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ABSTRACT: A single-electron transfer mediated modular indole
formation reaction from a 2-iodoaniline derivative and a ketone has
been developed. This transition-metal-free reaction shows a broad
substrate scope and unconventional regioselectivity trends. More-
over, important functional groups for further transformation are
tolerated under the reaction conditions. Density functional theory
studies reveal that the reaction proceeds by metal coordination,
which converts a disfavored 5-endo-trig cyclization to an accessible 7-endo-trig process.

Since their identification in 1869, indoles have become vital
structural motifs in a wide range of research areas.1

Controlled synthesis of substituted indole scaffolds has
significantly expanded the accessible chemical space of indoles2

and is a globally enduring target of investigation.3 Among the
established strategies in this regard, the method utilizing a
nitrogenated arene and a two-carbon fragment, which
constitutes the C2 and C3 positions of the indole backbone,
has received special attention because of its modular and
convergent nature (Scheme 1, a).4 Among the numerous two-

carbon units available, ketones are particularly attractive
because of the widespread availability of building blocks as
well as the orthogonal reactivities of the carbonyl and the α
carbons, which would be the basis of chemoselective bond
formation with the nitrogen and carbon (C3a) atoms,
respectively (Scheme 1, b).4a,5

The reported approaches based on the use of ketone
derivatives, however, pose significant synthetic challenges
originating from regioselectivity issues, extreme reaction
conditions, and/or functional group compatibility.5h−k For
instance, when nitrogenated arenes are identically function-
alized at both of the ortho positions5i,j (i.e., [X] = R7) or if two
α carbons of the ketone are available to participate in
indolization,5k regiochemical problems are encountered. In
addition, most of the applied reaction conditions involve the
introduction of electromagnetic radiation or the use of
expensive transition-metal catalysts, which can also lead to
complications associated with toxicity.5l,m Moreover, the use of
transition-metal catalysts obstructs the preservation of valuable
functional handles for modification when an oxidative addition
to C(sp2)−(pseudo)halides is involved.5f
It was envisaged that the utilization of a radical intermediate

originating from 2-iodoaniline derivatives would help over-
come these limitations (Scheme 1, c). In 2008, Itami and co-
workers disclosed a novel alkaline metal alkoxide mediated
activation of aryl iodides.6 Subsequent studies showed that the
process is initiated by single-electron transfer (SET) from
either the metal alkoxide species7 or the downstream
intermediates of the iodoarene,7a−e,8 and the reactivity was
further elaborated by the introduction of organic promoter-
s.7a,b,9 Ultimately, the protocol has been applied to C−C bond
formation reactions in the context of arene−arene,10 arene−
alkene,8b,11 and arene−enolate12 couplings. We envisioned that
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Scheme 1. Modular Synthesis of Substituted Indoles
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the transition-metal-free approach to generate an aryl radical
species, in combination with the established condensation of
aniline and ketone species, should serve as an ideal protocol to
access diversely substituted indole derivatives in a program-
mable manner under mild conditions.
To evaluate the hypothesis, we attempted the coupling of 2-

iodoaniline (1) and acetophenone (a) in the presence of 3
equiv of KOt-Bu (Table 1). While the unassisted use of KOt-

Bu was virtually ineffective, the efficiency of the reaction was
significantly improved by adding a substoichiometric amount
of an organic promoter (entries 1−7). Among the various
promoters that were evaluated, 4,7-diphenylphenanthroline
(P6, bathophenanthroline) was the most potent in terms of
product formation, yielding more than 80% of indole product
(1a). Further optimization of the reaction revealed that the
reaction proceeded to completion in 8 h in the presence of 0.2
equiv of P6 at 60 °C, without notable loss of efficiency (entries
8−10). Of note, the coupling reaction could also be performed
near room temperature, although a longer reaction time was
required (entry 11).
With the optimized conditions in hand, we next evaluated

the generality of the reaction with substituted (Scheme 1, R1

and R4−R7) 2-iodoanilines (Scheme 2). A wide range of
electron-donating and electron-withdrawing substituents, in-
cluding alkyl, methoxy, cyano, nitro, and carboalkoxy groups,
were successfully installed into the products (2a−7a). Also, an
extended π-system was implemented on the indole structure
(8a). Moreover, halogen substituents, which can be utilized as
functional handles for late stage cross-coupling reactions, were
introduced at all the four positions of the 6-membered ring of
the core structure (9a−13b). Importantly, the selective
installation of a substituent at the 4-position of indole, which
is difficult to realize from simple precursors using other
methods,13 were achieved with a synthetically useful yield

(11a). In addition, substrates possessing two C−Cl or C−Br
bonds were successfully employed to provide the correspond-
ing indole products with multiple handles for further
elaboration (14a−17b). Remarkably, alkyl and benzyl
substituents at the nitrogen atom of the aniline derivatives
were well tolerated under the reaction conditions (18a−21a).
Subsequently, the scope of the ketone counterpart was

assessed by using various methyl ketones to afford 2-
substituted indole derivatives (Scheme 3). Both electron-rich
and electron-deficient acetophenones were successfully utilized
as reaction partners (1b−1g). In addition, halogen-containing
phenyl groups (1h−1k) as well as polycyclic aromatic
hydrocarbons, such as naphthalene (1l) and phenanthrene
(1m), were conserved. Of note, pharmaceutically important
heterocyclic moieties were conveniently introduced at the 2-
position of the indole system (1n−1s).14 Methyl ketones
bearing an alkyl substituent such as cyclopropyl (1t) and tert-
butyl groups (1u) were also viable substrates for the
transformation.
We next attempted to extend this methodology to the

preparation of 2,3-disubstitued indoles (Scheme 4). Propio-
phenone and butyrophenone furnished the corresponding
indole products with a C3 alkyl group in high yields (1a′ and
1b′). Tricyclic and tetracyclic indoles were readily prepared
from cyclic ketones (1c′−1e′), and a heteroatom substituent
was installed at the 3-position of indole (1f′). The use of an
aldehyde as a reaction partner, however, led to a significantly
diminished yield of the desired 3-phenyl indole (1g′).
Interestingly, in the case of phenylacetone and benzylacetone,
which have two possible positions for enolization, the product
originating from thermodynamically more stable enolate was
obtained (1h′ and 1i′). The regioselectivity trend of 1i′ is
consistent with that of the pioneering works of Bunnett and
Semmelhack, which cover the regioselectivity for the addition
of an aryl radical to an enolate when the formation of multiple
regioisomers is possible.15 Product formation at the methylene
side of the enolate is preferred over reaction at the methyl side.

Table 1. Optimization of Reaction Parametersa

entry promoter temp (°C) time (h) yieldb(%)

1 80 18 10
2 P1 (0.4 equiv) 80 18 63
3 P2 (0.4 equiv) 80 18 48
4 P3 (0.4 equiv) 80 18 39
5 P4 (0.4 equiv) 80 18 39
6 P5 (0.4 equiv) 80 18 19
7 P6 (0.4 equiv) 80 18 83
8 P6 (0.2 equiv) 80 18 86
9 P6 (0.2 equiv) 60 18 80
10 P6 (0.2 equiv) 60 8 82 (83)
11 P6 (0.4 equiv) 30 72 79 (81)

aReaction conditions: 2-iodoaniline (0.50 mmol), aceotphenone (1.0
mmol), KOt-Bu (1.5 mmol), DMSO (1.5 mL). For more extensive
optimization data, see Supporting Information. bYields are deter-
mined by GC using dodecane as an internal standard. Yields in
parentheses are isolated yields.

Scheme 2. Synthesis of 2-Substituted Indolesa

aReaction conditions: iodoaniline (0.50 mmol), ketone (1.0 mmol),
KOt-Bu (1.5 mmol), P6 (0.10 mmol), DMSO (1.5 mL), 60 °C, 8 h.
Yields of the isolated products. b3,4-Dimethoxyacetophenone was
used instead of acetophenone because it is more easily isolated.
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To gain better insight into the regioselectivity of the
method, the indole formation reaction was attempted with
ketone derivatives that can potentially provide an indolenine, a
frequently observed product in existing protocols (e.g., Fischer
indole synthesis) (Scheme 5).5b Although a preference arising
from the formation of thermodynamic enolate has been
observed when both of the possible products are indoles
(Scheme 4, 1h′ and 1i′), a propensity to counteract that of

conventionally approaches has been identified. Cyclization on
the methine side of the ketone, which furnishes an indolenine
product, was generally disfavored under the developed
condition. Instead, the ring-formation event occurred prefer-
entially on the methyl or methylene side of the ketone to
provide the corresponding indole products (Scheme 5, 1j′,16
1k′, 1l′,17 1m′,18 1n′, and 1o′). The corresponding
regioselectivity is also analogous to Semmelhack and Bunnett’s
works, although a small amount of products originating from
the reaction at the methine side of ketone was formed in their
works.15 To our knowledge, these are the first examples of
single-step indolization with such a regiochemical trend under
transition-metal-free conditions.19

Two possible mechanisms have been hypothesized for this
reaction (Scheme 6, a). The first route involves SET of a
metalloenamine generated from condensation of aniline 1 and
ketone a (path 1, I) to provide an aryl radical enamine
intermediate II. This can lead to a 5-endo-trig intramolecular
cyclization, and subsequent oxidation forms the observed
indole product 1a. Alternatively, aryl radical VII-b can complex
with an enolate, and the resulting complex IV can in turn add
in a 7-endo-trig fashion (path 2). Subsequent SET, protonation,
and condensation can form the desired indole product.
We investigated both mechanisms by density functional

theory (DFT) with several monomeric as well as complexed
SET promoters that may be present in the solution (see the
Supporting Information).20 Of those investigated, the (KOt-
Bu)4/P6 complex was the most thermodynamically favored
SET promoter. The resulting reaction coordinate diagram is
shown in Scheme 6b. DFT results revealed a substantial barrier
of 36.1 kcal/mol for the intramolecular cyclization (path 1, TS-
X). This is more than 10 kcal/mol higher than the expected
experimental barrier of ∼26 kcal/mol (estimated for the case
of Table 1, entry 10 with 83% yield, 60 °C, 8 h, assuming 4
half-lives). This was in contrast to the addition route of path 2
leading to TS-IV with a barrier of 14.6 kcal/mol for the C−C
formation of the metal aryl radical and the metal enolate. Most
notably, the dipotassium coordination in TS-IV changed the

Scheme 3. Synthesis of 2-Substituted Indolesa

aReaction conditions: iodoaniline (0.50 mmol), ketone (1.0 mmol),
KOt-Bu (1.5 mmol), P6 (0.10 mmol), DMSO (1.5 mL), 60 °C, 8 h.
Yields of the isolated products. bKetone (1.5 mmol), P6 (0.20 mmol),
80 °C.

Scheme 4. Synthesis of 2,3-Disubstituted Indolesa

aReaction conditions: iodoaniline (0.50 mmol), ketone (1.0 mmol),
KOt-Bu (1.5 mmol), P6 (0.10 mmol), DMSO (1.5 mL), 60 °C, 8 h.
Yields of the isolated products. bP6 (0.20 mmol), 100 °C, ketone (1.5
mmol). cKetone (1.5 mmol). d21% of 2-phenethyl-1H-indole was
obtained as a side product. The yield and ratio of the product were
determined by 1H NMR analysis using 1,1,2,2-tetrachloroethane as an
internal standard.

Scheme 5. Regioselectivity Trend of the Reactiona

aReaction conditions: iodoaniline (0.50 mmol), ketone (1.5 mmol),
KOt-Bu (1.5 mmol), P6 (0.20 mmol), DMSO (1.5 mL), 100 °C, 8 h.
Yields of the isolated products. The ratio of products was determined
by GC.
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coupling event from the disfavored 5-endo-trig cyclization of
path 1 to the 7-endo-trig addition of path 2 with a much more
favorable orbital alignment for the addition process. Alter-
natively, we also considered pathways that involve all the
different protonation states of the aniline and enolate reactants
which were found to be higher in energy (see Supporting
Information). Interestingly, control experiments (Scheme 6, c-
B and c-C) revealed that the product formation is less
efficientwhile the decrease in yield was ∼20%, substantial
quantities of the proto dehalogenation products were detected.
The fact that change in the nature of iodoarene’s substituents
leads to substantial changes in reaction efficiency suggested
that metal coordination may contribute to increase the
reaction efficiency as suggested by the DFT.
Further control experiments were conducted to support the

single electron pathway of the reaction. When the reaction of
2-iodoaniline and acetophenone was set up in the presence of
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), the yield of
the reaction was dramatically reduced (Scheme 7, a). In
addition, a ketone precursor with a radical clock furnished the
corresponding ring-opening indole product (Scheme 7, b).

Combined, these results support the participation of the ketyl
radical in the reaction.25

Finally, the synthetic utility of the protocol was assessed.
The reaction was conducted on a gram scale to provide an
indole product in practically effective yield (Scheme 8, a).

Moreover, the process was successfully applied to the concise
synthesis of a nonsteroidal selective estrogen receptor
modulator (SERM), zindoxifene (Scheme 8, b). The targeted
drug molecule was prepared in the most efficient manner to
date from readily available precursors.26

In conclusion, we have developed an efficient transition-
metal-free KOt-Bu-mediated protocol for indole synthesis.
This method is advantageous in that no transition metal or
light irradiation is required and it provides easy access to
indoles bearing various functional groups, including C(sp2)−
halogen bonds for further functionalization. Additionally, the
developed strategy exhibits unconventional regioselectivity,
which is rarely observed in other transition-metal-free
conditions. DFT studies suggest that metal-coordinated
radical−enolate coupling is essential: this coordination enables
the key C−C bond-forming event to occur via a favored 7-
endo-trig cyclization rather than the forbidden 5-endo-trig
process. All in all, the first counter Fischer-indole regiocontrol
was achieved through a metal-chelated radical enol coupling
synthetic platform.

Scheme 6. (a) Postulated Reaction Pathways. (b) Reaction Coordinate Diagram for the Two Proposed Mechanistic Paths for
the Reaction of 2-Iodoaniline and Acetophenone with KOt-Bu4/P6 Complex. (c) Control Experiments with 2-Iodoaniline,
Iodobenzene, and 2-Iodo-N,N-dimethylaniline

aDFT results computed using PBE21/6-31G*22 and LANL2DZ23 geometries with SMD24 solvation corrections in DMSO. bReaction conditions:
iodoarene (0.50 mmol), ketone (1.0 mmol), KOt-Bu (1.5 mmol), P6 (0.10 mmol), DMSO (1.5 mL), 60 °C, 8 h. The yields were determined by
GC using dodecane as an internal standard.

Scheme 7. Verification of Single Electron Pathwaya

aReaction conditions: iodoaniline (0.50 mmol), trans-2-phenyl-
cyclopropyl methyl ketone (1.0 mmol), KOt-Bu (1.5 mmol), P6
(0.10 mmol), DMSO (1.5 mL), 60 °C, 8 h.

Scheme 8. Synthetic Utility of the Reaction
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(g) Lerchen, A.; Vaśquez-Ceśpedes, S.; Glorius, F. Cobalt(III)-
Catalyzed Redox-Neutral Synthesis of Unprotected Indoles Featuring
an N−N Bond Cleavage. Angew. Chem., Int. Ed. 2016, 55, 3208−3211.
(h) Liang, Y.; Jiao, N. Cationic Cobalt(III) Catalyzed Indole
Synthesis: The Regioselective Intermolecular Cyclization of N-
Nitrosoanilines and Alkynes. Angew. Chem., Int. Ed. 2016, 55,
4035−4039. (i) Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J.
Rhodium(III)-Catalyzed Indole Synthesis Using N−N Bond as an
Internal Oxidant. J. Am. Chem. Soc. 2013, 135, 16625−16631.
(j) Mao, J.; Wang, Z.; Xu, X.; Liu, G.; Jiang, R.; Guan, H.; Zheng, Z.;
Walsh, P. J. Synthesis of Indoles through Domino Reactions of 2-
Fluorotoluenes and Nitriles. Angew. Chem., Int. Ed. 2019, 58, 11033−
11038.
(5) (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. A Palladium-
Catalyzed Strategy for the Preparation of Indoles: A Novel Entry into
the Fischer Indole Synthesis. J. Am. Chem. Soc. 1998, 120, 6621−
6622. (b) Gore, S.; Baskaran, S.; König, B. Fischer Indole Synthesis in
Low Melting Mixtures. Org. Lett. 2012, 14, 4568−4571. (c) Moody,
C. J.; Swann, E. NH Insertion Reactions of Rhodium Carbenoids: A
Modified Bischler Indole Synthesis. Synlett 1998, 1998, 135−136.
(d) Tanimori, S.; Ura, H.; Kirihata, M. Copper-Catalyzed Synthesis of
2,3-Disubstituted Indoles. Eur. J. Org. Chem. 2007, 2007, 3977−3980.
(e) Liu, X. − G.; Li, Z. − H.; Xie, J. − W.; Liu, P.; Zhang, J.; Dai, B.
Copper-catalyzed synthesis of 2,3-disubstituted indoles from ortho-
haloanilines and β-keto esters/β-diketone. Tetrahedron 2016, 72,
653−657. (f) Jin, Z.; Guo, S. − X.; Qiu, L. − L.; Wu, G. − P.; Fang, J.
− X. Well-defined NHC-Pd complex-mediated intermolecular direct
annulations for synthesis of functionalized indoles (NHC = N-hetero-
cyclic carbene). Appl. Organomet. Chem. 2011, 25, 502−507. (g) Wei,
Y.; Deb, I.; Yoshikai, N. Palladium-Catalyzed Aerobic Oxidative
Cyclization of N-Aryl Imines: Indole Synthesis from Anilines and
Ketones. J. Am. Chem. Soc. 2012, 134, 9098−9101. (h) Jeanty, M.;
Blu, J.; Suzenet, F.; Guillaumet, G. Synthesis of 4- and 6-Azaindoles
via the Fischer Reaction. Org. Lett. 2009, 11, 5142−5145. (i) Wagaw,
S.; Yang, B. H.; Buchwald, S. L. A Palladium-Catalyzed Method for
the Preparation of Indoles via the Fischer Indole Synthesis. J. Am.
Chem. Soc. 1999, 121, 10251−10263. (j) Aksenov, N. A.; Aksenov, A.
V.; Kornienko, A.; Carvalho, A. D.; Mathieu, V.; Aksenov, D. A.;
Ovcharov, S. N.; Griaznov, G. D.; Rubin, M. A nitroalkane-based
approach to one-pot three-component synthesis of isocryptolepine
and its analogs with potent anti-cancer activities. RSC Adv. 2018, 8,
36980. (k) Prochazka, M. P.; Eklund, L.; Carlson, R. Zeolites as

Organic Letters pubs.acs.org/OrgLett Letter

https://dx.doi.org/10.1021/acs.orglett.1c00003
Org. Lett. 2021, 23, 1096−1102

1100

https://pubs.acs.org/doi/10.1021/acs.orglett.1c00003?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c00003/suppl_file/ol1c00003_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paul+Ha-Yeon+Cheong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6705-2962
http://orcid.org/0000-0001-6705-2962
mailto:cheongh@oregonstate.edu
mailto:cheongh@oregonstate.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hong+Geun+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:hgleee@snu.ac.kr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hyunho+Chung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5998-6228
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeongyun+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gisela+A.+Gonza%CC%81lez-Montiel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00003?ref=pdf
https://dx.doi.org/10.1002/jlac.18661400306
https://dx.doi.org/10.1002/jlac.18661400306
https://dx.doi.org/10.1002/cber.186900201268
https://dx.doi.org/10.1021/cr900211p
https://dx.doi.org/10.1021/cr900211p
https://dx.doi.org/10.1039/b212257j
https://dx.doi.org/10.1039/b212257j
https://dx.doi.org/10.1002/anie.200901843
https://dx.doi.org/10.1002/anie.200901843
https://dx.doi.org/10.1021/acscatal.7b01785
https://dx.doi.org/10.1021/acscatal.7b01785
https://dx.doi.org/10.1021/cr0505270
https://dx.doi.org/10.1021/cr0505270
https://dx.doi.org/10.1021/cr100403z
https://dx.doi.org/10.1021/cr100403z
https://dx.doi.org/10.1021/cr2003954
https://dx.doi.org/10.1021/cr2003954
https://dx.doi.org/10.1016/j.tet.2011.06.040
https://dx.doi.org/10.1016/j.tet.2011.06.040
https://dx.doi.org/10.1039/C2SC21185H
https://dx.doi.org/10.1039/a909834h
https://dx.doi.org/10.1039/a909834h
https://dx.doi.org/10.1021/cr60224a003
https://dx.doi.org/10.1021/cr60224a003
https://dx.doi.org/10.1021/ja00017a059
https://dx.doi.org/10.1021/ja00017a059
https://dx.doi.org/10.1016/S0040-4039(01)93730-X
https://dx.doi.org/10.1016/S0040-4039(01)93730-X
https://dx.doi.org/10.1016/S0040-4039(01)93730-X
https://dx.doi.org/10.1002/anie.200901484
https://dx.doi.org/10.1002/anie.200901484
https://dx.doi.org/10.1021/ja0288993
https://dx.doi.org/10.1021/ja0288993
https://dx.doi.org/10.1021/ja0288993
https://dx.doi.org/10.1002/anie.200702931
https://dx.doi.org/10.1002/anie.200702931
https://dx.doi.org/10.1002/anie.200702931
https://dx.doi.org/10.1002/anie.201510705
https://dx.doi.org/10.1002/anie.201510705
https://dx.doi.org/10.1002/anie.201510705
https://dx.doi.org/10.1002/anie.201511002
https://dx.doi.org/10.1002/anie.201511002
https://dx.doi.org/10.1002/anie.201511002
https://dx.doi.org/10.1021/ja408541c
https://dx.doi.org/10.1021/ja408541c
https://dx.doi.org/10.1002/anie.201904658
https://dx.doi.org/10.1002/anie.201904658
https://dx.doi.org/10.1021/ja981045r
https://dx.doi.org/10.1021/ja981045r
https://dx.doi.org/10.1021/ja981045r
https://dx.doi.org/10.1021/ol302034r
https://dx.doi.org/10.1021/ol302034r
https://dx.doi.org/10.1055/s-1998-1610
https://dx.doi.org/10.1055/s-1998-1610
https://dx.doi.org/10.1002/ejoc.200700428
https://dx.doi.org/10.1002/ejoc.200700428
https://dx.doi.org/10.1016/j.tet.2015.12.006
https://dx.doi.org/10.1016/j.tet.2015.12.006
https://dx.doi.org/10.1002/aoc.1793
https://dx.doi.org/10.1002/aoc.1793
https://dx.doi.org/10.1002/aoc.1793
https://dx.doi.org/10.1021/ja3030824
https://dx.doi.org/10.1021/ja3030824
https://dx.doi.org/10.1021/ja3030824
https://dx.doi.org/10.1021/ol902139r
https://dx.doi.org/10.1021/ol902139r
https://dx.doi.org/10.1021/ja992077x
https://dx.doi.org/10.1021/ja992077x
https://dx.doi.org/10.1039/C8RA08155G
https://dx.doi.org/10.1039/C8RA08155G
https://dx.doi.org/10.1039/C8RA08155G
https://dx.doi.org/10.3891/acta.chem.scand.44-0610
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.1c00003?ref=pdf


Catalysts in the Fischer Indole synthesis. Enhanced Regioselectivitiy
for Unsymmetrical Ketone Substrates. Acta Chem. Scand. 1990, 44,
610−613. (l) Barolo, S. M.; Lukach, A. E.; Rossi, R. A. Syntheses of 2-
Substituted Indoles and Fused Indoles by Photostimulated Reactions
of o-Iodoanilines with Carbanions by the SRN1 Mechanism. J. Org.
Chem. 2003, 68, 2807−2811. (m) Soria-Castro, S. M.; Caminos, D.
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