Advanced Synthesis \& Catalysis

Accepted Article

Title: Reaction conditions for the regiodivergent direct arylations at C2- or C5-positions of oxazoles using phosphine-free palladium catalysts

Authors: Xinzhe Shi, Jean-Francois Soulé, and Henri Doucet
This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc. 201900641

Link to VoR: http://dx.doi.org/10.1002/adsc. 201900641

Reaction conditions for the regiodivergent direct arylations at C2- or C5-positions of oxazoles using phosphine-free palladium catalysts

Xinzhe Shi, ${ }^{\text {a }}$ Jean-François Souléa* and Henri Doucet ${ }^{\text {a* }}$
a Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France. jean-francois.soule @univ-rennes1.fr; henri.doucet@univ-rennes1.fr

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201\#\#\#\#\#\#.

Abstract

Two sets of reaction conditions for the regiodivergent C2- or C5- direct arylations of oxazole are reported. In both cases, phosphine-free catalysts and inexpensive bases were employed allowing the access to the arylated oxazoles in moderate to high yields. Using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{KOAc}$ as catalyst and base, regioselective C5arylations were observed; whereas, using $\mathrm{Pd}(\mathrm{acac})_{2} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$ system, the arylation occurred at the C2-position of oxazole. The higher reactivity of $\mathrm{C} 5-\mathrm{H}$ bond of oxazole as compared to the $\mathrm{C} 2-\mathrm{H}$ bond in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{KOAc}$ system is consistent with a concerted metalation deprotonation

Abstract

mechanism; whereas the C2-arylation likely occurs via a simple base deprotonation of the oxazole C 2 -position. Then, from these C2- or C5-arylated oxazoles, a second palladium-catalyzed direct C - H bond arylation affords 2,5-1 diaryloxazoles with two different aryl groups. We also applied these sequential arylations to the straightforward synthesis of 2-arylphenanthro[9,10-d]oxazoles via three CH bond functionalization steps. The Ru-catalyzed C-H arylation of the aryl unit of 2-aryloxazoles is also described

Keywords: palladium; oxazole; direct arylation; C-H bond functionalization; C-C bond formation

1, top). ${ }^{[5]]}$ They revealed that the C5-arylation is preferred in polar solvents such as DMA associate to $10 \mathrm{~mol} \% \quad$ 2-di-tert-butylphosphino-3,4,5,6-tetramethyl-2', 4', $\mathbf{6}^{\prime}$-triisopropyl-1,1'-biphenyl (L1) a phosphine ligand; conversely, C2-arylation regioselectively took place in the nonpolar solvent xylene associated to $10 \mathrm{~mol} \%$ 2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl (L2) as phosphine ligand. In both cases, they employed $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{PivOH}$ as base/additive. By contrast, in 2013, Bellina et al. obtained C5-arylated oxazoles regioselectively using $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and $\mathrm{Bu}_{4} \mathrm{NOAc}$ as base without adding phosphine ligand. ${ }^{[6]]}$ To our knowledge, regiodivergent direct arylations of oxazole using phosphine-free conditions have not yet been described (Scheme 1, bottom).

As a better understanding of the influence of reaction conditions on the regioselectivity control of the arylation of oxazoles is still needed, we reinvestigated the influence of the catalyst, base anu solvent for these couplings. Herein, we report i) conditions for the palladium-catalyzed regiodivergent direct arylation of oxazole using phosphine-free catalysts; ii) on the scope of the regioselectivity of C2-arylation, C5-arylation and one pot C2,C5diarylation; iii) on the influence of the presence of aryl-substituents at C2- or C5-positions of oxazole on their reactivity for access to C2,C5-diaryloxazoles; iv) on the synthesis of 2-arylphenanthro[9,10$d]$ oxazoles via three successive C-H bond functionalization steps; and v) on the Ru-catalyzed CHarylation of the aryl unit of 2-aryloxazoles.

Introduction

Several aryl-substituted oxazole derivatives exhibit important biological properties, such as Oxaprozin which is a non-steroidal anti-inflammatory drug used to relieve the inflammation associated with arthritis (Figure 1). Therefore, the discovery of general and simple routes to (poly)arylated oxazoles has potential for medicinal chemistry.

Figure 1. Structure of Oxaprozin.
In recent years, the direct arylation of (hetero)aromatics via Pd-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalizations has brought a revolution in the access of arylated heteroarenes. ${ }^{[1,2]}$ This methodology is very attractive compared to the Stille, Suzuki or Negishi couplings as they do not require the preliminary synthesis of organometallic derivatives. ${ }^{[3]}$ Several examples of Pd-catalyzed arylations via a $\mathrm{C}-\mathrm{H}$ bond functionalization of substituted oxazoles have been reported. ${ }^{[4]}$ In contrast, only a few examples of Pd-catalyzed direct arylations of unsubstituted oxazole have been described. ${ }^{[5-7]}$ In 2010, Strotman, Chobanian et al. reported a study dealing with the regiodivergent arylation (C2-vs C5-arylations) of oxazoles (Scheme

Scheme 1. Pd-catalyzed direct arylations of oxazole.
The free energy of activation for direct arylation of oxazole in the presence of Pd-catalysts via Concerted Metalation Deprotonation (CMD) ${ }^{[8]}$ pathway has been calculated by Gorelsky (Figure 2). The energy of activation of the $\mathrm{C}-\mathrm{H}$ bond flanked by two heteroelements is higher ($25.3 \mathrm{kcal} \mathrm{mol}^{-1}$), than the energy of activation of the $\mathrm{C}-\mathrm{H}$ bond at C5-position $\left(23.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. Therefore, due to the lower energy of activation of the C-H bond at C5-position of oxazole, for reactions which proceed via a Pdcatalyzed CMD mechanism, we expected to be able to control the regioselectivity in favor of C5-arylation using acetates as base/ligand; whereas, regioselective C2-arylations might be obtained in the presence of a quite strong base, via deprotonation of the C2position of oxazole.

Figure 2. Free energy of activation ($\Delta G^{\ddagger}{ }_{298 \mathrm{~K}}$, $\mathrm{kcal} \mathrm{mol}^{-1}$) for direct arylation via the CMD pathway involving an acetate ligand with the $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)(\mathrm{OAc})\right]$ catalyst. ${ }^{[8]}$

Results and Discussion

3 -Bromoquinoline (1 equiv.) and oxazole (2 equiv.) were employed as the model substrates for our study (Table 1). We initially examined the influence of the nature of the base on the regioselectivities and yields
using phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and DMA as the solvent. We had previously observed that KOAc as base/ligand associated to $\mathrm{Pd}(\mathrm{OAc})_{2}$ in DMA promotes very efficiently the coupling of several heteroarenes with aryl bromides. ${ }^{[9]}$ Under these phosphine-free conditions, DMA and also heteroarenes such as oxazoles and some aryl halides might act as ligands to stabilize catalytically active Pd-species. At $110{ }^{\circ} \mathrm{C}$, the expected C 5 heteroarylated oxazole 1a was obtained with a complete regioselectivity in 78% yield (Table 1, entry 1). In sharp contrast, the use of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2-3 equiv.) as the base instead of KOAc gives rise to the C2heteroarylated oxazole 1b in $98-100 \%$ regioselectivity and in 22-37\% yields (Table 1, entries 2-4). The higher reactivity of $\mathrm{C} 5-\mathrm{H}$ bond as compared to the $\mathrm{C} 2-\mathrm{H}$ bond of oxazoles in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{KOAc}$ system seems to be in agreement with a CMD mechanism; ${ }^{[10]}$ whereas the oxazole C2-arylation likely occurs via a simple base deprotonation of the oxazole C2-position. In order to improve the yield in the C2-arylated oxazole 1b, the influence of the solvent, base and catalyst was examined. The use of stronger base $t \mathrm{BuOK}$, led to a poor conversion of 3-bromoquinoline, and the desired product 1b was only obtained in trace amount (Table 1, entry 5). The use of $\mathrm{PdCl}_{2}, \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$, $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ and $\mathrm{Pd}(\mathrm{dba})_{2}$ catalysts using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base, afforded $\mathbf{1 b}$ in similar regioselectivities and yields than $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Table 1, entries 6-9). The reactions performed in other solvents such as DMF and NMP gave 1b in poor yields; whereas, the use c. xylene was ineffective (Table 1, entries 10-12). $\operatorname{Pd}(\mathrm{acac})_{2}$ catalyst using KOAc as the base gave mixture of products 1a, $\mathbf{1 b}$ and $\mathbf{1 c}$ in 59:13:28 ratio (Table 1, entry 14). Conversely, the use of $5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{acac})_{2}$ catalyst associated to $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv.) was very effective, and the target C2-heteroarylated oxazole 1b was obtained with complete regioselectivity and in 65% yield (Table 1, entry 15). Finally, in order to obtain the C2,C5-diheteroarylated oxazole 1c via a one pot reaction, we employed a mixture of KOAc and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a mixture of bases (Table 1, entry 16). To our delight, the desired product 1c was obtained in 80% selectivity and in 74% yield (1a was also observed in 19% selectivity). The substrate scope of the C5-arylation of oxazole using a set of (hetero)aryl bromides was investigated (Scheme 2). In the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, KOAc as the base in DMA, very regioselective C5arylation reactions and good yields in the 5aryloxazoles 2a-7a were obtained using aryl bromides bearing nitro, cyano, formyl, propionyl, benzoyl or ester para-substituents. In all cases, very low amounts of C2-arylated or C2,C5-diarylated oxazoles were detected by GC/MS and ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixtures. Lower yields in 8a10a were obtained for the coupling aryl bromides para-substituted by trifluoromethyl, chloro or fluoro groups, owing to the formation of significant amounts of 2,5-diaryl oxazoles $\mathbf{8 c}-\mathbf{1 0 c}$ in the course of these reactions.

Table 1. Influence of the reaction conditions on the Pd-catalyzed arylation of oxazole with 3-bromoquinoline

Entry	Catalyst (mol\%)	Solvent	Base	Conv. (\%)	Ratio 1a:1b:1c	Yield (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}(2)$	DMA	KOAc	100	100:0:0	1a $78{ }^{\text {b }}$
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	38	0:100:0	1b $22^{\text {a,b }}$
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	42	0:100:0	1b $33^{\text {b }}$
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	45	2:98:0	1b 37
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	DMA	$t \mathrm{BuOK}$	9	0:100:0	-
6	$\mathrm{PdCl}_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	33	0:100:0	-
7	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	40	0:100:0	-
8	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	28	0:100:0	-
9	$\operatorname{Pd}(\mathrm{dba})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	36	0:100:0	-
10	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(5)$	DMF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	31	0:100:0	-
11	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(5)$	NMP	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	20	0:100:0	-
12	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(5)$	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3	-	-
13	Pd/C 10\% (5)	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	8	0:100:0	-
14	$\mathrm{Pd}(\mathrm{acac})_{2}(5)$	DMA	KOAc	100	59:13:28	-
15	$\mathrm{Pd}(\mathrm{acac})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	100	0:100:0	1b 65
16	$\mathrm{Pd}(\mathrm{acac})_{2}(5)$	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{KOAc}$	100	19:1:80	1c $74{ }^{\text {c }}$

Conditions: 3-Bromoquinoline (1 equiv.), oxazole (2 equiv.), base (3 equiv.), $24 \mathrm{~h}, 110{ }^{\circ} \mathrm{C}$, conversion of 3 bromoquinoline, isolated yields. ${ }^{\text {a) }} 100{ }^{\circ} \mathrm{C}$. ${ }^{\text {b) }}$ Base 2 equiv. ${ }^{\text {c) }} 3$-Bromoquinoline (3 equiv.), oxazole (1 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv.) and KOAc (3 equiv.) as mixture of bases, 48 h , conversion of oxazole.

With the electron-rich aryl bromides, 4-tertbutylbromobenzene and 4-bromoanisole, the 5aryloxazoles 12a and 13a were also obtained in moderate yields of 52% and 46%, respectively due to a partial conversion of these aryl bromides. Cyano-, acetyl- and chloro-substituents at meta-position on the aryl bromide were also tolerated giving access to the corresponding 5-aryloxazoles 14a-16a in 58-81\% yields. Reactions with more hindered, 2bromonitrobenzene, 2-bromobenzonitrile, 2bromobenzaldehyde and 1-bromonaphthalene were also successful providing the products 17a-19a and 21a in 73-90\% yields.

Scheme 2. Scope of the C5-arylation of oxazole.

The N-containing heterocycles, 3- or 4bromopyridines, and 4-bromoisoquinoline also regioselectively afforded the desired C5-arylated oxazole derivatives 22a-24a in $81-87 \%$ yields.

Then, the scope of the C2-arylation of oxazole usin。 $\mathrm{Pd}(\mathrm{acac})_{2} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$ as catalytic system was examined (Scheme 3). Lower yields were generally obtaine؛ than for the C5-arylations. However, in all cases, very regioselective C2-arylations were observed. From para-substituted aryl bromides bearing electron-withdrawing - e.g. cyano or chloro - or electron-donating - e.g. tert-butyl or methoxy groups, similar yields in the C 2 -arylated oxazoles \mathbf{b} were obtained. Moreover, meta- or orthosubstituents on the aryl bromide and also 3- or 4bromopyridines also afforded the desired products 14b-23b in $58-80 \%$ yields.

Scheme 3. Scope of the C2-arylation of oxazole.

The synthesis of 2,5 -diarylated oxazoles from oxazole in a single pot was then examined (Scheme 4). As shown in the table 1 and schemes 2 and 3, the site selectivity for the arylation of oxazole is highly dependent on the presence of acetates for C5arylation and on the use of a quite strong base for C2arylation. Based on these results, we assumed that a mixture of KOAc and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base might promote the one pot oxazole 2,5 -diarylation. The reaction of oxazole with 3 equiv. of 4bromobenzonitrile, 3 equiv. of KOAc and 3 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{acac})_{2}$ catalyst afforded the desired 2,5 -diaryloxazoles $3 \mathbf{c}$ in only 17% yield, revealing that with a highly electrondeficient aryl bromide, the second arylation is much slower than the first one. Conversely, under the same conditions, the reactions with 4-trifluoro-, 4-chloroand 4 -fluoro-substituted aryl bromides afforded the target products $\mathbf{8 c}-\mathbf{1 0 c}$ in $60-73 \%$ yields. 2,5Diphenyloxazole 11c was also obtained in good yield using bromobenzene as the aryl source. The use of an excess of the electron-rich aryl bromide, 4bromoanisole (3 equiv.) in the presence of $5 \mathrm{~mol} \%$ $\operatorname{Pd}(\mathrm{acac})_{2}$ catalyst gave the desired diarylated product 12c in 53% yield. 1-Bromonaphthalene was also successfully employed for the one-pot synthesis of the 2,5-diarylated oxazole 21c. In order to determine the most reactive arylation site under these conditions, the selectivity of the reaction with 4chlorobromobenzene was measured at 1 h . A mixture of $9 \mathrm{a}: 9 \mathrm{9b}: \mathbf{9 c}$ with a ratio of $26: 63: 11$ was obtained, indicating that under these conditions, the C2arylation is favored.

*: After 1h, ratio 9a:9b:9c 26:63:11
Scheme 4. Scope of the C2,C5-diarylation of oxazole.

We performed two competition reactions to probe the oxazoles C2-substituent preference of the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst for the C5-arylation (Scheme 5). From an equimolar mixture of oxazole and 2-(4methoxyphenyl)oxazole 13b using 4bromobenzonitrile as the aryl source, in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ associated to KOAc as base, the formation of the 2,5-diaryloxazole 25 was observed in 85% selectivity; whereas, 5 -aryloxazole 3a was only produced in 15% selectivity (Scheme 5, a). When an equimolar mixture of oxazole and 4-(oxazol-2-yl)benzonitrile 3b was used, the ratio between the diaryloxazole 3c and 5-aryloxazole 3a was 64:36 (Scheme 5, b). These results indicate that
arylated oxazoles react faster than oxazole and that the presence of an electron-rich aryl at the C2position of oxazole favors the C5-arylation.
a)

b)

Scheme 5. Competition reactions for the C5-arylation of oxazoles.

Then, we performed two competition reactions from an equimolar mixture of oxazole and the 5aryloxazoles 3a and 13a using again 4bromobenzonitrile as the aryl source, in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{acac})_{2}$ associated to $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base (Scheme 6). The formation of the 2,5-diaryloxazole, 26 and 3c was observed in 52% selectivity from oxazole and 13a, and 89% selectivity from oxazole and 3a. The presence of an electron-deficient aryl group at the oxazole C5-position stongly favors the C2-arylation.

1 equiv.

Scheme 6. Competition reactions for C2-arylation of oxazoles.

Based on these results, we prepared a set of nonsymmetrical 2,5 -diaryl oxazoles (Scheme 7). From the C2-arylated oxazoles 3b and 13b and a set of electron-rich or -poor aryl bromides, the 2,5 -diaryl oxazoles 25-28 were obtained in high yields. We observed in the scheme 6 b that an oxazole substituted by an electron-deficient arene at C5-position favors the C 2 -arylation. Indeed, from $\mathbf{3 a}$ and 4bromofluorobenzene or 4-tert-butylbromobenzene, the products 29 and 30 were obtained in good yields. The synthesis of 3c via successive C5- followed by C2-arylation also afforded the expected product in a good 66% yield. In contrast, the reaction of $\mathbf{1 3 a}$ with 4 -bromobenzonitrile gave the 2,5 -diaryl oxazole 26 in only 16% yield. Therefore, the preparation of 26 via a C2- followed by C5-arylation sequence should be preferred.

$\mathrm{R}^{1} \quad \mathrm{R}^{2} \quad$ Yield (\%) OMe CN 2585 CN OMe 26 86* OMe F 2777 OMe tBu 2881
b)

3a or 13a 1 equiv.

| R^{1} | R^{2} | | Yield (\%) |
| :--- | :--- | :--- | :--- | :--- |
| CN | CN | $\mathbf{3 c}$ | 66 |
| OMe | CN | $\mathbf{2 6}$ | 16^{*} |
| CN | F | $\mathbf{2 9}$ | 79 |
| CN | $t \mathrm{Bu}$ | $\mathbf{3 0}$ | 77 |

Scheme 7. Synthesis of C2,C5-diaryloxazoles via successive arylations.

We also applied the regiocontrolled sequential arylation of oxazole to the synthesis of 2-arylphenanthro[9,10-d]oxazoles (Scheme 8). From the previously prepared 2 -aryloxazoles $\mathbf{8 b}, \mathbf{9 b}$ and 13b, the introduction of a biphenyl unit at C5position proceed in $80-88 \%$ yields using 2 bromobiphenyl in the presence of $2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst. Then, the bromination of the 4 -position of the oxazole unit of 31a-33a with N bromosuccinimide gave the 4-bromooxazoles 31b33b in $83-86 \%$ yield. Finally, the Pd-catalyzed intramolecular C-H bond arylations of 31b-33b using $2 \mathrm{~mol} \%$ of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb}) \quad[\mathrm{dppb}: \quad 1,4-$ bis(diphenylphosphino)butane] catalyst with 2 equiv. of PivOK as the base in DMA at $150^{\circ} \mathrm{C}$ - as it was previously demonstrated that these conditions are very effective to promote the C-H bond cleavage of benzene derivatives ${ }^{[11]}$ - afforded the target π extended polycyclic heteroaromatic hydrocarbons 31c-33c in almost quantitative yields. In the course of these synthesis, the three $\mathrm{C}-\mathrm{H}$ bonds of oxazole were successively arylated.

$\mathbf{8 b}, 9 b$ or 13 b 1 equiv.

Scheme 8. Synthesis of 2-arylphenanthro [9,10-d]oxazoles via successive arylations.

To our knowledge, only two examples of Rucatalyzed C-H arylations of the aryl unit of 2aryloxazoles have been reported so far. ${ }^{[12]}$ To demonstrate that, using an appropriate catalytic system, not only the oxazole C-H bonds are reactive, we also studied the reactivity of the aryl substituent of the 2 -aryloxazoles 18b and 21b in Ru-catalyze direct arylations (Scheme 9). For these reactions, $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ was employed as the catalyst and KOPiv as the base. With the electron-rich and -poor aryl bromides 4-bromoanisole and 4bromobenzonitrile, regioselective arylations of the aryl unit of 18b were observed affording the products 34 and 35 in moderate yields. A higher yield of 83% in 36 was obtained for the arylation of 2-(naphthalen1 -yl)oxazole 21b.

Scheme 9. Ru-catalyzed direct arylation of C2-arylated oxazoles.

Conclusion

In summary, we demonstrated that the regioselectivity of the direct arylation of oxazole can be controlled using the appropriate phosphine-free palladium catalyst/base system. From $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst associated to KOAc, regioselective C5arylations were observed; whereas, the use of $\mathrm{Pd}(\mathrm{acac})_{2}$ catalyst associated to $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ led to the $\mathrm{C} 2-$ arylated oxazoles. A wide variety of (hetero)aryl bromides were tolerated by these reaction conditions. The access to 2,5 -diaryloxazoles bearing identical or different aryl groups via one-pot diarylation or sequential arylations is also described. These sequential arylation allowed the straightforward synthesis of 2 -arylphenanthro[9,10-d] oxazoles in good yields via three C-H bond functionalization steps. Using Ru-catalysis, the C-H arylation of the aryl unit of 2-aryloxazoles is also possible. These phosphine-free regiodivergent procedures employ easily available catalysts, bases and substrates and tolerate a variety of useful functional groups. For these reasons, these protocols provide economically viable and environmentally very attractive accesses to (poly)arylated oxazole derivatives.

Experimental Section

General procedures for palladium-catalyzed direct (di)arylations of oxazoles:

Procedure A: The reaction of the aryl bromide (1 or 2 mmol) (see schemes), oxazole derivative (1 or 2 mmol) (see schemes), KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ at 100 or $110{ }^{\circ} \mathrm{C}$ (see schemes) during 24 h in DMA (4 mL) under argon affords the coupling products 1a-24a, 25-28 and 31a-33a after evaporation of the solvent and purification on silica gel. Eluent heptane:ethyl acetate: 3:7 for 23a; 4:6 for 22a; $6: 4$ for 1a, 14a, 24a; 7:3 for 2a-4a, 6a, 7a, 13a, 15a, 17a-19a, 25-27; 8:2 for 5a, 8a, 10a-12a, 16a, 20a, 21a, 28, 31a; 9:1 for 9a, 32a, 33a.

Procedure B: The reaction of the aryl bromide (1 or 2 mmol) (see schemes), oxazole derivative (1 or 2 mmol) (see schemes), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.975 \mathrm{~g}, 3 \mathrm{mmol})$ in the presence of $\operatorname{Pd}(\mathrm{acac})_{2}(15.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ at $110{ }^{\circ} \mathrm{C}$ during 24 h in DMA (4 mL) under argon affords the coupling products 1b-23b, 29 and 30 after evaporation of the solvent and purification on silica gel. Eluent heptane:ethyl acetate: 6:4 for 1b, 22b; 7:3 for 14b, 18b, 29, 30; 8:2 for 3b-13b, 16b, 23b; 9:1 for 21b.

Procedure C: The reaction of the aryl bromide (3 mmol), oxazole $(0.069 \mathrm{~g}, 1 \mathrm{mmol})$, $\mathrm{KOAc}(0.294 \mathrm{~g}, 3 \mathrm{mmol})$ $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.975 \mathrm{~g}, 3 \mathrm{mmol})$ in the presence of $\mathrm{Pd}(\mathrm{acac})_{2}$ $\left(15.2 \mathrm{mg}, 0.05 \mathrm{mmol}\right.$) at $110{ }^{\circ} \mathrm{C}$ during 48 h in DMA (4 mL) under argon affords the coupling products 1c-21c after evaporation of the solvent and purification on silica gel. Eluent heptane:ethyl acetate: $3: 7$ for $\mathbf{1 c}, 7: 3$ for $\mathbf{3 c}$, $\mathbf{1 3 c}$; 8:2 for $\mathbf{8 c}, \mathbf{1 0 c}, 11 \mathbf{c}$; $9: 1$ for $\mathbf{9 c}$, 21c.
5-(Quinolin-3-yl)oxazole (1a): ${ }^{[17]}$ Following procedure \mathbf{A}, from 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole $(0.138 \mathrm{~g}, 2 \mathrm{mmol})$, product 1a was obtained in 78% yield $(0.153 \mathrm{~g})$ as a brown solid: $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.2$, 149.2, 147.7, 146.7, 130.6, 130.1, 129.5, 128.1, 127.6,
127.5, 122.9, 121.1. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ 196, found 196.

5-(4-Nitrophenyl)oxazole (2a): ${ }^{[6 b]}$ Following procedure A, from 4-bromonitrobenzene $(0.202 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 2 a was obtained in 80% yield $(0.152 \mathrm{~g})$ as a yellow solid: mp $149-151{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.01$ $(\mathrm{s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,149.5,147.4,133.4,124.8$, 124.7, 124.5. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} 190$, found 190.

4-(Oxazol-5-yl)benzonitrile (3a): ${ }^{[13]}$ Following procedure A, from 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 3a was obtained in 80% yield $(0.133 \mathrm{~g})$ as a white solid: $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (s, 1 H), 7.76 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}) .{ }_{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,149.8,132.8,131.7,124.7$, 124.2, 118.4, 112.0. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} 170$, found 170.
4-(Oxazol-5-yl)benzaldehyde (4a): ${ }^{[14]}$ Following procedure \mathbf{A}, from 4-bromobenzaldehyde $(0.185 \mathrm{~g}$, 1 mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 4 a was obtained in 73% yield $(0.126 \mathrm{~g})$ as a white solid: $\mathrm{mp} 101-$ $103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.02(\mathrm{~s}, 1 \mathrm{H})$, $7.99(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.4$, 151.6, 150.5, 136.1, 133.1, 130.6, 124.8, 124.2. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2} 173$, found 173 .
1-(4-(Oxazol-5-yl)phenyl)propan-1-one (5a): Following procedure \mathbf{A}, from 4-bromopropiophenone (0.213 g , 1 mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 5 a was obtained in 73% yield $(0.159 \mathrm{~g})$ as a white solid: $\mathrm{mp} 87-$ $89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, $3.01(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.9,151.2,150.5$, 136.5 , 131.6, 128.7, 124.3, 123.4, 31.8, 8.3. Anal. Calcd fó $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$ (201.23): C, 71.63 ; H, 5.51. Found: C, 71.78 ; $\mathrm{H}, 5.39$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} 201$, found 201.

(4-(Oxazol-5-yl)phenyl)(phenyl)methanone

(6a):
Following procedure A, from 4-bromobenzophenone ($0.261 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), KOAc ($0.196 \mathrm{~g}, 2 \mathrm{mmol}$), product 6 a was obtained in 76% yield $(0.189 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 129-131^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$ CDCl_{3}): $\delta 195.7,151.2,150.6,137.4,137.3,132.6,131.2$, 130.8, 129.9, 128.4, 124.0, 123.4. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2}(249.27)$: C, 77.10 ; $\mathrm{H}, 4.45$. Found: C, 77.02 ; H, 4.66. HRMS calcd for $\mathrm{M}^{+} \mathrm{Na} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NNaO}_{2}$ 272.0682, found 272.0683 .
Ethyl 4-(oxazol-5-yl)benzoate (7a): Following procedure \mathbf{A}, from ethyl 4-bromobenzoate ($0.229 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 7a was obtained in 74% yield $(0.160 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 73-75{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.95 $(\mathrm{s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz $\left.\mathrm{CDCl}_{3}\right): \delta 165.9,151.1,150.6,131.6,130.3,130.2,124.1$ 123.3, 61.2, 14.3. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}(217.22)$: C, 66.35 ; H, 5.10. Found: C, 66.54 ; H, 4.89. HRMS calcd for $\mathrm{M}^{+} \mathrm{Na} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NNaO}_{3}$ 240.0631, found 240.0632.
5-(4-(Trifluoromethyl)phenyl)oxazole (8a): ${ }^{[15 a]}$ Following procedure \mathbf{A}, from 4(trifluoromethyl)bromobenzene $(0.225 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product $8 \mathbf{a}$ was obtained in 56% yield $(0.119 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.4,150.4,131.1,130.6(\mathrm{q}, J=$ $32.5 \mathrm{~Hz}), 126.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.7,124.0(\mathrm{q}, J=272.1$ Hz), 122.9. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO} 213$, found 213.

5-(4-Chlorophenyl)oxazole (9a): ${ }^{[15 b]}$ Following procedure A, from 4-bromochlorobenzene $(0.191 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 9 a was obtained in 55% yield $(0.098 \mathrm{~g})$ as a white solid: $\mathrm{mp} 69-71{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.8,134.7,129.4,126.4,125.8$, 122.0. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClNO} 179$, found 179.

5-(4-Fluorophenyl)oxazole (10a): ${ }^{[16]}$ Following procedure A, from 4-bromofluorobenzene ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 10a was obtained in 66% yield $(0.107 \mathrm{~g})$ as a white solid: $\mathrm{mp} 43-45{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.63$ (dd, $J=8.6$, $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9(\mathrm{~d}, J=249.0 \mathrm{~Hz}$), 150.9 , $150.6,126.4(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 121.3$, $116.2\left(\mathrm{~d}, J=22.1 \mathrm{~Hz}\right.$). LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{FNO}$ 163, found 163.
5-Phenyloxazole (11a): ${ }^{[15 b]}$ Following procedure \mathbf{A}, from bromobenzene ($0.157 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2$ $\mathrm{mmol})$, product 11 a was obtained in 74% yield $(0.107 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 45-47{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 151.7,150.6,129.1,128.8,127.9,124.5,121.6$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO} 145$, found 145 .
5-(4-(tert-Butyl)phenyl)oxazole (12a): ${ }^{[17]}$ Following procedure \mathbf{A}, from 1-bromo-4-tert-butylbenzene (0.213 g , 1 mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 12a was obtained in 52% yield $(0.104 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 43-$ $45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.59$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H})$, $1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9$, 151.7 , 150.2, $125.9,125.0,124.2,121.0,34.8,31.2$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO} 201$, found 201 .
5-(4-Methoxyphenyl)oxazole (13a): ${ }^{[6 b]} \quad$ Following procedure A, from 4-bromoanisole ($0.187 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 13a was obtained in 46% yield $(0.080 \mathrm{~g})$ as an orange solid: $\mathrm{mp} 63-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.1,151.7,150.0$, $126.1,120.7,120.1,114.5,55.5$. LRMS calcd for M^{+} $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2} 175$, found 175.
3-(Oxazol-5-yl)benzonitrile (14a): ${ }^{[14]} \quad$ Following procedure A, from 3-bromobenzonitrile $(0.182 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 14 a was obtained in 81% yield $(0.138 \mathrm{~g})$ as a white solid: $\mathrm{mp} 148-150^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$, 7.86 (dt, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (dt, $J=7.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.4,149.5,131.9,130.0,129.1,128.4$, 127.9, 123.3, 118.2, 113.6. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ 170 , found 170 .
1-(3-(Oxazol-5-yl)phenyl)ethan-1-one (15a): Following procedure \mathbf{A}, from 3-bromoacetophenone $(0.199 \mathrm{~g}, 1$ mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 15 a was obtained in 75% yield $(0.140 \mathrm{~g})$ as a white solid: $\mathrm{mp} 61-$ $63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.95$ (s, 1H), $7.90(\mathrm{dt}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dt}, J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.4,150.9$, 150.7 , 137.7, 129.3, 128.6, 128.4, 128.3, 124.0, 122.4, 26.7. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$ (187.20): C, $70.58 ; \mathrm{H}, 4.85$. Found: C, 70.69; H, 5.02. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$ 187, found 187.
5-(3-Chlorophenyl)oxazole (16a): ${ }^{[18]} \quad$ Following procedure \mathbf{A}, from 3-bromochlorobenzene $(0.191 \mathrm{~g}, 1$ mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 16a was obtained in 58% yield (0.104 g) as a white solid: $\mathrm{mp} 60-$ $62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.64$ $(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.8,150.3,135.0,130.2$,
129.4, 128.6, 124.4, 122.5, 122.4. LRMS calcd for M^{+} $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClNO} 179$, found 179.
5-(2-Nitrophenyl)oxazole (17a): ${ }^{[19]}$ Following procedure \mathbf{A}, from 2-bromonitrobenzene $(0.202 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 17a was obtained in 88% yield $(0.167 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 82-84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ (s, 1H), 7.86 (dd, $J=8.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=$ $7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,147.7,146.6$, 132.7, 129.9, 129.8, 126.0, 124.6, 121.7. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} 190$, found 190.
2-(Oxazol-5-yl)benzonitrile (18a): ${ }^{[14]} \quad$ Following procedure A, from 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 18a was obtained in 90% yield $(0.153 \mathrm{~g})$ as a white solid: $\mathrm{mp} 113-115^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (10 C $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.3,147.8,134.2,133.3,130.5,128.6$, $126.5,126.2,118.3,108.0$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ 170 , found 170.
2-(Oxazol-5-yl)benzaldehyde (19a): ${ }^{[14]}$ Following procedure \mathbf{A}, from 2-bromobenzaldehyde $(0.185 \mathrm{~g}$, 1 mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 19a was obtained in 75% yield (0.130 g) as a yellow solid: mp 99 $101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.31(\mathrm{~s}, 1 \mathrm{H})$, $8.05(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.1,151.9,148.7,134.0,133.5,129.7$, 129.5, 129.1, 129.0, 126.6. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}$ 173, found 173.
5-(Naphthalen-2-yl)oxazole (20a): ${ }^{[20]}$ Following procedure A, from 2-bromonaphthalene ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 20a was obtained in 55% yield $(0.107 \mathrm{~g})$ as an orange solid: $\mathrm{mp} 116-118^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})$, $7.90-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 151.7,150.6,133.3,133.2,128.8,128.3,127.8,126.8$ 126.6, 125.0, 123.3, 122.1, 122.0. LRMS calcd for M $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO} 195$, found 195.
5-(Naphthalen-1-yl)oxazole (21a): ${ }^{[13]} \quad$ Following procedure A, from 1-bromonaphthalene $(0.207 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 21a was obtained in 73% yield $(0.142 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ $(\mathrm{s}, 1 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H})$ $7.61-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 151.0,150.9,134.0,130.4,129.9,128.9,127.2$, 126.8, 126.4, 125.4, 125.3, 125.0, 124.9. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}$ 195, found 195.
5-(Pyridin-3-yl)oxazole (22a): ${ }^{[14]}$ Following procedure A, from 3-bromopyridine ($0.158 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 22a was obtained in 81% yield $(0.118 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.94(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.93$ (dt, $J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0,4.1$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }_{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.3$, 149.7 , 148.9, 145.9, 131.6, 124.1, 123.8, 122.9. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ 146, found 146.
5-(Pyridin-4-yl)oxazole (23a): ${ }^{[14]}$ Following procedure \mathbf{A}, from 4-bromopyridine hydrochloride ($0.194 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 23a was obtained in 87% yield $\left(0.127^{\mathrm{g}}\right)$ as a brown solid: $\mathrm{mp} 135-137^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69(\mathrm{bs}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H})$, $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.7,150.6,149.2,134.6,124.8,118.3$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ 146, found 146.
5-(Isoquinolin-4-yl)oxazole (24a): Following procedure \mathbf{A}, from 4-bromoisoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 24 a was obtained in 84% yield $(0.164 \mathrm{~g})$ as a white solid: $\mathrm{mp} 117-119^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.24$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.6,151.5,148.4$, $142.5,132.4,131.5,128.4,128.3,127.7,125.7,123.9$, 119.2. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ (196.21): C, 73.46 ; H , 4.11. Found: C, 73.28; H, 4.01. HRMS calcd for $\mathrm{M}^{+} \mathrm{H}$ $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O} 197.0709$, found 197.0712.
2-(Quinolin-3-yl)oxazole (1b): Following procedure B, from 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole $(0.138 \mathrm{~g}, 2 \mathrm{mmol})$, product 1 b was obtained in 65% yield $(0.127 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 152-154{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9$, $148.5,148.0,139.3,133.5,130.7,129.5,128.8,128.5$, 127.5, 127.2, 120.7. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ (196.21): C, 73.46; H, 4.11. Found: C, 73.51; H, 4.05. HRMS calcd for $\mathrm{M}^{+} \mathrm{Na} \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{NaO} 219.0529$, found 219.0531.
4-(Oxazol-2-yl)benzonitrile (3b): ${ }^{[21]}$ Following procedure B, from 4-bromobenzonitrile $(0.182 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product $\mathbf{3 b}$ was obtained in 64% yield $(0.109 \mathrm{~g})$ as a white solid: $\mathrm{mp} 105-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ $(\mathrm{d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $0.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.3,139.9$, 132.8, 131.3, 129.3, 126.9, 118.4, 113.8. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} 170$, found 170.
2-(4-(Trifluoromethyl)phenyl)oxazole (8b): ${ }^{[21]}$ Following procedure \mathbf{B}, from 4 -(trifluoromethyl)bromobenzene $(0.225 \mathrm{~g}, 1 \mathrm{mmol})$ and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product $\mathbf{8 b}$ was obtained in 47% yield (0.100 g) as a white solid: $\mathrm{mp} 73-75{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.6,139.4,132.0$ $(\mathrm{q}, J=32.6 \mathrm{~Hz}), 130.6,128.9,126.6,125.8(\mathrm{q}, J=3.8 \mathrm{~Hz})$, 123.9 (q, $J=272.2 \mathrm{~Hz}$). LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}$ 213, found 213.
2-(4-Chlorophenyl)oxazole (9b): ${ }^{[21]}$ Following procedure B, from 4-bromochlorobenzene ($0.191 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 9b was obtained in 58% yield $(0.104 \mathrm{~g})$ as a white solid: $\mathrm{mp} 87-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ $(\mathrm{s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1,138.8,136.5,129.1,128.6$, 127.6, 126.0. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClNO} 179$, found 179.

2-Phenyloxazole (11b): ${ }^{[5 c]}$ Following procedure \mathbf{B}, from bromobenzene ($0.157 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole $(0.138 \mathrm{~g}, 2$ mmol), product 11b was obtained in 62% yield $(0.090 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08-8.03$ $(\mathrm{m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.0,138.6,130.3,128.8$, 128.4, 127.5, 126.4. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO} 145$, found 145.
2-(4-(tert-Butyl)phenyl)oxazole (12b): ${ }^{[22]}$ Following procedure B, from 1-bromo-4-tert-butylbenzene (0.213 g , 1 mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product $\mathbf{1 2 b}$ was obtained in 53% yield $(0.106 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}{ }^{1} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 162.3,153.9,138.4,128.4$. 126.3, 125.9, 124.9, 35.1, 31.3. LRMS calcd for M^{+} $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO} 201$, found 201.
2-(4-Methoxyphenyl)oxazole (13b): ${ }^{[21]}$ Following procedure \mathbf{B}, from 4-bromoanisole ($0.187 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product $\mathbf{1 3 b}$ was obtained in 64% yield $(0.112 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.2,161.4$, 138.1, 128.3, 128.1, 120.5, 114.3, 55.5. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2} 175$, found 175.
3-(Oxazol-2-yl)benzonitrile (14b): ${ }^{[21]} \quad$ Following procedure B, from 3-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product $\mathbf{1 4 b}$ was obtained
in 70% yield $(0.119 \mathrm{~g})$ as a white solid: $\mathrm{mp} 87-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta 8.33(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (dt, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dt}, J=8.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.8,139.5,133.4,130.3,129.8$, 129.7, 128.9, 128.7, 118.0, 113.3. LRMS calcd for M^{+} $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} 170$, found 170 .
2-(3-Chlorophenyl)oxazole (16b): ${ }^{[23]} \quad$ Following procedure \mathbf{B}, from 3-bromochlorobenzene $(0.191 \mathrm{~g}$, 1 mmol) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 16 b was obtained in 61% yield (0.109 g) as a white solid: $\mathrm{mp} 43-$ $45{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (dt, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 ($\mathrm{s}, 1 \mathrm{H}$), $7.44-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7,139.0$, 134.9, 130.3, 130.1, 129.1, 128.7, 126.5, 124.4. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClNO} 179$, found 179.
2-(Oxazol-2-yl)benzonitrile (18b): Following procedure B, from 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 18 b was obtained ir 58% yield $(0.099 \mathrm{~g})$ as a white solid: $\mathrm{mp} 51-53{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=$ $7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (td, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}$, ${ }_{1}{ }^{1}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7,139.7,134.8$, $132.8,130.2,129.3,129.1,128.6,117.9,109.8$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ (170.17): C, $70.58 ; \mathrm{H}, 3.55$. Found: C, 70.66 ; $\mathrm{H}, 3.75$. HRMS calcd for $\mathrm{M}^{+} \mathrm{Na} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{NaO}$ 193.0372, found 193.0372.

2-(Naphthalen-1-yl)oxazole (21b): ${ }^{[24]} \quad$ Following procedure \mathbf{B}, from 1-bromonaphthalene ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$) and oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 21b was obtained in 77% yield (0.150 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=7.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 161.8 , 138.3, 133.9, 131.2, 130.2, 128.5, 128.4, 127.8 , $127.5,126.3,126.2,125.0,124.1$. LRMS calcd for M^{+} $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}$ 195, found 195.
2-(Pyridin-3-yl)oxazole (22b): ${ }^{[4 \mathrm{aa]}}$ Following procedure B from 3-bromopyridine (0.158 g , 1 mmol) and oxazol ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$), product 22b was obtained in 80% yield $(0.117 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 113-115^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (40 n $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.29 (dt, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (dd, $J=8.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, $J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.8,151.2,147.8,139.4$, 133.7, 128.9, 123.9, 123.7. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ 146, found 146.
2-(Pyridin-4-yl)oxazole (23b): ${ }^{[25]}$ Following procedure \mathbf{B}, from 4-bromopyridine hydrochloride ($0.194 \mathrm{~g}, 1 \mathrm{mmol}$), oxazole ($0.138 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.304 \mathrm{~g}, 4 \mathrm{mmol})$, product 23b was obtained in 78% yield $(0.114 \mathrm{~g})$ as a yellow solid: mp $113-115{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 159.7,150.6,139.8,134.2,129.2,120.0$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} 146$, found 146.
2,5-Di(quinolin-3-yl)oxazole (1c): Following procedure C, from 3-bromoquinoline ($0.624 \mathrm{~g}, 3 \mathrm{mmol}$) and oxazole ($0.069 \mathrm{~g}, 2 \mathrm{mmol}$), product 1 c was obtained in 74% yielu $(0.239 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 265-267^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (td, $J=7.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,149.6,148.7,147.9$, $147.8,146.6,133.6,131.0,130.4,130.2,129.6,129.5$, $128.5,128.1,127.7,127.6,127.3,125.2,121.1,120.4$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (323.36): C, 78.00 ; $\mathrm{H}, 4.05$. Found: C, $78.25 ; \mathrm{H}, 4.02$. HRMS calcd for $\mathrm{M}^{+} \mathrm{Na}$ $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO} 346.0951$, found 346.0949 .
4,4'-(Oxazole-2,5-diyl)dibenzonitrile (3c) ${ }^{[26]}$ Following procedure C, from 4-bromobenzonitrile $(0.546 \mathrm{~g}, 3 \mathrm{mmol})$
and oxazole ($0.069 \mathrm{~g}, 1 \mathrm{mmol}$), product $3 \mathbf{c}$ was obtained in 17% yield $(0.046 \mathrm{~g})$ as a white solid: $\mathrm{mp} 265-267^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.6,150.7,133.1,132.9,131.5,130.7,127.1,126.8$, $124.8,118.5,118.3,114.4,112.4$. LRMS calcd for M^{+} $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O} 271$, found 271.
 (trifluoromethyl)bromobenzene ($0.675 \mathrm{~g}, 3 \mathrm{mmol}$) and oxazole ($0.069 \mathrm{~g}, 1 \mathrm{mmol}$), product $8 \mathbf{c}$ was obtained in 60% yield (0.214 g) as a white solid: $\mathrm{mp} 127-129^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.5,150.6,132.3(\mathrm{q}, J=32.7 \mathrm{~Hz}), 130.8(\mathrm{~m}), 130.6(\mathrm{q}, J$ $=32.7 \mathrm{~Hz}), 130.2(\mathrm{~m}), 126.7,126.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.9$ $(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.5,124.4,123.8(\mathrm{q}, J=272.0 \mathrm{~Hz})$, 123.7 ($\mathrm{q}, J=272.0 \mathrm{~Hz}$). LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}$ 357, found 357 .
2,5-Bis(4-chlorophenyl)oxazole (9c): ${ }^{[27]} \quad$ Following procedure C, from 4-bromochlorobenzene ($0.573 \mathrm{~g}, 3$ mmol) and oxazole ($0.069 \mathrm{~g}, 2 \mathrm{mmol}$), product 9 c was obtained in 71% yield (0.206 g) as a white solid: mp 146 $148{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03$ ($\mathrm{d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\dot{\delta} 160.4,150.5,136.6,134.4,129.3,129.2$, 127.6, 126.3, 125.7, 125.4, 123.9. LRMS calcd for M^{+} $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO} 289$, found 289.
2,5-Bis(4-fluorophenyl)oxazole (10c): ${ }^{[28]}$ Following procedure \mathbf{C}, from 4-bromofluorobenzene $(0.525 \mathrm{~g}, 3$ mmol) and oxazole ($0.069 \mathrm{~g}, 2 \mathrm{mmol}$), product 10c was obtained in 73% yield $(0.188 \mathrm{~g})$ as a white solid: $\mathrm{mp} 154-$ $156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09$ (dd, $J=8.2$, $5.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (dd, $J=8.2,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H})$, 7.22-7.12 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.5$, 162.9 (d, $J=249.1 \mathrm{~Hz}$), $161.8(\mathrm{~d}, J=250.2 \mathrm{~Hz}$), 150.7 , 128.5 (d, $J=8.7 \mathrm{~Hz}$), 126.2 (d, $J=8.2 \mathrm{~Hz}$), 124.4, 123.9, $123.2,116.3(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=22.1 \mathrm{~Hz})$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}$ 257, found 257.
2,5-Diphenyloxazole (11c): ${ }^{[27]}$ Following procedure C, from bromobenzene $(0.471 \mathrm{~g}, 3 \mathrm{mmol})$ and oxazole $(0.069$ $\mathrm{g}, 2 \mathrm{mmol}$), product 11 c was obtained in 69% yield (0.152 g) as a white solid: $\mathrm{mp} 78-80{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.3,151.4,130.5,129.1,129.0$, 128.6, 128.2, 127.6, 126.4, 124.4, 123.6. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO} 221$, found 221.
2,5-Bis(4-methoxyphenyl)oxazole (13c): ${ }^{[27]}$ Following procedure C, from 4-bromoanisole ($0.561 \mathrm{~g}, 3 \mathrm{mmol}$) and oxazole ($0.069 \mathrm{~g}, 2 \mathrm{mmol}$), product 13c was obtained in 53% yield $(0.149 \mathrm{~g})$ as a white solid: $\mathrm{mp} 143-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,160.8,159.8$, 150.9 , $127.9,125.7,121.9,121.2,120.6,114.5,114.3$, 55.5 (2C).' LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3} 281$, found 281.
2,5-Di(naphthalen-1-yl)oxazole (21c): ${ }^{[29]}$ Following procedure C, from 1-bromonaphthalene ($0.621 \mathrm{~g}, 3 \mathrm{mmol}$) and oxazole ($0.069 \mathrm{~g}, 2 \mathrm{mmol}$), product 21 c was obtained in 81% yield $(0.260 \mathrm{~g})$ as a yellow solid: mp $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.53(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,150.3,134.0,134.0$, $131.3,130.3,130.2,129.6,128.8,128.6,127.9,127.7$, $127.2,126.8,126.5,126.4,126.3,126.2,125.5,125.4$, 125.1, 125.0, 123.9. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NO} 321$, found 321 .
4-(2-(4-Methoxyphenyl)oxazol-5-yl)benzonitrile (25):
Following procedure \mathbf{A}, from 4-bromobenzonitrile (0.364
$\mathrm{g}, 2 \mathrm{mmol})$ and 2-(4-methoxyphenyl)oxazole $\mathbf{1 3 b}(0.175 \mathrm{~g}$, 1 mmol), product 25 was obtained in 85% yield (0.235 g) as a yellow solid: $\mathrm{mp} 175-177^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.6,161.9,148.8,132.8,132.1,128.3,126.2,124.2$, 119.6, 118.6, 114.4, 111.2, 55.5. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (276.30): C, 73.90 ; H, 4.38. Found: C, 74.15 ; $\mathrm{H}, 4.28$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ 276, found 276.
4-(5-(4-Methoxyphenyl)oxazol-2-yl)benzonitrile (26): Following procedure \mathbf{A}, from 4-bromoanisole $(0.374 \mathrm{~g}, 2$ mmol) and 4-(oxazol-2-yl)benzonitrile 3b ($0.170 \mathrm{~g}, 1$ mmol) at $150{ }^{\circ} \mathrm{C}$, product 26 was obtained in 86% yield $(0.237 \mathrm{~g})$ a yellow solid: $\mathrm{mp} 157-159{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.3,158.6,152.6,132.6,131.3,126.4,126.0,122.7$, 120.2, 118.4, 114.6, 113.2, 55.4. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (276.30): C, 73.90 ; H, 4.38. Found: C, 73.85 ; $\mathrm{H}, 4.51$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} 276$, found 276.
5-(4-Fluorophenyl)-2-(4-methoxyphenyl)oxazole (27). Following procedure \mathbf{A}, from 4-bromofluorobenzene ($0.350 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-(4-methoxyphenyl)oxazole 13b ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$), product 27 was obtained in 77% yield $(0.207 \mathrm{~g})$ as a white solid: $\mathrm{mp} 131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=8.6$, $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87{ }^{\prime}(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 162.6(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 161.4,161.3,149.9$, 127.9 , 125.9 (d, $J=8.2 \mathrm{~Hz}$, 124.5 (d, $J=3.3 \mathrm{~Hz}$), 122.9 $(\mathrm{d}, J=1.3 \mathrm{~Hz}), 120.2,116.0(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 114.3,55.4$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNO}_{2}$ (269.28): C, 71.37; H, 4.49 . Found: C, 71.56; H, 4.20. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{2}$ 269 , found 269.

5-(4-(tert-Butyl)phenyl)-2-(4-methoxyphenyl)oxazole

(28): Following procedure \mathbf{A}, from 1-bromo-4-tertbutylbenzene $(0.426 \quad \mathrm{~g}, \quad 2 \mathrm{mmol})$ and $2-(4$ methoxyphenyl)oxazole 13b ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$), product 28 was obtained in 81% yield $(0.249 \mathrm{~g})$ as a white solid: m^{-} $111-113{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}$, 1.36 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3$, 161.0 , $151.5,150.9,127.9,125.8,125.4,123.9,122.8,120.4$, $114.2,55.4,34.8,31.2$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$ (307.39): С, $78.15 ;$ H, 6.89. Found: C, 77.89; H, 6.98. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} 307$, found 307.
4-(2-(4-Fluorophenyl)oxazol-5-yl)benzonitrile (29): Following procedure \mathbf{B}, from 4-bromofluorobenzene ($0.350 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-(oxazol-5-yl)benzonitrile 3a ($0.170 \mathrm{~g}, 1 \mathrm{mmol}$), product 29 was obtained in 79% yield $(0.208 \mathrm{~g})$ as a white solid: $\mathrm{mp} 209-211^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{dd}, J=8.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.4$ (d, $J=252.2 \mathrm{~Hz}), 161.6,149.4,132.8,131.8,128.7(\mathrm{~d}, J=8.7$ Hz), 126.2, $124.3,123.2$ (d, $J=3.3 \mathrm{~Hz}$), 118.5, 116.2 (d, J $=22.2 \mathrm{~Hz}$), 111.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}$ (264.26): C, 72.72; H, 3.43. Found: C, 72.89; H, 3.62. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O} 264$, found 264.
4-(2-(4-(tert-Butyl)phenyl)oxazol-5-yl)benzonitrile (30): Following procedure \mathbf{B}, from 1-bromo-4-tert-butylbenzene ($0.426 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-(oxazol-5-yl)benzonitrile 3a ($0.170 \mathrm{~g}, 1 \mathrm{mmol}$), product 30 was obtained in 77% yield (0.232 g) as a yellow solid: mp $157-159{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $162.6,154.5,149.1,132.8,132.0,126.4,126.3,125.9$, 124.3, 124.1, 118.6, 111.3, 35.0, 31.2. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(302.38)$: C, 79.44 ; H, 6.00 . Found: C, 79.65 ; $\mathrm{H}, 5.82$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} 302$, found 302.

[^0]($0.466 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-(4-methoxyphenyl)oxazole 13b ($0.175 \mathrm{~g}, 1 \mathrm{mmol}$), product 31a was obtained in 83% yield $(0.271 \mathrm{~g})$ as a white solid: $\mathrm{mp} 126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.31(\mathrm{~m}$, $8 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,160.7,149.7,141.6$, $139.8,130.8$, 128.9, 128.6, 128.0, 127.9, 127.7, 127.6, 126.8, 126.6, 126.3, 120.2, 114.2, 55.4. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$ (327.38): C, 80.71 ; H, 5.23. Found: C, 80.89 ; $\mathrm{H}, 5.05$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2} 327$, found 327.

5-([1,1'-Biphenyl]-2-yl)-2-(4-chlorophenyl)oxazole

(32a): Following procedure \mathbf{A}, from 2-bromobiphenyl ($0.466 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-(4-chlorophenyl)oxazole $9 \mathbf{b}$ ($0.180 \mathrm{~g}, 1 \mathrm{mmol}$), product 32a was obtained in 80% yield $(0.265 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 153-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.45$ ($\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 9 \mathrm{H})$, $6.42(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.6,150.6$, $141.4,140.0,136.2,130.8,129.0,128.9,128.5,128.4$, 127.8, 127.6, 127.4, 126.7, 126.5, 126.4, 125.8. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClNO}(331.80)$: C, 76.02 ; $\mathrm{H}, 4.25$. Found: $\mathrm{C}, 76.31$; $\mathrm{H}, 4.02$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClNO} 331$, found 331 .

5-([1,1'-Biphenyl]-2-yl)-2-(4-

(trifluoromethyl)phenyl)oxazole (33a): Following procedure A, from 2-bromobiphenyl ($0.466 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-(4-(trifluoromethyl)phenyl)oxazole $\quad \mathbf{8 b} \quad(0.213 \quad \mathbf{g}, \quad 1$ mmol), product 33a was obtained in 88% yield (0.321 g) as a yellow solid: $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 7 \mathrm{H}),{ }^{6.52}(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,151.2,141.4,140.2,131.6(\mathrm{q}, J=$ $32.5 \mathrm{~Hz}), 130.9,130.5,128.9,128.6,128.5,127.8$, 127.7 , $126.9,126.7,126.3,126.2,125.7$ (q, $J=3.7 \mathrm{~Hz}$), 123.8 (q, $J=272.3 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}$ (365.36): C, 72.32; H, 3.86. Found: C, 72.12; H, 4.07. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{NO} 365$, found 365.
5-([1,1'-Biphenyl]-2-yl)-4-bromo-2-(4-
methoxyphenyl)oxazole (31b): The reaction of 5-([1,1'-biphenyl]-2-yl)-2-(4-methoxyphenyl)oxazole 31a (0.245 g , $0.75 \mathrm{mmol}), N$-bromosuccinimide ($0.267 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$ during 16 h in DMF (4 mL) under argon affords the coupling product 31b after evaporation of the solvent and purification on silica gel in 84% yield (0.256 g) as a yellow oil. Eluent heptane:ethyl acetate: 9:1. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.7,160.6,146.4,141.8,141.2,130.8,130.0,129.8$, 128.7, 128.2, $127.9,127.3,127.2,125.3,119.1,114.6$, 114.1, 55.4. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{22} \mathrm{H}_{12} \mathrm{BrNO}_{2} 405$, found 405.

5-([1,1'-Biphenyl]-2-yl)-4-bromo-2-(4-

chlorophenyl)oxazole (32b): The reaction of $5-\left(\left[1,1^{\prime}-\right.\right.$ biphenyl]-2-yl)-2-(4-chlorophenyl)oxazole 32a (0.248 g , $0.75 \mathrm{mmol}), N$-bromosuccinimide $(0.267 \mathrm{~g}, 1.5 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ during 16 h in DMF (4 mL) under argon affords the coupling product 32b after evaporation of the solvent and purification on silica gel in 86% yield $(0.264 \mathrm{~g})$ as a yellow oil. Eluent heptane:ethyl acetate: 9:1. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}$, 5 H), $7.35-7.24(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.5,147.3,141.9,141.1,136.9,130.8,130.1,130.0$, $129.0,128.7,128.2,127.4,127.3,127.2,124.9,124.8$, 114.8. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{21} \mathrm{H}_{13} \mathrm{ClBrNO} 411$, found 411.

5-([1,1'-Biphenyl]-2-yl)-4-bromo-2-(4-

(trifluoromethyl)phenyl)oxazole (33b): The reaction of 5-([1,1'-biphenyl $]$-2-yl)-2-(4-
(trifluoromethyl)phenyl)oxazole 33a ($0.273 \mathrm{~g}, 0.75 \mathrm{mmol}$), N-bromosuccinimide ($0.267 \mathrm{~g}, 1.5 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$ during 16 h in DMF (4 mL) under argon affords the coupling product 33b after evaporation of the solvent and purification on silica gel in 83% yield $(0.276 \mathrm{~g})$ as a yellow oil. Eluent heptane:ethyl acetate: 9:1. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.26(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.0$, $148.0,142.0,141.1,132.2(\mathrm{q}, J=32.5 \mathrm{~Hz}), 130.8,130.2$, $130.0,129.4,128.7,128.3,127.4,127.3,126.3,125.7$ (q, J $=3.7 \mathrm{~Hz}), 124.8,124.0(\mathrm{q}, J=272.3 \mathrm{~Hz}), 115.1$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{22} \mathrm{H}_{13} \mathrm{BrF}_{3} \mathrm{NO} 444$, found 444 .

2-(4-Methoxyphenyl)phenanthro[9,10-d]oxazole

(31c): ${ }^{[30]}$ The reaction of 5-([1,1'-biphenyl]-2-yl)-4-bromo-2-(4-methoxyphenyl)oxazole 31b ($0.203 \mathrm{~g}, 0.5 \mathrm{mmol}$), KOPiv ($0.140 \mathrm{~g}, 1 \mathrm{mmol}$) in the presence of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(15.2 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ during 24 h in DMA (4 mL) under argon affords the coupling product 31c after evaporation of the solvent and purification on silica gel in 94% yield $(0.152 \mathrm{~g})$ as a white solid: mp 230-232 ${ }^{\circ} \mathrm{C}$. Eluent heptane:ethyl acetate: $9: 1$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.74(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $8.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.77-$ $7.65(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.4,161.9,144.6,135.6$, $129.1,128.9,128.8,127.3,127.2,126.2,126.1,126.0$, $123.7,123.4,122.9,121.2,120.7,120.3,114.4,55.5$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{2} 325$, found 325 .
2-(4-Chlorophenyl)phenanthro[9,10-d]oxazole (32c): ${ }^{[30]}$ The reaction of 5-([1,1'-biphenyl]-2-yl)-4-bromo-2-(4chlorophenyl)oxazole 32b ($0.205 \mathrm{~g}, 0.5 \mathrm{mmol}$), KOPiv $(0.140 \mathrm{~g}, 1 \mathrm{mmol})$ in the presence of $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ ($15.2 \mathrm{mg}, 0.025 \mathrm{mmol}$) at $150^{\circ} \mathrm{C}$ during 24 h in DMA (4 mL) under argon affords the coupling product 32c after evaporation of the solvent and purification on silica gel in 90% yield (0.148 g) as a white solid: $\mathrm{mp} 261-263{ }^{\circ} \mathrm{C}$. Eluent heptane:ethyl acetate: $9: 1 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.78(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.40-8.26(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.2,145.0$, $137.0,135.5,129.4,129.3,128.9,128.4,127.6$, 127.5, $126.6,126.3,126.2,126.1,123.8,123.5,122.7,121.0$, 120.8. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{21} \mathrm{H}_{12} \mathrm{ClNO} 329$, found 329 .

2-(4-(Trifluoromethyl)phenyl)phenanthro[9,10-

d]0xazole (33c): The reaction of 5-([1,1'-biphenyl]-2-yl)-4-bromo-2-(4-(trifluoromethyl)phenyl)oxazole 33b (0.222 $\mathrm{g}, 0.5 \mathrm{mmol})$, KOPiv ($0.140 \mathrm{~g}, 1 \mathrm{mmol}$) in the presence c^{f} $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(15.2 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $150^{\circ} \mathrm{C}$ during 24 h in DMA (4 mL) under argon affords the coupling product 33c after evaporation of the solvent an. purification on silica gel in 96% yield $(0.174 \mathrm{~g})$ as a white solid: mp 223-225 ${ }^{\circ} \mathrm{C}$. Eluent heptane:ethyl acetate: 9:1. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.74(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $8.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.65(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 160.6,145.3,135.6,132.4(\mathrm{q}, J=32.7 \mathrm{~Hz})$, 130.7, 129.6, 129.0, 127.9, 127.6, 127.4, 126.8, 126.4, $126.0,125.9(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.8,123.7(\mathrm{q}, J=272.6$ Hz), 123.5, 122.9 , 121.0, 120.9. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}$ (363.34): C, 72.73 ; H, 3.33. Found: C, 72.89 ; $\mathrm{H}, 3.20$. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO} 363$, found 363 .
4'-Methoxy-2-(oxazol-2-yl)-[1,1'-biphenyl]-3-
carbonitrile (34): The reaction of 4-bromoanisole (0.374 $\mathrm{g}, 2 \mathrm{mmol}$), 2-(oxazol-2-yl)benzonitrile 18b ($0.170 \mathrm{~g}, 1$ $\mathrm{mmol})$, KOPiv $(0.280 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of $[\mathrm{Ru}(p-$ cymene) $\left.\mathrm{Cl}_{2}\right]_{2}(30.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ during 16 h in NMP (4 mL) under argon affords the coupling product 34 after evaporation of the solvent and purification o. silica gel in 43% yield $(0.119 \mathrm{~g})$ as a white solid: mp 101$103{ }^{\circ} \mathrm{C}$. Eluent heptane:ethyl acetate: $7: 3$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 159.5,158.1,143.7,139.8,134.6$, 132.0, 131.2, 130.6, 129.7, 129.5, 128.2, 117.2, 114.2, 113.9, 55.2. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (276.30): C, 73.90; H, 4.38. Found: C, 73.68; H, 4.21. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} 276$, found 276.
2-(Oxazol-2-yl)-[1,1'-biphenyl]-3,4'-dicarbonitrile (35): The reaction of 4-bromobenzonitrile ($0.364 \mathrm{~g}, 2 \mathrm{mmol}$), 2-(oxazol-2-yl)benzonitrile 18b ($0.170 \mathrm{~g}, 1 \mathrm{mmol}$), KOPiv $(0.280 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ ($30.6 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $150{ }^{\circ} \mathrm{C}$ during 16 h in NMP (4
mL) under argon affords the coupling product 35 after evaporation of the solvent and purification on silica gel in 62% yield $(0.168 \mathrm{~g})$ as a white solid: $\mathrm{mp} 183-185{ }^{\circ} \mathrm{C}$. Eluent heptane:ethyl acetate: 6:4. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.89$ (dd, $\left.J=6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75-7.68(\mathrm{~m}$, $2 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 157.2,143.7,142.0,140.1,134.3,133.6$, $132.2,130.8,129.7,129.2,128.4,118.4,116.9,114.2$, 111.9. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$, (271.28): C, $75.27 ; \mathrm{H}$, 3.34. Found: C, $75.60 ; \mathrm{H}, 3.54$. LRMS calcd for M^{+} $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O} 271$, found 271.
4-(1-(Oxazol-2-yl)naphthalen-2-yl)benzonitrile (36): The reaction of 4-bromobenzonitrile ($0.364 \mathrm{~g}, 2 \mathrm{mmol}$), 2-(naphthalen-1-yl)oxazole 21b ($0.195 \mathrm{~g}, 1 \mathrm{mmol}$), KOPiv $(0.280 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ ($30.6 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $150{ }^{\circ} \mathrm{C}$ during 16 h in NMP (4 mL) under argon affords the coupling product 36 after evaporation of the solvent and purification on silica gel in 83% yield $(0.246 \mathrm{~g})$ as a yellow solid: $\mathrm{mp} 161-163{ }^{\circ} \mathrm{C}$. Eluent heptane:ethyl acetate: 7:3. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.90(\mathrm{~m}, 2 \mathrm{H})$, $7.66-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 159.7, $145.9,139.3$, $139.1,132.9,132.4,132.0,131.1,129.5,128.2,128.0$, $127.9,127.0,126.8,125.7,124.3,118.8,111.0$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (296.33): C, 81.07; H, 4.08. Found: C, 81.23; H, 4.32. LRMS calcd for $\mathrm{M}^{+} \mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ 296, found 296 .

Acknowledgements

We are grateful to the ANR-16-CE07-0001 for a grant to X. S. We thank CNRS and "Rennes Metropole" for providing financial support.

References

[1] For reviews on Pd-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization: a) T. Satoh, M. Miura, Chem. Lett. 2007, 36, 200-205; b) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; c) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094-5115; d) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254; e) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; f) M. R. Yadav, R. K. Rit, M. Shankar, A. K. Sahoo, Asian J. Org. Chem. 2015, 4, 846-864; g) T. Gensch, M. J. James, T. Dalton, F. Glorius, Angew. Chem. Int. Ed. 2018, 57, 2296-2306.
[2] C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, Catal. Sci. Technol. 2016, 6, 2005-2049.
[3] L. Ackermann Ed., Modern arylation methods, (Eds.: Wiley Online Library, 2009.
[4] For selected examples of palladium-catalyzed direct arylations of substituted oxazole: a) S. A. Ohnmacht, P. Mamone, A. J. Culshaw, M. F. Greaney, Chem. Commun. 2008, 1241-1243; b) C. Verrier, T. Martin, C. Hoarau, F. Marsais, J. Org. Chem. 2008, 73, 73837386; c) E. F. Flegeau, M. E. Popkin, M. F. Greaney, Org. Lett. 2008, 10, 2717-2720; d) L. Ackermann, A. Althammer, S. Fenner, Angew. Chem. Int. Ed. 2009, 48, 201-204; e) L. Theveau, C. Verrier, P. Lassalas, T. Martin, G. Dupas, O. Querolle, L. Van Hijfte, F.

Marsais, C. Hoarau, Chem. Eur. J. 2011, 17, 1445014463.
[5] For palladium-catalyzed direct C2-arylations of oxazole with aryl halides: a) F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, Tetrahedron 2007, 63, 19701980; b) N. S. Nandurkar, M. J. Bhanushali, M. D. Bhor, B. M. Bhanage, Tetrahedron Lett. 2008, 49, 1045-1048; c) N. A. Strotman, H. R. Chobanian, Y. Guo, J. He, J. E. Wilson, Org. Lett. 2010, 12, 35783581 ; d) Z. Xu, K. Oniwa, H. Kikuchi, M. Bao, Y. Yamamoto, T. Jin, M. Terada, Chem. Eur. J. 2018, 24, 9041-9050.
[6] For palladium-catalyzed direct C5-arylations of oxazole with aryl halides: a) F. Shibahara, T. Yamauchi, E. Yamaguchi, T. Murai, J. Org. Chem 2012, 77, 8815-8820; b) F. Bellina, M. Lessi, C. Manzini, Eur. J. Org. Chem. 2013, 5621-5630; c) A. Jakab, Z. Dalicsek, T. Soos, Eur. J. Org. Chem. 2015. 56-59; see also ref 4 c .
[7] For palladium-catalyzed direct C2,C5-diarylations of oxazole: a) F. Shibahara, E. Yamaguchi, T. Murai, J. Org. Chem. 2011, 76, 2680-2693; b) M. Lessi, G. Panzetta, G. Marianetti, F. Bellina, Synthesis 2017, 49, 4676-4686.
[8] a) S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Org. Chem. 2012, 77, 658-668; b) S. I. Gorelsky, Coord. Chem Rev. 2013, 257, 153-164.
[9] L. Chen, J. Roger, C. Bruneau, P. H. Dixneuf, H. Doucet, Adv. Synth. Catal. 2011, 353, 2749-2760.
[10] a) D. L. Davies, S. M. A. Donald, S. A. Macgregor, J Am. Chem. Soc. 2005, 127, 13754-13755; b) M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 12\&, 16496-16497; c) D. L. Davies, S. A. Macgregor, C. L. McMullin, Chem. Rev. 2017, 117, 8649-8709; d) R. A. Alharis, C. L. McMullin, D. L. Davies, K. Singh, S. A. Macgregor, J. Am. Chem. Soc. 2019, DOI: 10.1021/jacs.9b02073.
[11] X. Shi, J.-F. Soulé, H. Doucet, J. Org. Chem. 2017, 82, 3886-3894.
[12] a) S. Oi, H. Sasamoto, R. Funayama, Y. Inoue, Chem. Lett. 2008, 37, 994-995; b) W. Li, P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2011, 13, 2315-2319.
[13] T. Yao, K. Hirano, T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 12307-12311.
[14] N. Primas, A. Bouillon, J.-C. Lancelot, S. Rault, Tetrahedron 2009, 65, 6348-6353.
[15] a) H. Hachiya, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2009, 11, 1737-1740; b) M. Nishino, K. Hirano, T. Satoh, M. Miura, Angew. Chem., Int. Ed. 2012, 51, 6993-6997.
[16] F. Yang, J. Koeller, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 4759-4762.
[17] K. S. Vinay Kumar, T. R. Swaroop, N. Rajeev, A. C. Vinayaka, G. S. Lingaraju, K. S. Rangappa, M. P. Sadashiva, Synlett 2016, 27, 1363-1366.
[18] B. A. Kulkarni, A. Ganesan, Tetrahedron Lett. 1999, 40, 5637-5638.
[19] B. Li, R. A. Buzon, Z. Zhang, Org. Synth. 2010, 87, 16-25.
[20] J.-B. E. Y. Rouchet, M. Hachem, C. Schneider, C. Hoarau, ACS Catal. 2017, 7, 5363-5369.
[21] D. Haas, M. Mosrin, P. Knochel, Org. Lett. 2013, 15, 6162-6165.
[22] C. Kashima, H. Arao, Synthesis 1989, 873-874.
[23] E. V. Brown, J. Org. Chem. 1977, 42, 3208-3209.
[24] X.-F. Wu, H. Neumann, S. Neumann, M. Beller, Chem. Eur. J. 2012, 18, 13619-13623.
[25] M. Dadkhah, B. Prijs, Helv. Chim. Acta 1962, 45, 375-381.
[26] B. P. Das, R. A. Wallace, D. W. Boykin Jr., J. Med. Chem. 1980, 23, 578-581.
[27] M. Pulici, F. Quartieri, E. R. Felder, J. Comb. Chem. 2005, 7, 463-473.
[28] X.-B. Shen, Y. Zhang, W.-X. Chen, Z.-K. Xiao, T.-T. Hu, L.-X. Shao, Org. Lett. 2014, 16, 1984-1987.
[29] F. N. Hayes, B. S. Rogers, D. G. Ott, J. Am. Chem. Soc. 1955, 1850-1852.
[30] N. Bagi, R. Stefanovszky, J. Kaizer, G. Speier, Monatsh. Chem. 2016, 147, 425-428.

FULL PAPER

Reaction conditions for the regiodivergent direct arylations at C2- or C5-positions of oxazoles using phosphine-free palladium catalysts

Adv. Synth. Catal. Year, Volume, Page - Page

Xinzhe Shi, Jean-François Soulé* and Henri Doucet*

[^0]: 5-([1,1'-Biphenyl]-2-yl)-2-(4-methoxyphenyl)oxazole
 (31a): Following procedure \mathbf{A}, from 2-bromobiphenyl

