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Peridinin (2,[1] Scheme 1) is one of the most common
biosynthesized carotenoids on earth.[2] Its polyene chain
contains an a-alkenyl-g-alkylidenebutenolide unit, which

has a Z configuration at the C1’=Cg bond, as is typical for
naturally occurring g-alkylidenebutenolides.[3] Peridinin (2)
plays a key role in marine photosynthesis[4] and displays
considerable antitumor activity.[5] The fact that these roles are
assumed solely by peridinin (2) and not by related carotenoids
may be due or supposedly[5] is due to its butenolide ring,
which, among carotenoids, is almost unique to 2.[6]

As part of our study of the light-harvesting and cancero-
static properties of peridinin (2) and analogues such as
deoxyperidinin (1, Scheme 1), we have developed a novel
approach towards their a-alkenyl-g-alkylidenebutenolide
cores. In this communication we demonstrate this approach

with the stereoselective syntheses of compounds 36 and 37
(Scheme 5), in which the last step is the anti-selective
dehydration of the a-alkenyl-g-(a-hydroxyalkyl)butenolides
4 and 5, respectively (Scheme 1). We have employed dehy-
drations of this type en route to a number of stereodefined g-
alkylidenebutenolides.[7,8]

It should be possible to convert compounds 4, 5, 36, and 37
into deoxyperidinin (1) by modification of the respective ester
group. Likewise, appropriately hydroxylated analogues of
compounds 4, 5, 36, and 37 would be appropriate precursors
for synthesizing peridinin (2). Two laboratory syntheses of 2
have been achieved so far. One was based on the stereo-
controlled cyclization of enynoic acid 3 (Katsumura et al.[9]),
the other used older, sophisticated, but stereorandom meth-
odology (Ito et al.[10]).

Prior to the present study, we had established three
different routes to diastereomerically pure g-(a-hydroxyal-
kyl)butenolides 9, which, through anti elimination, furnished
pure Z-configurated g-(alkylidene)butenolides (Scheme 2).
These route were based on: modification of sugar lactones
6 ;[7a, 11] vinylogous Mukaiyama aldol additions of siloxyfurans
8 and aldehydes 7;[12] and sequential C�Hal!C�C conver-
sions of trihalodienediol 10.[13] Here, in a fourth approach we
started from (�)-diethyl tartrate (11; Scheme 2).

After acetalization of 11 (!12,[14] Scheme 3), formation
of the double Weinreb amide furnished 13 ; the yield (99%)
was better than that of the published procedure (77%),[15]

provided that the temperature was kept below �15 8C
throughout reaction and workup. Bis(amide) 13 thereby
became available on the 40-g scale. Treatment of 13 with
1.0 equiv of MeMgBr gave rise to the monoketone 14
(66 %).[16] Wittig olefination of this compound with ylides
15[17] and 16[18] delivered the unsaturated esters 17[19]—as an
86:14 mixture of E and Z isomers[20] (pure E isomer was
obtained in 77% yield from 10-g batches after separation by
flash chromatography on silica gel[21])—and 18 (90% yield,
which was isomerically pure with a trans,E configuration),[22]

respectively. Compounds 17 and 18 both contain C(=O)-
NMe(OMe) and C(=O)OMe units but reacted exclusively at
the former upon treatment with NaBH4 (optimally 8 equiv) in
methanol. To the best of our knowledge, these are the first

Scheme 1. Strategies for the syntheses of the butenolide moieties of
peridinin (2) and deoxyperidinin (1).

Scheme 2. Routes to g-(a-hydroxyalkyl)butenolides 9, which corre-
spond to structures of type 4/5 in Scheme 1 and are precursors of g-
alkylidenebutenolides of type 1/2 structures in Scheme 1.
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reductions of Weinreb amides effected with this reagent. The
resulting hydroxy esters—19 (98 % yield) and 20 (92%
yield)—were oxidized under Swern conditions[23] to afford
the corresponding aldehyde esters (21, 90%; 22, 79%). These
were carried on to the a-bromoacrylates 24 (75 %) and 25
(82 %) with E stereoselectivities of 95:5 and 98:2, respec-
tively, by using the Ando-type[24] bromophosphonate 23,[25]

which we developed to this end.
The preparation of the epoxycyclohexyl moiety of targets

4 and 5 started from b-ionone (26), which underwent
ozonolysis and workup with Zn/HOAc to provide cyclocitral
(27) in 93% yield (Scheme 4).[26] Subsequent reduction with
NaBH4 led to cyclogeraniol (28) in 76% yield.[27] This two-
step procedure was two times more efficient than the one-step
version in which the ozonolysis mixture was treated directly
with NaBH4 (!28 in 30% yield). Asymmetric Sharpless
epoxidation of 28 furnished the epoxy alcohol 29 in 67%
yield.[28a,b] The ee value of 29 was 99.8% according to GC
analysis of the trimethylsilyl ether. This surpasses the

previously determined enantiopurities of 29, regardless of
whether it was synthesized in the same way (ref. [28a]:
95% ee ; ref. [28b]: � 98% ee) or by a different approach
(ref. [28c]: 97.1% ee). Swern oxidation[23] delivered aldehyde
30 (99%). Because of the tendency of 30 to decompose, it was
immediately C1-extended with Shioiri�s lithiodiazomethane[29]

affording, after flash chromatography,[21] the volatile epoxy-
alkyne 32 in 57% yield. Pd-catalyzed hydrostannylation[30]

gave the desired alkenylstannane trans-31[31] regio- and
stereoselectively. The trans configuration of its C=C bond
was deduced by comparison of the H�C=C�H and Sn�C=C�
H coupling constants with those in the cis isomer.[32] For the
trans isomer the first coupling constant is larger, for the cis
isomer the second is larger (Scheme 4).

Scheme 5 shows the concluding steps of our syntheses.
The next reaction was acetal cleavage of the bromodiester
acetonides 24 and 25 mediated by Amberlyst 15 or preferably
TsOH, which was followed by spontaneous formation of the
butenolide rather than pentenolide unit. The resulting
brominated g-(a-hydroxyalkyl)butenolides 34 and 35[33]

were obtained in nearly quantitative yields. The ensuing
step, a Stille coupling[34] with alkenylstannane trans-31, was
catalyzed by bis(trifurylphosphane)palladium (generated in
situ)[35] and cocatalyzed by CuI.[36] The final step was the anti-
selective dehydration to form the Z-configurated C1’=Cg

bond. It was realized under Mitsunobu conditions, i.e., by
treatment of g-(a-hydroxyalkyl)butenolides 4 and 5[37] with
2 equiv of both of PPh3 and DEAD, at �30 8C. These
conditions were gleaned from earlier experience in our
group.[12,13] While g-alkylidenebutenolide 36 was obtained in
isomerically pure form from reaction in anhydrous THF
followed by aqueous workup and standard flash chromatog-
raphy on silica gel,[21] the vinologous g-alkylidenebutenolide

Scheme 3. Syntheses of bromoacrylate intermediates 24 and 25.
a) HNMe(OMe)·HCl (4 equiv), Me3Al (4 equiv), CH2Cl2, �15 8C, 1 h,
99%; b) MeMgBr (1.0 equiv), THF, 0 8C, 1 h, 66 %; c) 15 (2.0 equiv),
toluene, reflux, 27 h, 77%, E :Z =86:14; d) 16 (2.0 equiv), toluene,
reflux, 30 h, 90%, E :Z >99:1; e) NaBH4 (8.0 equiv), MeOH, 25 8C,
18 h, 98%; f) same as (e) but 20 h, 92%; g) (COCl)2 (2.0 equiv),
DMSO (4.0 equiv), NEt3 (6.0 equiv), �78 8C! 0 8C, 30 min, 90%;
h) same as (g) but �78 8C, 90 min, 79%; i) 23 (1.2 equiv), NaH
(1.0 equiv), THF, 0 8C, 30 min, 75%, E :Z =95:5; j) same as (i) but
90 min, 82 %, E :Z = 98:2. DMSO= dimethyl sulfoxide.

Scheme 4. a) O3, MeOH, �78 8C, 2.5 h; Zn (1.5 equiv), HOAc/H2O
(1:1), 93%; b) NaBH4 (1.5 equiv), MeOH, 0 8C, 1 h, 25 8C, 12 h, 76%;
c) tBuOOH (2.0 equiv), Ti(OiPr)4 (0.1 equiv), (�)-DIPT (0.1 equiv), 4 �
MS, CH2Cl2, �25 8C, 12 h, 67%, 99.8% ee ; d) DMSO (3.0 equiv),
(COCl)2 (1.5 equiv), NEt3 (4.5 equiv), �78 8C, 1 h, 99%; e) Bu3SnH
(1.1 equiv), [Pd(PPh3)4] (0.05 equiv), THF, 25 8C, 2 h, 83 %;
f) Me3SiCH=N2 (1.2 equiv), LDA (1.2 equiv), �78 8C, 30 min, 57%.
DIPT= diisopropyl tartrate, LDA= lithium diisopropylamide.
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37 was just one constituent of a mixture of the four 1,3-diene
isomers. Compound 37[38] could be prepared free from
isomers only when:
* daylight was excluded throughout the reaction and

chromatography,
* the solvent (THF) was degassed and contained di-tert-

butylcresol as a radical scavenger,
* no aqueous workup was performed but rather the solvent

was removed by vacuum distillation at �30 8C,
* and the cyclohexane/ethyl acetate mixture used as the

eluent in flash chromatography was degassed. Remark-
ably, the yield of 37 was then 90%.[39]

The configurational assignments of the double bonds in
our target structures 36 and 37 were based on the magnitudes
of the olefinic 3JH,H couplings (for the configurations of the
disubstituted C=C bonds) and on the NOEs indicated in
Scheme 6 (for the configurations of the trisubstituted C=C
bonds).

In summary, the present study establishes that diethyl
tartrate is a viable precursor of stereopure Z-g-alkylidenebu-
tenolides. Moreover, extensions of this approach should make

both deoxyperidinin (1) and peridinin (2) accessible by total
synthesis.
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Stille coupling of the (dienoic ester)-containing bromobuteno-
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lide 35 and the (4S)-4-hydroxy analogue of trans-31.[30] This
provided the (4S)-4-hydroxy analogue of 5, a precursor of the
hydroxylated butenolide moiety of natural peridinin with
unaltered yield (83%). Because of the presence of the 4-hydroxy
group, which had to be conserved, the subsequent activation of
the 1’-hydroxy group was best carried out under modified
conditions: treatment of (4S)-4-hydroxy-5 at�10 8C in THF with
9 equiv each of DEAD and PPh3 (71% yield). In the same way,
when we processed the aldehyde analogue of the ester-substi-
tuted bromobutenolide 35, we could swap the steps, i.e., start
with the elimination and couple with the (4S)-4-hydroxy
analogue of trans-31. The detailed results will be reported in a
full paper.
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