
thalen-1-ylamino)propan-1-ol 2e (0.053 g, 0.262mmol) (reflux time
18 h), was chromatographed with dichloromethane and di-
chloromethane/methanol 9.5:0.5, to give compound 4e as green blue
solid (0.051 g, yield 22%). Mp>300 °C. Rf = 0.48 (dichloromethane/
methanol, 9:1 vol). IR (KBr 1%): νmax= 3450, 2932, 1640, 1588, 1553,
1531, 1471, 1440, 1386, 1355, 1317, 1284, 1217, 1177, 1139, 1101,
781 cm−1. 1H NMR δH (CD3OD, 400MHz), 2.04–2.14 (m, 6H, 2-H, 6-H
and NHCH2CH2CH2OH), 2.88 (t, J=6.4 Hz, 2H, 1-H), 2.95 (t,
J=6.0 Hz, 2H, 7-H), 3.60–3.67 (m, 4H, 3-H and 5-H), 3.75 (t,
J=7.2 Hz, 2H, NHCH2CH2CH2OH), 3.82 (t, J=6.0 Hz, 2H,
NHCH2CH2CH2OH), 6.77 (s, 1H, 15-H), 7.34 (s, 1H, 8-H), 7.72 (t,
J=7.2 Hz, 1H, 12-H), 7.83 (t, J=7,2 Hz, 1H, 11-H), 8.21 (d,
J= 8.4 Hz, 1H, 13-H), 8.71 (d, J=7.6 Hz, 1H, 10-H) ppm. 13C NMR δC
(CD3OD, 100.6MHz), 20.27 (C-1), 20.53 (C-6), 21.62 (C-2), 28.56 (C-
7), 32.17 (NH2CH2CH2CH2OH), 42.94 (NHCH2CH2CH2OH), 51.97 (C-
3), 52.47 (C-5), 60.54 (NHCH2CH2CH2OH), 93.35 (C-15), 106.69
(Ar–C), 123.40 (C-13), 124.13 (Ar–C), 125.10 (C-10), 128.77 (Ar–C),
129.96 (C-12), 130.11 (C-8), 131.65 (Ar–C), 132.08 (C-11), 132.36
(Ar–C), 133.33 (Ar–C), 144.77 (Ar–C), 152.0 (Ar–C), 152.56 (Ar–C),
157.15 (C-14) ppm. HRMS: m/z (ESI): Found [M+1]+: 436.1785;
C25H26ClN3O2 requires [M+1]+: 436.1794.

2.4.6. 3-Carboxy-N-(2,3,6,7-tetrahydro-1H-benzo[a]quinolizino[1,9-hi]
phenoxazin-14(5H)-ylidene)propan-1-aminium chloride 4f

The product of the reaction of 1 (0.254 g, 1.0mmol) in ethanol
(2 mL) and concentrated hydrochloric acid (0.027mL) with 4-(naph-
thalen-1-ylamino)butanoic acid 2f (0.115 g, 0.50mmol) (reflux time
17 h), was chromatographed with dichloromethane and di-
chloromethane/methanol 9.5:0.5, to give compound 4f as green blue
solid (0.88 g, yield 19%). Mp 154.6–156.8 °C. Rf = 0.42 (di-
chloromethane/methanol, 9:1 vol). IR (KBr 1%): νmax= 2923, 2853,
1731, 1721, 1637, 1589, 1545, 1499, 1435, 1375, 1334, 1322, 1290,
1230, 1182, 1162, 1146, 1127, 1100, 1054, 1001, 918, 807, 753 cm−1.
1H NMR δH (CD3OD, 400MHz), 2.0–2.16 (m, 6H, 2-H, 6-H and
NHCH2CH2CH2CO2H), 2.59 (t, J=7.2 Hz, 2H, NHCH2CH2CH2CO2H),
2.75 (t, J=5.6 Hz, 2H, 1-H), 2.88 (t, J=6.0 Hz, 2H, 7-H), 3.55–3.64
(m, 6H, 3-H, 5-H, and NHCH2CH2CH2CO2H), 6.63 (s, 1H, 15-H), 6.94
(s, 1H, 8-H), 7.65 (t, J=7.2 Hz, 1H, 12-H), 7.77 (t, J=7.6 Hz, 1-H, 11-
H), 8.06–8.16 (m, 1H, 13-H), 8.57 (d, J=8.0 Hz, 1H, 10-H) ppm. 13C
NMR δC (CD3OD, 100.6MHz), 20.17 (C-1), 20.57 (C-2), 21.54 (C-6),
24.70 (NHCH2CH2CH2CO2H), 28.49 (C-7), 31.84
(NHCH2CH2CH2CO2H), 44.58 (NHCH2CH2CH2CO2H), 51.97 (C-3),
52.35 (C-5), 93.44 (C-15), 106.70 (Ar–C), 123.32 (C-13), 124.94
(Ar–C), 125.43 (C-10), 128.90 (Ar–C), 130.06 (C-12), 131.17 (C-8),
131.97 (Ar–C), 132.10 (C-11), 133.12 (Ar–C), 133.38 (Ar–C), 144.54
(Ar–C), 151.60 (Ar–C), 152.59 (Ar–C), 157.10 (C-14), 175.91 (C]O)
ppm. HRMS: m/z (ESI): Found [M+1]+: 464.1745;
C26H26ClN3O3requires [M+1]+: 464.1743.

2.4.7. 9,10,11,13,14,15-Hexahydro-6H-naphtho[2,3-a]quinolizino[1,9-
hi]phenoxazin-6-iminium chloride 5

The product of the reaction of 1 (0.115 g, 0.525mmol) in ethanol
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(1 mL) and concentrated hydrochloric acid (0.014mL) with anthracen-
1-amine 3 (0.051 g, 0.262mmol) (reflux time 18 h), was chromato-
graphed with dichloromethane and dichloromethane/methanol 9.0:1.0,
to obtain the compound 5 as green blue solid (0.047 g, yield 21%). Mp
225–227 °C. Rf = 0.53 (dichloromethane/methanol, 9:1 vol). FTIR (KBr
1%): νmax 3432, 3350, 3096, 2950, 1656, 1634, 1573, 1551, 1517,
1472, 1435, 1410, 1385, 1351, 1333, 1286, 1214, 1166, 1142, 1095,
1052, 1015, 902, 838, 752 cm−1. 1H NMR (CD3OD, 400MHz): δH
1.92–2.05 (m, 4 H, 10-H and 14-H), 2.58 (t, J=6.8 Hz, 2 H, 9-H), 2.80
(t, J=6.4 Hz, 2 H, 15-H), 3.42 (t, J=6.0 Hz, 2 H, 11-H), 3.48–3.54 (m,
2 H, 13-H), 6.49 (s, 1 H, 7-H), 7.08 (s, 1 H, 16-H), 7.60–7.70 (m, 2 H, 2-
H and 3-H), 8.0 (d, J=8.0 Hz, 1 H, 1-H), 8.04 (d, J=7.2 Hz, 1 H, 4-H),
8.69 (s, 1 H, 5-H), 8.91 (s, 1 H, 18-H) ppm. 13C NMR (CD3OD,
100.6MHz): δC 20.09 (C-14), 20.48 (C-10), 21.61 (C-9), 28.49 (C-15),
51.43 (C-11), 52.03 (C-13), 96.77 (C-7), 106.27 (Ar–C), 121.56 (Ar–C),
124.86 (C-16), 125.63 (Ar–C), 127.13 (C-2, 1×Ar–C), 128.0
(1×Ar–C), 128.70 (C-3), 128.88 (C-1), 129.82 (C-4), 130.10
(2×Ar–C), 130.33 (Ar–C), 131.22 (2×Ar–C), 133.47 (Ar–C), 135.23
(Ar–C), 151.00 (Ar–C), 156.00 (C-6) ppm. HRMS: m/z (ESI): Found [M
+1]+: 428.1521; C26H22ClN3O requires [M+1]+: 428.1531.

2.5. Photophyscial measurements

Electronic absorption and fluorescence spectra of solutions of
fluorophores 4a-f and 5 in absolute ethanol and water were measured.
Ethanol was dried by the use of molecular sieves. Ethanol was either
acidified or basified by the addition of small quantities of trifluoroacetic
acid (TFA) or tetraethylammonium hydroxide (TEAH) solution 25% in
methanol, respectively.

Absorption spectra (200–800 nm) were recorded on a Shimadzu UV-
3101PC UV/Vis/NIR spectrophotometer. Fluorescence measurements
were performed using a Spex Fluorolog 2 spectrofluorometer, equipped
with double monochromators in both excitation and emission. Spectra
were corrected for the instrumental response of the system.

Fluorescence quantum yields (Φ) were determined using the stan-
dard method (Equation (1), taking into account the effect of sample or
reference absorption slightly above 0.1 [38,39], with Oxazine 1 in
ethanol as reference, Φr = 0.11 [40]:

=

−

−

−

−

Φ
F n
F n

Φ
(1 10 )
(1 10 )

A

As
s s

2

r r
2 r

r

s (1)

where A is the absorbance at the excitation wavelength, F the in-
tegrated emission area and n the refraction index of the solvents used.
Subscripts (r) and (s) denotes the reference and sample compounds.

2.6. Biological activity assays

Minimum Inhibitory Concentrations of growth (MIC) were assessed
using a broth microdilution method for antifungal susceptibility testing
of yeasts (NCCLS M27-A). The yeast Saccharomyces cerevisiae PYCC
4072 was used as a model organism. Briefly, cells were cultivated in 96-
microwell plates in RPMI 1640 medium, buffered to pH 7.0 with
0.165 M morpholenepropanesulfonic acid (MOPS) buffer (Sigma). Initial
cell concentration was 0.5× 103 cells/mL. Growth was assessed by
measuring the absorbance at 640 nm in a microplate photometer
(Molecular Devices SpectraMax Plus) after 48 h of incubation at 30 °C.
MIC values were considered as the lowest concentration of drug that
resulted in an inhibition of growth>80%. Stock solutions of the
compounds were prepared in DMSO and a final dilution was carried out
in an RPMI 1640 medium (Sigma, St. Louis, Mo.). Each drug con-
centration (from 400 μM to bellow the MIC value, using a two-fold di-
lution scheme) was tested in triplicate and in at least two independent
experiments.

3. Results and discussion

3.1. Synthesis of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f
and 5

The synthesis of phenoxazinium chlorides 4a-f and 5 was started
with the preparation of required precursors such as nitroso derivative 1
and N-alkylated napthalen-1-amines 2b-f (2a and 3 are commercial
reagents). 9-Nitroso-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij]quinolin-8-
ol 1 was obtained by nitrosation of 1,2,3,5,6,7-hexahydropyrido[3,2,1-
ij]quinolin-8-ol (common name 8-hydroxyjulolidine) with sodium ni-
trite in acid solution under ice cold conditions [41]. N-Phe-
nylnaphthalen-1-amine 2b was obtained as a solid in good yield by the
alkylation of naphthalen-1-amine with chlorobenzene in ethanol under
reflux conditions. The other precursors namely N-propylnaphthalen-1-
amine 2c, N-(3-chloropropyl)naphthalen-1-amine 2d, 3-(naphthalen-1-
ylamino)propan-1-ol 2e and 4-(naphthalen-1-ylamino)butanoic acid 2f
were obtained in accordance with the earlier reported procedure
[26,28].

The reaction of 9-nitroso-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]qui-
nolin-8-ol 1 with naphthalen-1-amine 2a and its derivatives 2b-f or
anthracen-1-amine 3, in an acidic medium afforded the corresponding
phenoxazinium chlorides 4a-f and 5, respectively. Thus, reaction be-
tween nitroso derivative of 8-hydroxyjulolidine 1 with precursors 2a-f
and 3 in ethanol, in the presence of concentrated hydrochloric acid, and
after silica gel column chromatography purification gave the phenox-
azinium chlorides 4a-f and 5, possessing at the free lateral amine the
hydrogen atom, phenyl, alkyl along with the functionalities such as
chloro, hydroxyl and carboxyl. All these compounds were obtained as
green blue solids and were fully characterized by high resolution mass
spectrometry, IR and NMR (1H and 13C) spectroscopy (Scheme 1).

The 1H NMR spectra (4a-f and 5) showed the signals of aliphatic
protons from the methylenic groups of 1-H and 7-H (for 4a-f) or 9-H
and 15-H (for 5) as triplets or multiples (4b, 4c) (δ 2.58–3.0 ppm), 2-H
and 6-H (for 4a-f) or 10-H and 14-H (for 5) as multiplets (δ
1.92–2.18 ppm), and methylene protons close to the nitrogen atom 3-H
and 5-H (for 4a-f) or 11-H and 13-H (for 5) appeared as multiplets (δ
3.42–3.69 ppm). Similarly, for compounds 4a-f the methylenic groups
of substituents at 14-position, directly linked to the nitrogen atom
NHCH2 appeared as a multiplet or a triplet (4d, 5e) (δ 3.55–3.78 ppm),
as well as groups close to the same atom, NHCH2CH2, showed as
multiplets, sextet (4c) or quintet (4d) (δ 1.90–2.14 ppm). The terminal
methyl group exhibited a triplet (δ 1.14 ppm) and methylene protons
adjacent to chloro, hydroxyl and carboxylic functionalities (4d-f)
showed triplets (δ 2.59–3.83 ppm). In addition, spectra showed the
aromatic protons of the polycyclic system, in particular, 8-H (δ
6.94–7.47 ppm) and 15-H (for 4a-f), as well as H-7 (δ 6.49 ppm) and H-
16 (δ 7.08 ppm) (for 5) (δ 6.49–6.85 ppm), which appeared in the form
of singlets.

The 13C NMR spectra showed the signals of methylenic groups of C-
1 and C-7 (for 4a-f) or C-9 and C-15 (for 5) (δ 20.07–21.61 ppm), C-2
and C-6 (for 4a-f) or C-10 and C-14 (for 5) (δ 20.09 to 21.66) and close
to the nitrogen atom C-3 and C-5 (for 4a-f) or C-11 and C-13 (for 5) (δ
51.43–52.56 ppm). The groups of substituents at the 14-position, di-
rectly linked to the nitrogen atom NHCH2 (4c-e) (δ 42.71–47.09 ppm),
as well as the groups close to the same atom, NHCH2CH2, (δ
22.99–44.58 ppm). In addition, there was the presence of carbons of the
methyl group (4c, δ 11.80 ppm) and the carbon proximity to chloro,
hydroxyl and carboxylic functionalities (4d-f, δ 31.84–60.54 ppm).
Spectra showed the aromatic carbons, in particular C-8 (for 4a-f) or C-
16 (for 5) (δ 124.86–131.17 ppm), and C-15 (for 4a-f) or C-7 (for 5) (δ
93.28–96.77 ppm). The IR spectrum of benzophenoxazine 4e showed
the bands of the hydroxyl group (3450 cm−1) and also, as in the re-
maining phenoxazines, strong bands are showed of the C]N bond
(1641-1573 cm−1) due to the fused oxazine ring.
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3.2. Photophysical studies of quinolizino[1,9-hi]phenoxazin-6-iminium
chlorides 4a-f and 5

Fundamental photophysical studies of quinolizino[1,9-hi]phenox-
azin-6-iminium chlorides 4a-f and 5 were carried out in dry ethanol,
and water.

Previous work showed that in proton-accepting solvents the pho-
tophysical behaviour of benzo[a]phenoxazinim chlorides is determined
by acid-base equilibria, mainly at the 5-amino position [5,42]. The
main features of absorption spectra corresponded to an acidic form
(AH+) around 650 nm and a ~100 nm blue shifted neutral form (A)
[43]. Basic form fluorescence was broad and centered at around 600 nm
while the acid form (AH+) showed a band centered near 660 nm with a
higher fluorescence quantum yield that reached 0.4 when the 9-amino
position was mono-alkylated and varied between 0.1 and 0.2 when it
was di-alkylated [5,42,43]. At 470 nm the basic form was mostly ex-
cited while at higher excitation wavelengths the acid form was the main
molecular form. Figs. 1 and 2 show the absorption and fluorescence of
compounds 4a-f and 5 either in ethanolic or aqueous based media.

Fluorescence and absorption spectra in ethanol either basified with
TEAH (Fig. 1A) or acidified with TFA (Fig. 1B) are consistent with the
above general characteristics. However, the acid-base behaviour is
different from what was reported for similar compounds but without
the julolidine moiety [44,45], given that the same amount of TEA not
completely displaced the equilibrium to the basic form and conse-
quently emission corresponding to acid form is still observable (Fig. 1).
Using the same amount of TFA as above the equilibrium is nearly
completely shifted towards the acid form as very little emission from
the basic form is observed when exciting at 470 nm (Fig. S1). Yet, the
absorption spectra of the acid form are broader (Fig. 1B).

In water, the absorption spectra of these type of compounds usually
evidences the presence of non-fluorescent H-aggregates of the acid form
through a ~40 nm blue shifted shoulder [43]. Through the dimerization
equilibria, the relative amount of that shoulder depends on dye con-
centration [43]. For the studied julolidine fused compounds 4a-f and 5
the spectra at 4× 10−6 M (Fig. 2B) are similar to the ones obtained for
compounds without the julolidine moiety at 5×10−5M [43]. This
clearly indicates the much higher tendency for aggregation of the

synthesised quinolizino[1,9-hi]phenoxazin-6-iminium chlorides.
Table 1 shows absorption (λabs) and emission (λem) maxima, Stokes

shifts (Δλ) and fluorescence quantum yields (Φ) for the acid/basic form
in dried ethanol and for the acid form in water.

Through stiffening of the 9-amino position, it was expected that
fluorescence quantum yields in acidified ethanol will be higher than the
values previously obtained for benzophenoxazinium chlorides without
a fused julolidine moiety and di-alkylated compounds (between 0.1 and
0.2) [5,42,43]. In fact, improvement in fluorescence quantum yields
was not observed which can be explained by the possible presence of
aggregates in ethanolic media that was evidenced in the broader
spectrum of the studied compounds in acidified ethanol. Nevertheless,
it is possible to conclude that the 5-amino position (6- or 14-positions in
5 and 4a-f, respectively) is the main pathway of excited state non-
radiative deactivation. Regarding the basic form, the usual fluorescence

Scheme 1. Synthesis of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5.

Fig. 1. Absorption and emission spectra of compounds 4a-f and 5 at 4 μM
concentration in either basified (panel A) or acidified (panel B) dried ethanol.
Emission of basic form at 470 nm excitation and emission of acid form at
640 nm excitation.
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quantum yields are in the range 0.01–0.03 [7,43]. It is seen that the
expected improvement from juolidine stiffening of 9-amino position is
clearly observed as the quantum yield is above 0.1 for almost all
compounds reaching 0.31 for 4b. The slightly lower quantum yield of
basic form of compound 4f is probably related with an interaction of
the COOH group with the secondary amine in 14-position.

Comparing compounds 5 and 4a significant red shifts were observed
both in absorption (17 nm) and emission (22 nm). The origin of this
shift is certainly the higher π-conjugation system that results from the
fusion of anthracene with the phenoxazine moiety instead of naph-
thalene.

Also worth mentioning is the much lower fluorescence quantum
yield in acidified aqueous media. This is easily understandable by the
fact that H-aggregates are non-fluorescent and they are very prominent
for the studied compounds (Fig. 2B). In basified aqueous media
(Fig. 2A) there is a significant dispersive background in the absorption
spectra. This indicates the low solubility of the neutral molecular forms
in aqueous media resulting in the formation of crystallites that act as
light scattering centres. This leads to huge decrease in fluorescence
efficiency so that Raman peaks are now observable. It is interesting to
note that although in basic pH, the emission is dominated by the small
fraction of protonated molecular form that still remains.

3.3. Biologial activity of quinolizino[1,9-hi]phenoxazin-6-iminium
chlorides 4a-f and 5

The potential antifungal activity of the synthesised dyes 4a-f and 5
was investigated using the yeast Saccharomyces cerevisiae PYCC 4072 as
a model organism and a broth microdilution method for antifungal
activity testing [17,18]. The minimum inhibitory concentration of
growth (MIC) and log P values, which were theoretically predicted [46]
are showed in Table 2.

The results showed that all tested dyes exhibited considerable an-
tiproliferative activity against the yeast S. cerevisiae, with MIC values
between 0.78 and 25 μM (with exception of 4b, that has no activity and
4e, MIC 400 μM). This is especially relevant if we consider the MIC
values for fluconazole and miconazole, two reference antifungal com-
pounds, which were 50 and 100 μM, respectively[47]. The calculated
log P of the dyes, ranged from 2.85 to 5.60, but the differences in this
values did not correlate with the MIC values for the compounds.

Our reference compound, 4a, exhibits a MIC value of 25 μM, and a
notable increment (four-times) in its biological activity was observed by
the introduction of a propyl group at 14-position of the polycyclic
aromatic system (4c). Substitution of the methyl group (4c) by a
chlorine atom, using a chloropropyl group (4d) results in the largest
increase of activity, 0.78 μM being the lowest MIC value observed. In
contrast, the presence of a terminal hydroxyl group, namely the hy-
droxylpropyl group drastically decreases the MIC value, making the
activity of compound 4e residual (MIC value 400 μM). On the other
hand, the carboxylic acid derivative 4f showed a significant activity,
doubling the eficacy of compound 4a (MIC value 12.5 μM). These
achievements suggest the presence of terminal chloride group at 14-
position is favourable for the antiproliferative activity, and thus sup-
porting the results previously published by our group [17].

Fig. 2. Absorption and emission spectra of compounds 4a-f and 5 at 4 μM
concentration in either basified (panel A) or acidified (panel B) water. Emission
of basic form at 470 nm excitation and emission of acid form at 640 or 575 nm
excitation.

Table 1
Yield and photophysical studies of quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5 in dry ethanol, water and after the addition of either TFA or TEAH.

Cpd Yield (%) Dry ethanol + TFA|TEAH Water + TFA

λabs (nm)
ε (104M−1cm−1)

λem(nm)a Δ λ(nm) Φa λabs (nm)
ε (104M−1cm−1)

λem (nm) Δ (nm) Φ

4a 19 658|532
7.66|3.55

679|645 21|113 0.18|0.27 662
2.54

687 25 0.024

4b 20 658|532
6.08|2.90

677|645 19|113 0.19|0.31 661
2.29

685 24 0.026

4c 21 667|531
10.4|4.34

687|645 20|114 0.22|0.10 667
3.82

694 27 0.027

4d 5 667|530
–

685|640 18|110 0.19|0.10 670
–

694 24 0.040

4e 22 666|531
8.73|3.49

684|645 18|114 0.24|0.16 668
3.60

694 26 0.032

4f 19 667|532
–

688|640 21|108 0.15|0.069 668
–

693 25 0.017

5 21 675|536
12.4|6.54

712|650 37|114 0.17|0.28 663
–

– – –

a Emission spectra and quantum yield determination were obtained at 575 nm or 470 nm excitation when, TFA or TEAH, respectively, were used.

Table 2
Activity against Saccharomyces cerevisiae PYCC 4072 and log P values of
quinolizino[1,9-hi]phenoxazin-6-iminium chlorides 4a-f and 5.

Compound MICa log P

4a 25 2.85
4b >400 4.05
4c 6.25 5.60
4d 0.78 5.47
4e 400 4.42
4f 12.5 2.14
5 12.5 4.02

a Experiments were performed in triplicate and at least two independent
experiments were conducted.
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Furthermore, the addition of a third fused benzene ring in the
polycyclic system, compound 5, also increases the activity to the double
in relation to compound 4a.

4. Conclusion

New quinolizino[1,9-hi]phenoxazin-6-iminium chlorides, namely
six benzo[a]quinolizino[1,9-hi]phenoxazin-14(5H)-iminium chlorides
4a-f with the 14-amine position unsubstituted, and bearing phenyl,
propyl, 3-chloropropyl, 3-hydroxypropyl, and 3-carboxypropyl, as well
as a naphtho[2,3-a]quinolizino[1,9-hi]phenoxazin-6-iminium chloride
5, were synthesised. The photophysics of the acid and basic forms were
studied in dried ethanolic media, by adding either an acid or a base. The
acid form was also followed in water. The reported compounds were
found to have higher tendency to aggregate than similar compounds
without the fused julolidine. This tendency can possibly account for a
lower than expected fluorescence quantum yield for the studied com-
pounds.

The results from the antifungal assays showed that the fusion of
julolidine to the phenoxazine moiety led to an increase in the activity of
the dyes, which still depended on the substitution at the 14 position of
the polycyclic system, being negatively influenced by a hydroxy term-
inal and positively influenced by the presence of a middle size apolar
group (propyl). Furthermore, the extension of the aromatic system, in
compound 5, also had a positive influence in the compounds activity.
The best activity found with compound 4d suggests this compound as a
potential interesting molecule for further development.
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