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Dehydro-L-ascorbic acid (DAA), an oxidation
product of L-ascorbic acid (vitamin C), is unstable in the
neutral and basic pH regions. When DAA was incubat-
ed in a phosphate buffer with deuterium oxide (pH 7.4),
it was degraded to form the main degradation com-
pound, which was identified as 3,4-dihydroxy-2-oxo-
butanal (L-threosone). This compound was also formed
from diketo-L-gulonic acid (DKG) in a phosphate buffer
with deuterium oxide. L-threosone had reducing activi-
ty, probably due to its enolization, and is likely to have
been involved in the formation of the reducing activity
that was observed in aqueous DAA and DKG solutions.
As a reactive dicarbonyl compound, L-threosone might
also take some role in the cross-linking of tissue proteins
that are formed in vivo in the Maillard reaction.

Key words: L-ascorbic acid; degradation; L-threosone;
diketo-L-gulonic acid

L-Ascorbic acid (AA), also referred to as vitamin
C, is a well-known antioxidant in food and biological
systems which generally serves as an electron donor.
In these antioxidative reactions, dehydro-L-ascorbic
acid (DAA) is mostly produced by disproportiona-
tion via monodehydro-L-ascorbic acid (Fig. 1)."?
DAA is either reduced to AA by glutathione-depen-
dent DAA reductases” or by glutathione itself, or
degraded to 2,3-diketo-L-gulonic acid (DKG)” and
further degraded to other products due to the in-
stability of DKG in the neutral pH region.>® The
hydrolysis reaction of DAA to DKG is essentially ir-
reversible, therefore, DAA is thought to be the key
compound in AA catabolism. The reaction of DAA
to AA or to DKG is complicated and is influenced by
the reaction conditions, pH value, solvent, and
presence of oxidants and reductants like
glutathione.®!?

The degradation reaction of DKG is also compli-
cated and the degradation mechanism after DKG has

not been unambiguously clarified, although some
degradation products after DKG have been identi-
fied. Such degradation products from DKG as the en-
diol forms of 2,3-diketogulono-d-lactone'"'? and
erythroascorbic acid'® have reducing activity and can
be expected to contribute in some way as a reducing
agent like AA in vivo. Some of the other degradation
compounds have di- and poly-carbonyl groups'*'>
which are conversely intermediates of the Maillard
reaction in vivo.'® The Maillard reaction has been
suggested to be closely related to aging and to the de-
velopment of adult diseases like diabetes'” that
damage the human body. Thus, the oxidative degra-
dation products of AA are considered to have some
effects in vivo,'®'® although details of the AA cata-
bolic pathway and the physiological effects of the ox-
idative degradation products of AA on biological
systems have not been clarified.

In this report, an intermediate product in the
degradation reaction of DAA and DKG at pH 7.4
was investigated in a preliminary study to clarify the
degradation products of AA and its degradation
pathway in vivo.

Materials and Methods

Materials. The deuterium-labeled solvents and rea-
gents used in the 'H-NMR and "*C-NMR measure-
ments were all guaranteed-grade reagents from
Merck. The other reagents used in this research were
purchased from Wako Pure Chemical Industries Co.

NMR and FAB-MS analyses. '"H-NMR and "C-
NMR spectra were obtained by JEOL GSX 270 and
JEOL GX 400 FT NMR spectrometers. FAB-MS
spectra were recorded with a JEOL JMS-700 instru-
ment, using glycerol as a matrix and ionization by
FAB with Xe atoms.

' To whom correspondence should be addressed. Tel: + 81-3-5978-5806; Fax: + 81-3-5978-5807; E-mail: n-yoko@cc.ocha.ac.jp
Abbreviations: AA, L-ascorbic acid; DAA, dehydro-L-ascorbic acid; DKG, 2,3-diketo-L-gulonic acid; D,0-PB; phosphate buffer with

D,0; TLC, thin-layer chromatography; #, retention time
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Fig. 1. AA Degradation Pathway and Possible Formation Pathway for L-Threosone.

AFR, monodehydro-L-ascorbic acid; *DAA reductase.

Preparation of DAA. DAA was prepared from
AA in methanol by the method described in the liter-
ature? with minor modifications and obtained as a
pale syrup which was kept in a freezer at —20°C be-
fore its use. The identification and purification of

DAA was accomplished by NMR and thin-layer
chromatography (TLC), using a solvent system of
acetonitrile-acetone-water-acetic acid (80:5:15:1,
v/v) and silicagel 60 as the adsorbent, and by high-
performance liquid chromatography (HPLC) under
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the following conditions: column, ODS-2 (150X
4.6 mm i.d., GL Sciences); mobile phase, sodium
phosphate buffer (50 mm at pH 2.3); flow rate,
0.7 ml/min; column temperature, room temperature
of around 20°C; detection, electrochemical detector
(BAS LC-4B, 400 mV). DAA was reduced to AA by
DTT before the HPLC analysis.

Preparation of the DKG potassium salt. The DKG
potassium salt was prepared from AA by the method
described in the literature® and obtained as a white
hygroscopic powder that was stored at —20°C before
use. The DKG potassium salt was identified by TLC
under the same condition as those just described for
the DAA preparation.

LC-MS analysis of DKG-1. The DKG potassium
salt (5g) was dissolved in 100 ml of a phosphate
buffer with deuterium oxide (D,O-PB; 0.5 M, pH 7.4)
and incubated at room temperature for 7 h. The for-
mation of DKG-1 in the incubated solution was con-
firmed by TLC and '"H-NMR under the same condi-
tions as those just described for the preparation of
DAA and DKG. DKG-1 was eluted at #z 2.1 min un-
der the following HPLC operating conditions:
column, Inertsil ODS-2 (150x4.6 mm i.d.; GL
Sciences); mobile phase, methanol; flow rate,
0.8 ml/min; detection, UV spectrometer (Shimadzu
SPD-6A at 220 and 280 nm) and electrochemically
(BAS LC-4B, 400 mV). The incubated sample was
analyzed by LC-MS. HPLC with a TSP p4000 instru-
ment (Thermoquest) was carried out under the
following conditions: column, Inertsil ODS-2 (150 X
4.6 mm i.d., GL Sciences); mobile phase, methanol;
flow rate, 1.0 ml/min; detection, UV spectrometer at
220 nm. A Finnigan LCQ instrument was used for
mass spectrometry under the following conditions:
ionization, chemically at atmospheric pressure; sease
gas, nitrogen 85 unit; auxiliary gas, nitrogen 30 unit;
vaporizer temperature, 450°C; heating capillary tem-
perature, 175°C; corona current, 5 pA.

Preparation of the hydrazone of DKG-1. Phenyl-
hydrazine derivatives of DKG-1 was prepared by dis-
solving the DKG potassium salt (5 g) in 100 ml of
D,0O-PB (0.5 M, pH 7.4) and leaving at room temper-
ature for 7 h. To the incubated solution was added a
phenyl hydrazine hydrochloride solution dissolved in
methanol (6 g/30 ml), and the mixture was incubated
overnight at room temperature. The reaction mixture
was extracted three times with diethyl ether, dried
with anhydrous sodium sulfate, and concentrated by
evaporation. The obtained phenylhydrazone mixture
was further purified by TLC. The phenylhydrazone
of DKG-1 compound corresponding to the main spot
at R; 0.4 was separated by using silica gel 60 plates
(Merck Art. No. 5745) with toluene-ethyl acetate
(1:3, v/v) as the developing solvent, extracted with

a
" YN A R WV
T T ' T T - T
5.0 4.5 4.0 ppm
b
methanol

oxalic acid

A B T T T i T
200 150 100 50 ppm
Fig. 2. NMR Spectra of a DKG Solution (250 mm) Incubated for
7 h in a Phosphate Buffer with D,O (pH 7.4).
a: '"H-NMR spectrum; b: *C-NMR spectrum. Methanol (1%

v/v) was added as an internal standard for reference before the
NMR analysis.

ethyl acetate, and obtained as a yellow syrup after
removing the solvent by evaporation.

Results and Discussion

A relatively stable degradation compound
(DKG-1) was produced when DAA or the DKG
potassium salt was incubated in D,O-PB (pH 7.4) at
room temperature for 7 h, this being identified by an
NMR analysis (Fig. 2).

In the '"H-NMR spectrum of the incubated solution
of DKG, which included DKG-1 as the main degra-
dation compound, two signals were observed at oy =
4.47 ppm (1H, t) and 3.38 ppm (2H, d), the coupling
constant being J=3.96 Hz (Fig. 2(a)). In the “C-
NMR spectrum of the solution, four signals were
observed at dc=212.3, 173.0, 73.0 and 63.2 ppm
(Fig. 2(b)), the signal at dc=212.3 ppm being split
into 212.3 and 212.2 ppm when the pH value of the
sample solution was reduced by adding phosphoric
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acid. These signals in the '"H- and "*C-NMR spectra
are apparently different from those of DKG (du=
3.75 ppm (4H, m); Sc=174.2, 94.4, 94.9, 74.4, 68.4
and 62.2 ppm). The signal observed at d¢=173.0 is
considered to have been due to oxalic acid, which
agrees quite well with the NMR data reported in the
previous work.'” The results of *C-NMR therefore
suggest that DKG-1 consisted of four carbons. Fur-
thermore, in the off-resonance decoupling *C-NMR
and C-H COSY analysis made with the same sample
solution, mutual coupling was observed between
4.47 ppm (dy) and 73.0 ppm (d¢), and 3.38 ppm (dn)
and 63.2 ppm (J¢), suggesting that the glycol struc-
ture corresponding to C5-C6 of AA was retained in
DKG-1. On the other hand, the formation of DKG-1
was only observed when the DKG potassium salt was
incubated in D,O-PB, and not in the other solvents
(Fig. 3).

In order to elucidate the structure and chemical
characteristics of DKG-1, DKG-1 was isolated by
TLC. DKG-1 gave a round spot (R;=0.61) on the
TLC plate which was positive to the coloring detec-
tion reagents, 2,4-dinitrophenyl hydrazine and «,o’-
dipyridyl ferric chloride.

The molecular weight of DKG-1 was deduced to be
118 from the result of an LC-MS analysis carried out
in the negative mode (data not shown). Further con-
firmation of the molecular weight of DKG-1 was
provided by preparing its phenylhydrazone (DKG-1-
PZ) whose molecular weight was determined to be
298 by an FAB-MS analysis (Fig. 4, a-1 and a-2). The
result of the FAB-MS analysis indicates that DKG-1-
PZ contained two molecules of a phenylhydrazine
residue, this being supported by the results of a 'H-
NMR analysis (Fig. 4, b). This set of experimental
results led to the structure of DKG-1 being concluded
to be L-threosone (Fig. 1). Although L-threosone
seemed to be comparatively stable in D,O-PB, it
could not be completely purified due to its unexpect-
edly easy degradation during the separation proce-
dure.

Simpson et al. have recently identified L-erythru-
lose, which had different '"H- and '*C-NMR spectral
data from those of L-threosone, as the main degrada-
tion product of DAA and DKG under similar ex-
perimental conditions to ours, by which DAA or
DKG were incubated in a phosphate buffer at a neu-
tral pH value at room temperature.' In order to
clarify the apparent discrepancy between these two
experiments, we used a phosphate buffer solution
[D,0:H,0=1:9] as the reaction medium used by
Simpson et al."® instead of D,O used in our original
experiments. L-Erythrulose was confirmed to be the
major reaction product by 'H- and *C-NMR (data
not shown). This result strongly suggests that not
only the phosphate buffer, but also D,O strongly in-
fluenced the formation of L-threosone. The C-D
bond is about 10 times as strong as the C-H bond, the

a
PB (pH 7.4, 24hr)

SN
N S A N
B e T L A S A 1] |
5.0

4.5 4.0

b
D,0 (24hr)

(4 (0 — ' r ppm

Tris (hydroxymethyl)
aminomethane

T T T ppm

ol T T T v T ppm
5.0 4.5 4.0

Fig. 3. 'H-NMR Spectra of the Incubated Solutions of DKG.
The DKG concentration in each solution was 250 mm, and all
solutions were incubated for 24 h at room temperature. a: phos-
phate buffer with D,O (0.5 M, pH 7.4); b: D,O; c: tris buffer
with D,O (0.5 M, pH 7.4); d: NaOH solution with D,O (con-
trolled to pH 7.4).

O-D bond is also stronger than the O-H bond, and
there are some differences in the physical properties
between heavy and light water.?” Furthermore, it has
been reported that the oxidation of pentoses and
hexoses was more strongly promoted in D,O than in
H,0.?? L-Threosone was the compound oxidized in
the Cl-alcohol group of L-erythrulose, and it is
thought that the oxidation reaction was accelerated
in D,O and that L-threosone was mainly produced in
this reaction.

On the other hand, the yield of oxalic acid was
about 20% of the starting compound (DKG) under
our incubation conditions for DKG. Therefore, as
shown in Fig. 1, L-threosone is considered to have
been produced either by a single fission reaction of
the C2-C3 bond of DKG with the equimolar forma-
tion of oxalic acid, or by two successive decarboxyla-
tion reactions.

It has been reported that there were some di- or
poly-carbonyl compounds in the degradation
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Fig. 4. FAB-MS data and 'H-NMR Spectrum of the Phenylhydrazine Derivative of DKG-1.

a-1: spectrum in the positive ion mode; a-2: spectrum in the negative ion mode; b: '"H-NMR spectrum in CDCl,. The signals observed

between J,;=6.8 ppm and J;,, =7.3 ppm were due to two phenyl groups (SH X 2).
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products of AA.'"" Those compounds may promote
the formation of protein crosslinks in vivo which is
considered to be responsible for adult diseases such
as diabetes. The results of this experiment indicate L-
threosone to be a candidate for the AA oxidation
products that would promote the Maillard reaction in
vivo. It has also been reported that some compounds
with reducing activity were produced in DAA and
DKG solutions,? although details of the reduction
mechanism have not yet been clarified. Since L-threo-
sone showed some reducing activity, probably
through its enolization, it might have contributed to
the reducing activity observed in the DAA and DKG
solutions.

In summary, L-threosone was found to be the
major degradation compound produced during the
incubation of DAA and DKG under conditions close
to physiological, although the formation was restrict-
ed to the D,O-PB solution. Moreover, L-erythrulose
is thought to have been one of the main products in
the oxidative degradation of AA in vivo as stated
earlier.'” Further studies on the detailed formation
mechanism for these degradation products from
DKG are certainly needed.
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