

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6799-6802

Short and practical enantioselective synthesis of linezolid and eperezolid via proline-catalyzed asymmetric α -aminooxylation

Srinivasarao V. Narina and Arumugam Sudalai*

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411 008, India

Received 7 June 2006; revised 5 July 2006; accepted 14 July 2006 Available online 7 August 2006

Abstract—An efficient enantioselective synthesis of the antibacterials, linezolid (U-100766), and eperezolid (U-100592) using D-proline-catalyzed asymmetric α -aminooxylation of aldehydes as the key step is described here. This is the first report on the enantioselective synthesis of linezolid and eperezolid using asymmetric catalysis. © 2006 Elsevier Ltd. All rights reserved.

The 3-aryl-2-oxazolidinones are a relatively new class of synthetic antibacterial agents, having a new mechanism of action which involves early inhibition of bacterial protein synthesis. This class of compounds is particularly active against Gram-positive organisms such as methicilin-resistant Saphylococcus aureus and Staphylococcus epidermitis and vancomycin-resistant enterococci.^{1,2e} Important representatives of this class include the morpholine derivative linezolid, 1, and the piperazine derivative eperezolid, 2. Most of the methods reported² for the asymmetric synthesis of linezolid and eperezolid involve either a chiral pool approach or classical resolution of racemates. Surprisingly, an asymmetric catalytic route for the construction of the 2-oxazolidinone moiety has not been reported so far. In this letter, we report a short and practical method for the enantioselective synthesis of the two important antibacterial antibiotics, linezolid 1 and eperezolid 2, by employing D-proline-catalyzed asymmetric a-aminooxylation of aldehydes as the key step (Schemes 1 and 2).

* Corresponding author. Tel.: +91 20 25902174; fax: +91 20 25902676; e-mail: a.sudalai@ncl.res.in

0040-4039/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.065

The field of asymmetric organocatalysis in organic synthesis is rapidly growing and has provided several new methods for obtaining chiral compounds in an environmentally benign manner.³ In this connection, proline, an abundant, inexpensive amino acid available in both enantiomeric forms, has emerged as arguably the most practical and versatile organocatalyst.⁴ Proline has also been found to be an excellent asymmetric catalyst for α -functionalization⁵ of aldehydes and ketones. The retrosynthetic analysis of linezolid 1 and eperezolid 2 is outlined in Figure 1. We envisioned that the oxazolidinones in 1 and 2 could be constructed by intramolecular cyclization of chiral diols 7 and 16, which in turn would be obtained from the corresponding aldehydes 6 and 15 by D-proline-catalyzed asymmetric α -aminooxylation of the respective aldehydes 6 and 15. Aldehydes 6 and 15 would in turn be prepared readily from amines 3 or 12 and 1,3-propane diol.

The asymmetric synthesis of linezolid 1 started with arylamine 3, which was prepared following the reported procedure.^{2e} Treatment of arylamine 3 with monotosyl protected 1,3-propane diol gave secondary amine 4,⁶ which was then protected using Cbz–Cl to furnish the key intermediate alcohol 5 in 85% overall yield. Alcohol 5 was then oxidized using standard Swern conditions⁷ to aldehyde 6, which was converted into the corresponding diol 7 by proline-catalyzed asymmetric α -aminooxylation in a two-step reaction sequence: (i) reaction of aldehyde 6 with nitrosobenzene as the oxygen source in the presence of D-proline in CH₃CN at $-20 \,^{\circ}\text{C}^{5a}$ followed by treatment with NaBH₄ in MeOH gave the crude aminooxy alcohol and (ii) subsequent reduction

Figure 1. Retrosynthetic analysis of linezolid 1 and eperezolid 2.

Scheme 1. Reactions and conditions: (a) TsO-(CH₂)₃-OH, NaI, Na₂CO₃, DMF, 65 °C; (b) Cbz-Cl, NaHCO₃, acetone-water, 85% (over two steps); (c) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 to -60 °C, 95%; (d) (i) PhNO, D-proline (25 mol %), CH₃CN, -20 °C, 24 h then MeOH, NaBH₄; (ii) CuSO₄ (30 mol %), MeOH, 86% (over two steps); (e) NaH, THF, 0 °C, 96%; (f) (i) MsCl, Et₃N, CH₂Cl₂, 0 °C, 4 h; (ii) NaN₃, DMF, 75 °C, 92% (over two steps); (g) 10% Pd/C, H₂ (1 atm), EtOAc, 12 h then Ac₂O, py, 92%.

Scheme 2. Reagents and conditions: (a) Cbz–Cl, NaHCO₃, acetone–H₂O, 97%; (b) CoCl₂, NaBH₄, MeOH, 60 °C, 95%; (c) TsO–(CH₂)₃–OH, NaI, Na₂CO₃, DMF, 65 °C; (d) Cbz–Cl, NaHCO₃, acetone–H₂O, 79% (over two steps); (e) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 to -60 °C, 94%; (f) (i) PhNO, D-proline (25 mol %), -20 °C, 24 h then MeOH, NaBH₄; (ii) CuSO₄ (30 mol %), MeOH, 82% (over two steps); (g) NaH, THF, 0 °C, 94%; (h) (i) MsCl, Et₃N, CH₂Cl₂, 0 °C, 4 h; (ii) NaN₃, DMF, 75 °C, 89% (over two steps); (i) PPh₃, THF–water, 12 h then Ac₂O, py, 96%; (j) 10% Pd/C, H₂ (1 atm), MeOH–CH₂Cl₂ (3:1), 97%; (k) ClCOCH₂OCH₂Ph, Et₃N, CH₂Cl₂, 0 °C, 100%; (l) 10% Pd/C, H₂ (1 atm), MeOH–CH₂Cl₂ (3:1), 89%.

of the crude product with 30% CuSO₄ yielded chiral diol 7⁸ in 86% yield; $[\alpha]_D^{25}$ -4.0 (*c* 1.1, CHCl₃). The regioselective intramolecular cyclization⁹ of diol 7 using sodium hydride in THF at 0 °C furnished the desired oxazolidinone **8** in 96% yield and 99% ee (determined by ¹H NMR analysis of its Mosher's ester). The physical and spectroscopic data of **8** were in complete agreement with the reported values.^{2e} Oxazolidinone **8** was then converted into the corresponding azide **9** in two steps with 92% overall yield. Finally, the azide function was reduced with H₂ using Pd/C to furnish the crude amine, which was converted (Ac₂O, py) to linezolid 1^{2e} {mp 181–182.5 °C; $[\alpha]_D^{25} -9$ (*c* 1, CHCl₃); lit.^{2e} mp 181.5–182.5 °C; $[\alpha]_D^{25} -9$ (*c* 1, CHCl₃)} in 92% yield and 99% ee (Scheme 1).

A similar strategy was extended to the asymmetric synthesis of eperezolid 2 (Scheme 2). Protection of the secondary amine group of 10^{2e} with Cbz–Cl gave 11 in quantitative yield. Reduction of the nitro group in 11 (NaBH₄, cobalt chloride, MeOH, 60 °C)¹⁰ produced arylamine 12, which was transformed to alcohol 14 in 79% overall yield (vide supra). Swern oxidation of alcohol 14 gave aldehyde 15, which was subjected to D-proline catalyzed asymmetric α -aminooxylation with nitrosobenzene followed by reduction to furnish chiral diol **16**¹¹ in 82% yield (two steps) $[\alpha]_D^{25}$ –3.2 (*c* 1, CHCl₃). Subsequent regioselective intramolecular cyclization of diol 16 (NaH, THF, 0 °C) gave oxazolidinone 17 in 94% yield and 99% ee (determined by ¹H NMR analysis of its Mosher's ester), which was further converted into the corresponding azide 18 in two steps, in 94% overall yield. Reduction of azide 18 to the corresponding amine was readily achieved with PPh₃ in THF-H₂O mixture and the in situ generated amine was acetylated (Ac₂O, py) to give acetamide 19 in excellent yield. Deprotection of the Cbz group in 19 under catalytic hydrogenolysis conditions (Pd/C, H₂ (1 atm), MeOH-CH₂Cl₂) provided piperazine 20, which was acylated (ClCOCH₂OBn, Et₃N, CH₂Cl₂, 0 °C) to give **21** in quantitative yield. Finally, debenzylation of **21** (Pd/C, H₂ (1 atm), MeOH– CH₂Cl₂) furnished eperezolid **2** {mp 174–176 °C; $[\alpha]_D^{25}$ –21 (*c* 1, DMSO); lit.^{2e} mp 175–176 °C; $[\alpha]_D^{25}$ –21 (*c* 1, DMSO)} in 89% yield and 99% ee.

In conclusion, the enantioselective syntheses of two antibacterial antibiotics, linezolid **1** and eperezolid **2**, were achieved in 9 and 14 linear steps (56% and 39% overall yields, respectively). The applicability of the D-proline catalyzed asymmetric α -aminooxylation of aldehydes has been demonstrated. The advantages of our syntheses are the introduction of chirality using a catalytic amount of D-proline, which is cheap and readily available, and the high enantioselectivity associated with the process.

Acknowledgements

N.V.S.R. thanks CSIR, New Delhi, for the award of research fellowships. The authors are thankful to Dr. B. D. Kulkarni, Head, CEPD, for his support and encouragement.

References and notes

- 1. (a) Barbachyn, M. R.; Ford, C. W. Angew. Chem., Int. Ed. 2003, 42, 2010; (b) Bobkova, E. V.; Yan, Y. P.; Jordan, D. B.; Kurilla, M. G.; Pompliano, D. L. J. Biol. Chem. 2003, 278, 9802; (c) Aoki, H.; Ke, L. Z.; Poppe, S. M.; Poel, T. J.; Weaver, E. A.; Gadwood, R. C.; Thomas, R. C.; Shinabarger, D. L.; Ganoza, M. C. Antimicrob. Agents Chemother. 2002, 46, 1080; (d) Halle, E.; Majcher-Peszynska, J.; Drewelow, B. Chemother. J. 2002, 11, 1; (e) Ford, C. W.; Zurenko, G. E.; Barbachyn, M. R. Curr. Drug Targets 2001, 1, 181; (f) Brickner, S. J. Curr. Pharm. Des. 1996, 2, 175; (g) Park, C. H.; Brittelli, D. R.; Wang, C. L. J.; Marsh, F. D.; Gregory, W. A.; Wuonola, M. A.; McRipley, R. J.; Eberly, V. S.; Siee, A. M.; Forbes, M. J. Med. Chem. 1992, 35, 1156; (h) Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Wuonola, M. A.; McRipley, R. J.; Eustice, D. C.; Eberly, V. S.; Bartholomew, P. T.; Slee, A. M.; Forbes, M. J. Med. Chem. 1989, 32, 1673.
- (a) Madhusudhan, G.; Reddy, G. O.; Ramanatham, J.; Dubey, P. K. Indian J. Chem. B 2005, 44, 1236; (b) Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Trehan, S. Org. Lett. 2003, 5, 963; (c) Perrault, W. R.; Pearlman, B. A.; Godrej, D. B.; Jeganathan, A.; Yamagata, K.; Chen, J. J.; Lu, C. V.; Herrinton, P. M.; Gadwood, R. C.; Chan, L.; Lyster, M. A.; Maloney, M. T.; Moeslein, J. A.; Greene, M. L.; Barbachyn, M. R. Org. Proc. Res. Dev. 2003, 7, 533; (d) Lohray, B. B.; Baskaran, S.; Rao, B. S.; Reddy, B. Y.; Rao, N. Tetrahedron Lett. 1999, 40, 4855; (e) Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E. J. Med. Chem. 1996, 39, 673.
- (a) List, B.; Seayad, J. Org. Biomol. Chem. 2005, 3, 719; (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138; (c) Houk, K. N.; List, B. Acc. Chem. Res. 2004, 37, 487; (d) List, B.; Bolm, C. Adv. Synth. Catal. 2004, 346, 9; (e) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.
- 4. For a review of proline-catalyzed asymmetric reactions, see: List, B. *Tetrahedron* **2002**, *58*, 5573.
- (a) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. *Tetrahedron Lett.* 2003, 44, 8293; (b) Zhong, G. Angew. *Chem., Int. Ed.* 2003, 42, 4247; (c) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2003, 43, 1112; (d) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808; (e) Cordova, A.; Sunden, H.; Bøgevig, A.; Johansson, M.; Himo, F. Chem. Eur. J. 2004, 10, 3673.
- Padwa, P.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.; Protopopova, M. N.; Winchester, W. R.; Trans, A. J. Am. Chem. Soc. **1993**, 115, 8669.
- 7. For reviews of the Swern oxidation, see: (a) Tidwell, T. T. *Synthesis* **1990**, 857; (b) Tidwell, T. T. *Org. React.* **1990**, 39, 297.
- 8. Spectral data for diol 7: $[\alpha]_D^{25} -4.0$ (*c* 1.1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 3.08 (t, J = 4.66 Hz, 4H), 3.49–3.61 (m, 2H), 3.65–3.80 (m, 3H), 3.86 (t, J = 4.83 Hz, 4H), 5.13 (s, 2H), 6.83–6.96 (m, 3H), 7.25–7.35 (m, 5H); ¹³C NMR (50 MHz, CDCl₃): δ 50.58 (d, J = 3.52 Hz), 52.89, 63.76, 66.70, 67.53, 69.92, 115.49 (d, J = 32.71 Hz), 118.33 (d, J = 3.86 Hz), 123.13 (d, J = 2.92 Hz), 127.38, 127.87, 128.29, 135.97, 138.69 (d, J = 8.95 Hz), 152.33, 156.40, 157.25; IR (CHCl₃) ν_{max} : 3433, 3018, 2966, 2862, 2399, 1685, 1514, 1452, 1215, 1117. Elemental analysis: C₂₁H₂₅FN₂O₅ requires C, 62.37; H, 6.23; F, 4.70; N, 6.93. Found: C, 62.30; H, 6.28; F, 4.81; N, 6.85.
- 9. Miyata, O.; Asai, H.; Naito, T. Synlett 1999, 12, 1915.
- 10. Satoh, T.; Suzuki, S. Tetrahedron Lett. 1969, 10, 4555.

11. Spectral data for diol **16**: $[\alpha]_D^{25} - 3.2$ (*c* 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 3.04 (t, J = 5.12 Hz, 4H), 3.49–3.61 (m, 2H), 3.67 (t, J = 5.43 Hz, 4H), 3.74–3.80 (m, 3H), 5.13 (s, 2H), 5.16 (s, 2H), 6.82–6.96 (m, 3H), 7.21–7.39 (m, 10H); ¹³C NMR (50 MHz, CDCl₃): δ 43.74, 50.15 (d, J = 2.84 Hz), 52.97, 63.79, 64.89, 67.18, 67.60, 70.04, 115.52 (d, J = 21.83 Hz), 118.87 (d, J = 3.74 Hz), 123.09

(d, J = 3.01 Hz), 126.79, 127.31, 127.45, 127.80, 127.97, 128.40, 131.89 (d, J = 9.80 Hz), 135.98, 136.38, 138.53 (d, J = 8.45 Hz), 152.44, 155.10, 156.42, 157.37; IR (CHCl₃) v_{max} : 3410, 3018, 2361, 1685, 1514, 1436, 1215, 758. Elemental analysis: C₂₉H₃₂FN₃O₆ requires C, 64.79; H, 6.00; F, 3.53; N, 7.82. Found: C, 64.72; H, 6.07; F, 3.59; N, 7.81.