Asymmetric Pictet-Spengler Reactions: Synthesis of 1,2,3,4Tetrahydroisoquinoline Carboxylic Acid (Tic) Chimeras

Jan Spengler, ${ }^{\text {a }}$ Hartmut Schedel, ${ }^{\text {a }}$ Joachim Sieler, ${ }^{\text {b }}$ Peter J. L. M. Quaedflieg, ${ }^{\text {c }}$ Quirinus B. Broxterman, ${ }^{\text {c }}$ Alexander L.

L. Duchateau, ${ }^{\text {c }}$ Klaus Burger*a
${ }^{\text {a }}$ Department of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany Fax +49 (341) 9736599 ; E-mail: burger@organik.chemie.uni-leipzig.de
${ }^{\text {b }}$ Department of Inorganic Chemistry, University of Leipzig, Linnestr. 3, 04103 Leipzig, Germany
${ }^{\text {c }}$ DSM Research, Life Sciences - Chemistry and Catalysis, P.O. Box 18, 6160 MD Geleen, The Netherlands
Received 13 September 2000; revised 10 April 2001
Dedicated to Professor Ivar Ugi on the occasion of his $70^{\text {th }}$ birthday

Abstract

A preparatively simple diastereoselective synthesis of the amino acid chimera ($1 S, 3 S$)-1,2,3,4-tetrahydroisoquinoline-1,3dicarboxylic acid from hexafluoroacetone-protected phenylalanine and glyoxylic acid hydrate via Pictet-Spengler reaction is described. The potential of the reaction of hexafluoroacetone-protected phenylalanine with other aldehydes was scrutinized.

Key words: amino acids, cyclizations, diastereoselectivity, heterocycles, quinolines

1,2,3,4-Tetrahydroisoquinolines constitute a class of compounds attracting increasing interest, due to their various biological activities. The broad spectrum of pharmacological properties includes inter alia antibacterial and antiplasmodial activity as well as cardiovascular and neuromodulating effects. ${ }^{1}$
Much effort has been devoted to the asymmetric synthesis of optically active 1 -substituted 1,2,3,4-tetrahydroisoquinolines, because they are substructures of many naturally occurring alkaloids and their non-natural derivatives. ${ }^{2}$ The stereocenter at $\mathrm{C}-1$ can be constructed, inter alia via Pictet-Spengler ${ }^{3}$ and Bischler-Napieralski ${ }^{4}$ reactions. The diastereoselective Pictet-Spengler reaction using tryptamines ${ }^{5}$ and tryptophanes ${ }^{6}$ and chiral aldehydes as optically active starting materials have been extensively studied, whereas enantioselective reactions are rarely found in literature. ${ }^{7}$
1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid (Tic-3, 1) is a phenylalanine analog in which the dihedral angle χ ($\chi^{1}=\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta}-\mathrm{C}^{\gamma}, \chi^{2}=\mathrm{C}^{\alpha}-\mathrm{C}^{\beta}-\mathrm{C}^{\gamma}-\mathrm{C}^{\delta}$) is limited to a very small range because of its bicyclic nature. ${ }^{8}$ Tic- 3 has been applied in many instances as a replacement of phenylalanine for the design of topographically constrained peptides to study effector/receptor interactions. ${ }^{9}$ Likewise, 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid (Tic-1,2) represents a conformationally rigid phenylglycine analog (Figure 1).

Figure 1 Structures of 1,2,3,4-tetrahydroisoquinoline carboxylic acids 1-3

Recently we described a new access to N -methylamino ${ }^{10}$ and N-ethylamino acids ${ }^{11}$ using hexafluoroacetone as a protecting and activating reagent. When we applied the new strategy to hexafluoroacetone (HFA)-protected (S)phenylalanine $\mathbf{5}$, we found a preparatively simple synthesis of ($1 S, 3 S$)-1,2,3,4-tetrahydroisoquinoline-1,3-dicarboxylic acid (3). The diastereoselective condensation reaction of 5 with glyoxylic acid hydrate in the presence of concentrated sulfuric acid at room temperature was successful and gave a single new product. The conversion of the starting material was complete within 3 days (monitored by ${ }^{19} \mathrm{~F}$ NMR). Based on the spectroscopic data we ascribe the structure of a HFA-protected 1,2,3,4-tetrahy-droisoquinoline-1,3-dicarboxylic acid $\mathbf{6 a}$ to the new compound (Scheme 1).

3
6a

7
Scheme 1

The relative configuration of $\mathbf{6 a}$ was determined by X-ray structure analysis: Both carboxylic groups are placed trans with respect to the bicyclic system. Since the configuration of C-3 is known to be (S) [sequence started from (S)-phenylalanine] we can assign the (S)-configuration to the new stereocenter at $\mathrm{C}-1$. The compound crystallizes in the monoclinic space group $P 2_{1}$ with two independent molecules in the unit cell. The configuration and bonding parameters of both molecules are very similar. Figure 2 shows one of the molecules. Both molecules establish along the b -axis a helical structure with hydrogen bonds between the carboxylic groups (Figure 3).

Figure 2 X-ray crystal structure of $\mathbf{6 a}$

To determine the enantiomeric purity of $\mathbf{6 a}$ we synthesized the enatiomeric reference compound $\mathbf{6 b}$ obtainable from (R)-phenylalanine. HPLC experiments revealed that the reaction sequence $\mathbf{4} \rightarrow \mathbf{5} \rightarrow \mathbf{6}$ occurs without racemization (ee $>99.9 \%$).

Figure 3 Helical structure along the b-axis in the unit cell of $\mathbf{6 a}$

The unprotected amino acid $\mathbf{3}$, which was unknown to the best of our knowledge, was obtained by hydrolysis of $\mathbf{6 a}$ at room temperature in propan-2-ol-water. It possesses the Tic- 3 as well as the Tic-1 substructure. Therefore, it belongs to the class of chimeric amino acids, ${ }^{12}$ which are interesting candidates for peptide modification. Furthermore, compound $\mathbf{3}$ should exhibit potential in the design of secondary structure mimetics and may be applied for inversion of the peptide sequence.
The 3-carboxy group of $\mathbf{6 a}$ can be regioselectively functionalized on reaction with various nucleophiles. With amino acid amides for example dipeptide amides are formed ($6 \mathbf{a} \rightarrow 7$).
We tested the reaction of HFA-protected phenylalanine 5 with a series of aldehydes and ketones. However, only paraformaldehyde reacted with compound 5 in the presence of trifluoroacetic acid to give the Pictet-Spengler product $\mathbf{8}$ in good yields (Scheme 2). Compound $\mathbf{8}$ represents a carboxy group activated derivative of Tic-3. Therefore, it can be hydrolyzed under mild conditions (propan-2-ol-water, r.t.) to give Tic-3 (1). Comparison of the optical rotation measured for Tic-3 (1) $\left([\alpha]_{D}-134\right)$ obtained via $\mathbf{5} \rightarrow \mathbf{8} \rightarrow \mathbf{1}$ with the value cited in literature $\left([\alpha]_{D}-139\right)^{13}$ reveals that the product is optically pure. On reaction with amino acid esters dipeptide esters are formed $(\mathbf{8} \rightarrow \mathbf{9})$ (Scheme 2).

Scheme 2

When 5 was reacted with paraformaldehyde in the presence of thionyl chloride N-chloromethylation was observed. The N-chloromethyl compound $\mathbf{1 0}$ is stable at room temperature. On distillation in vacuo, at about $110^{\circ} \mathrm{C}, \mathrm{HCl}$ elimination occurs (Scheme 3). However, the Pictet-Spengler product could not be isolated. The formation of E / Z olefins 11a and 11b, which can be separated by distillation (Vigreux column) under reduced pressure, should be the result of a thermal induced 1,3HCl elimination. The azomethine ylide ${ }^{14}$ formed first undergoes a sigmatropic 1,4-H shift to give a mixture of 11a and 11b.

Scheme 3

Compounds of type 10 with a $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{N}<$ moiety belong to the class of 1-halogenalkylamines which exist in an equilibrium with the resonance-stabilized alkylidene iminium salts. ${ }^{15}$ Equilibria of this type have been studied by ${ }^{13} \mathrm{C}$ NMR spectroscopy. ${ }^{16}$ For example N, N-dimethyl(methylene)iminium chloride gives rise to four resonance signals at $\delta=38.7(\mathrm{~s}), 49.4(\mathrm{t}), 79.0(\mathrm{~s})$ and 168.1 (t) in the ${ }^{13} \mathrm{C}$ NMR spectrum (solvent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{SO}_{2}$) demonstrating that there exists an equilibrium between 1-halogenalkylamine and the alkylidene iminium salt in solution. Introduction of electron-withdrawing substituents like trifluoromethyl groups results in a stabilization of the 1-halogenalkylamine form. The ${ }^{13} \mathrm{C}$ NMR spectra of all N chloromethyl ${ }^{10}$, N -bromomethyl ${ }^{17}, \mathrm{~N}$-iodomethyl ${ }^{18}$, and N-trifluoroacetoxy ${ }^{19}$ compounds of type $\mathbf{1 0}$ recorded so far give rise only to a single resonance signal for the N methylene carbon atom in the region of $30-73 \mathrm{ppm}$. No resonance absorption could be detected in the region of 160 ppm . From these findings we conclude that N-halo-genmethyl-2,2-bis(trifluoromethyl)oxazolidin-5-ones exist mainly in the 1 -halogenalkylamine form, with the halogen covalently bound. This could be the reason that olefins 11a and 11b are formed on heating compound 10, and not the Pictet-Spengler product, which should be generated via the methyleneiminium salt. In agreement with this assumption, compound $\mathbf{8}$ was obtained from $\mathbf{1 0}$ upon treatment with boron trifluoride etherate at room temperature.
On treatment with triethylsilane in the presence of trifluoroacetic acid compound $\mathbf{1 0}$ readily gave the HFA-protected N -methylphenylalanine $\mathbf{1 2}$. Transformation into the unprotected N -methylphenylalanine $\mathbf{1 3}$ can be accomplished on heating ($80^{\circ} \mathrm{C}$) in a dioxane-concd HCl mixture (Scheme 4). Compound $\mathbf{1 2}$ as activated species can be directly subjected to peptide synthesis $(\mathbf{1 2} \rightarrow \mathbf{1 4})$.

Scheme 4

Solvents were purified and dried prior to use. Reagents were used as purchased. TLC was performed on alumina plates coated with Merck silica gel $60 \mathrm{~F}_{254}$. Compounds were visualized by spraying with a mixture of ceric(IV) nitrate, ammonium molybdate and $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by heating. Column chromatography was carried out on silica gel ($32-63 \mu \mathrm{~m}$). For the determination of enantiomeric excess in $\mathbf{6} \mathbf{a} / \mathbf{6} \mathbf{b}$, a Chiralpak AD column (Daicel Chemical Co. Ltd.) $25 \times 0.46 \mathrm{~cm}$, and as eluent system hexane-propan-2-ol-trifluoroacetic acid ($90: 10: 0.05 \%, \mathrm{v} / \mathrm{v}$), UV-detection (210 nm) and an injection volume of $20 \mu \mathrm{~L}$ were used. Under these conditions the enantiomers $\mathbf{6 a}$ and $\mathbf{6 b}$ eluted at 4.6 and 5.9 min , respectively. Melting points were determined with a Boëtius heating table. Optical rotations ($[\alpha]_{\mathrm{D}}$) were measured using a Polartronic polarimeter (Schmidt \& Haensch) in a 5 cm cell. For C, H, N analyses a CHNO-Rapid-Elemental-Analyser (Hereaus) was used. Mass spectra were recorded on a VG 12-250 (Masslab) electron ionization spectrometer ($\mathrm{EI}=70 \mathrm{eV}$) or by VG ZAB-HSQ FAB spectrometer. ESI-FT-ICR-MS spectra were recorded on a Bruker Daltronics APEX II spectrometer (7 Tesla). IR spectra were obtained by using a FTIR spectrometer (Genesis ATI Mattson). ${ }^{1} \mathrm{H}$ (200.041 or 300.075 MHz), ${ }^{13} \mathrm{C}\left(50.305\right.$ or 75.462 MHz) and ${ }^{19} \mathrm{~F}$ NMR (188.205 or 282.380 MHz) spectra were recorded on a Varian Gemini 200 or a Varian Gemini 300 spectrometer. Tetramethylsilane was used as reference standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (internal) and trifluoroacetic acid for ${ }^{19} \mathrm{~F}$ NMR spectra (external). Abbreviations used are: Phe = phenylalanine, TFA = trifluoroacetic acid.
(4S)-4-Benzyl-2,2-bis(trifluoromethyl)-1,3-oxazolidin-5-one (5) Compound 5 was obtained ${ }^{20}$ from $4(16.5 \mathrm{~g}, 100 \mathrm{mmol})$ as a solid. Yield: $28.5 \mathrm{~g}(91 \%)$; mp $53-54^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}-44\left(c=1.6, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}, \mathrm{CH}_{2}\right), 3.25(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.23-7.41\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$,
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.5\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{CH}), 88.4[\mathrm{~m}$, $C\left(\mathrm{CF}_{3}\right)_{2}$], $120.1\left(\mathrm{q}, J=284 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.1\left(\mathrm{q}, J=287 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 127.8, 129.2, 129.3, $135.0\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 170.6(\mathrm{CO})$.
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(188 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-2.77\left[\mathrm{~m}, \mathrm{C}\left(\mathrm{C} F_{3}\right)_{2}\right]$.
IR (KBr): $v=1827(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
MS (EI): $m / z(\%)=313(36)[M]^{+}, 266$ (16), 216 (12), 91 (100).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$: C, 46.02; H, 2.90; N, 4.47. Found: C, 46.06; H, 2.87; N, 4.53.

(5S,10aS)-3,3-Bis(trifluoromethyl)-1-oxo-(1,2,3,4-tetra-

 hydroisoquinolino)[2,3-c]oxazolidin-5-carboxylic Acid (6a)To a solution of oxazolidinone $5(3.1 \mathrm{~g}, 10 \mathrm{mmol})$ and glyoxylic acid monohydrate ($1.8 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added concd $\mathrm{H}_{2} \mathrm{SO}_{4}(4 \mathrm{~mL})$ and stirred in a flask equipped with a bubbler at r.t. for several days. After consumption of the starting material (reaction control by ${ }^{19} \mathrm{~F} \mathrm{NMR}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added and then poured into a mixture of ice and aq NaOAc solution. After separation, the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, dried
$\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Triturating with pentane gave a crystalline powder, which was washed with pentane $(2 \times 30 \mathrm{~mL})$. Filtration and drying in vacuo gave 6 as a white crystalline powder. Yield: $1.74 \mathrm{~g}(47 \%)$; mp $183-186{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-101.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ee $>99.9 \%$ (HPLC).
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta=3.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.24(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}_{2} \mathrm{H}\right), 7.29-7.58$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}$).
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta=30.2\left(\mathrm{CH}_{2}\right), 49.7(\mathrm{CH}), 56.4$ $\left(C \mathrm{HCO}_{2} \mathrm{H}\right), 89.5\left[\mathrm{~m}, C\left(\mathrm{CF}_{3}\right)_{2}\right], 120.3\left(\mathrm{q}, J=286 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.5$ (q, $J=294 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.6, 127.9, 128.5, 129.4, 130.7, 131.5 $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 169.8(\mathrm{CO}), 177.1\left(\mathrm{CO}_{2} \mathrm{H}\right)$.
${ }^{19} \mathrm{~F}$ NMR (188 MHz , acetone- d_{6}): $\delta=0.43\left(\mathrm{q}, J=8.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $1.32\left(\mathrm{q}, J=8.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$.

IR (KBr): $v=1838(\mathrm{C}=\mathrm{O}), 1725 \mathrm{~cm}^{-1}$.
MS (EI): $m / z(\%)=369(4)[M]^{+}, 324(33)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 302(5)$, 226 (10), 130 (100).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{4}$: C, $45.54 ; \mathrm{H}, 2.46 ; \mathrm{N}, 3.79$. Found: C, 45.14; H, 2.79; N, 3.78.

X-ray Crystallographic Data: Single crystals were grown from CHCl_{3}-hexane. Monoclinic, space group $P 2_{1} / c$, $\mathrm{T}=223 \mathrm{~K}$; $\mathrm{a}=13.391(1) \AA, \mathrm{b}=7.009(1) \AA, \mathrm{c}=15.627(1) \AA, \beta=93.77(1)^{\circ}$; $\mathrm{V}=1464.5(2) \AA^{3} ; \mathrm{Z}=4 ; \mathrm{D}_{\mathrm{c}}=1.676 \mathrm{gcm}^{-3} ;$ CCD-Diffractometer (BRUKER AXS), ω-scans (0.3°), 7982 data collected, 5260 independent reflections ($R_{\mathrm{int}}=0.037$), structure solution by direct methods, ${ }^{21}$ anisotropic refinement ${ }^{22}$ for all nonhydrogen atoms, hydrogen atoms refined isotropic, $R 1=0,0476 ; w R 2=0,1232[\mathrm{I}$ $>2 \sigma(\mathrm{I})]$; and $R 1=0,0647 ; w R 2=0.1398$ for all data. ${ }^{23}$

(5R,10aR)-3,3-Bis(trifluoromethyl)-1-oxo-(1,2,3,4-tetrahydroisoquinolino)[2,3-c]oxazolidin-5-carboxylic Acid (6b)

Compound 6b was prepared analogous to $\mathbf{6 a}$ starting from (R)-phenylalanine. $[\alpha]_{\mathrm{D}}{ }^{25}+110\left(c=1, \mathrm{CHCl}_{3}\right)$; ee $>99.9 \%$ (HPLC). Other characteristic data are in agreement with compound $\mathbf{6 a}$.

(1S,3S)-1,2,3,4-Tetrahydroisoquinoline-1,3-dicarboxylic Acid

 (3)Compound $6 \mathbf{a}(0.74 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in a mixture of pro-pan-2-ol (2 mL) - $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and stirred for several days. After consumption of the starting material (reaction control by ${ }^{19} \mathrm{~F}$ NMR or TLC) the solvents were removed in vacuo. Recrystallization from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ gave 3 as a white solid. Yield: $0.33 \mathrm{~g}(75 \%) ; \mathrm{mp} 209$ $211{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;[\alpha]_{\mathrm{D}}{ }^{25}-27(c=3$, DMSO).
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=3.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.22(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{2}\right), 4.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.07\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}_{2} \mathrm{H}\right), 7.11-7.39$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): \delta=29.3\left(\mathrm{CHCH}_{2}\right), 51.9\left(\mathrm{CH}_{2} \mathrm{CH}\right), 57.2$ $(\mathrm{CH}), 126.1,127.1,128.1,128.6,130.0,132.0\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 170.1,171.4$ ($2 \mathrm{CO}_{2} \mathrm{H}$).

MS (EI): $m / z(\%)=221(5)[M]^{+}, 176(59)\left[M-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 130(100)$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$: C, $57.38 ; \mathrm{H}, 5.25$; N, 6.08 . Found: C, 57.20; H, 5.01; N, 5.77.
(2S)- N^{α}-[(1S,3S)-3-(1-Carboxy-1,2,3,4-tetrahydroisoquinolyl)carbonyl]phenylalanine Amide (7)
Compound 6a (0.74 g (2 mmol) and (S)-phenylalanine amide (0.48 $\mathrm{g}, 3 \mathrm{mmol}$) were dissolved in propan-2-ol (4 mL) and stirred for several days. After consumption of the starting material (reaction control by ${ }^{19} \mathrm{~F}$ NMR or TLC) the precipitate was filtered and recrystallized $\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ to give 7. Yield: $0.34 \mathrm{~g}(47 \%) ; \mathrm{mp} 218-$ $221{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-43(c=0.8, \mathrm{DMSO})$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=2.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \text { Phe }}\right)$, 2.93 (3 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}, \mathrm{CH}_{2 \mathrm{Phe}}\right), 4.14(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Phe}}\right)$, $4.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}_{2} \mathrm{H}\right), 7.00-7.43\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{CONH}_{2}\right), 7.67\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CONH}_{2}\right), 8.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$.
${ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO- d_{6}): $\delta=30.2\left(\mathrm{CHCH}_{2}\right), 37.6\left(\mathrm{CH}_{2 \mathrm{Phe}}\right)$, $52.3(\mathrm{CH}), 54.0\left(\mathrm{CH}_{\text {Phe }}\right), 57.7\left(\mathrm{CHCO}_{2} \mathrm{H}\right), 126.0,126.5,127.0$, $128.0,128.2,128.4,129.3,131.8,132.4,137.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 170.8, 171.3, $173.0\left(\mathrm{CONH}, \mathrm{CONH}_{2}, \mathrm{CO}_{2} \mathrm{H}\right)$.

MS (ESI +): $m / z=368.1607\left([\mathrm{M}+\mathrm{H}]^{+}\right.$requires 368.1605).
(10aS)-3,3-Bis(trifluoromethyl)-1-oxo-(1,2,3,4-tetrahydroisoquinolino) $[2,3-c]$ oxazolidine (8)
Compound 5 ($1.56 \mathrm{~g}, 5 \mathrm{mmol}$) and paraformaldehyde ($0.3 \mathrm{~g}, 10$ mmol) were dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})-\mathrm{TFA}(2 \mathrm{~mL})$. After 30 min (reaction control by ${ }^{19} \mathrm{~F}$ NMR or TLC) the solvents were removed in vacuo. Recrystallization from hexane gave $\mathbf{8}$ as a solid. Yield: $1.33 \mathrm{~g}(82 \%) ; \mathrm{mp} 81-82^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-114.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.20(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{2}\right), 3.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.43(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right)$, 7.12-7.28 (4 H, m, C $\mathrm{C}_{6} \mathrm{H}_{4}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.2\left(\mathrm{CH}_{2} \mathrm{CH}\right), 47.3\left(\mathrm{CH}_{2}\right), 54.1$ $(\mathrm{CH}), 89.7\left[\mathrm{~m}, C\left(\mathrm{CF}_{3}\right)_{2}\right], 120.5\left(\mathrm{q}, J=285 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.7(\mathrm{q}$, $\left.J=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.6,127.1,127.4,129.8,131.2,131.8\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 168.6 (CO).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.26\left(\mathrm{q}, J=8.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 3.76$ ($\mathrm{q}, J=8.7 \mathrm{~Hz}, \mathrm{CF}_{3}$).
IR $(\mathrm{KBr}): v=1820(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
MS (EI): $m / z(\%)=325(46)[M]^{+}, 278(6), 256(7), 228(39), 104$ (100).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$: C, 48.01; H, 2.79; N, 4.31. Found: C, 47.94; H, 2.84; N, 4.23.

(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid (1)

Compound $\mathbf{8}(0.65 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in a mixture of propan-2-ol (2 mL) $-\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and stirred for several days. After consumption of the starting material (reaction control by ${ }^{19} \mathrm{~F}$ NMR or TLC) the solvents were removed in vacuo. Recrystallization from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ gave 1 as a white solid. Yield: $0.25 \mathrm{~g}(72 \%)$; mp 304$310{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.{ }^{1} \mathrm{mp} 325^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}-134(c=1.0,0.1 \mathrm{~N} \mathrm{HCl})\left(\right.$ Lit. ${ }^{13}$ $[\alpha]_{\mathrm{D}}{ }^{25}-139(c=1.0,0.1 \mathrm{~N} \mathrm{HCl})$.
MS (EI): $\left.m / z(\%)=177(7)[\mathrm{M}]^{+}, 132(100)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}\right)$.

(2S)- N^{α}-[(3S)-3-(1,2,3,4-tetrahydroisoquinolyl)carbonyl]phenylalanine tert-Butyl Ester (9)

Compound $8(0.65 \mathrm{~g}, 2 \mathrm{mmol})$ and (S)-phenylalanine tert-butyl ester $(0.67 \mathrm{~g}, 3 \mathrm{mmol})$ were dissolved in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and stirred for several days. After consumption of the starting material (reaction control by ${ }^{19} \mathrm{~F}$ NMR or TLC) the precipitate was filtered and stirred vigorously with $\mathrm{Et}_{2} \mathrm{O}$ to give 9 as a white powder. Yield: 0.53 g (69\%); mp 142-145 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-5.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.73(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2 \text { Phe }}$), 3.00-3.24 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}, \mathrm{CH}_{2 \text { Phe }}$), $3.56(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {Phe }}\right), 3.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.79(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, 7.04-7.27 ($\left.9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$.
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.4\left(\mathrm{CHCH}_{2}\right)$, $38.6\left(\mathrm{CH}_{2 \text { Phe }}\right)$, $\left.47.6\left(\mathrm{CH}_{2}\right), 53.6\left(\mathrm{CH}_{\text {Phe }}\right), 56.7(\mathrm{CH}), 82.7\left[\mathrm{CH}_{3}\right)_{3}\right]$, 126.0, 126.7, 127.1, 127.4, 128.8, 129.5, 130.0, 134.8, 136.7, 136.8 $\left(\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 171.2(\mathrm{CONH}), 173.2\left(\mathrm{CO}_{2} \mathrm{Bu}-t\right)$.
MS (EI): $m / z(\%)=380(20)[M]^{+}, 324$ (71), 132 (100).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.60; H, 7.42; N, 7.36. Found: C, 72.84; H, 7.29; N, 7.72.

(4S)-4-Benzyl-2,2-bis(trifluoromethyl)-3-chloromethyl-1,3-oxazolidin-5-one (10)

Compound $\mathbf{1 0}$ was obtained ${ }^{10}$ from $5(6.27 \mathrm{~g}, 20 \mathrm{mmol})$ by Kugelrohr distillation as an oil. Yield: $4.70 \mathrm{~g}(65 \%)$; bp $90-100^{\circ} \mathrm{C}$ (Kugelrohr)/0.7 Torr; $[\alpha]_{\mathrm{D}}{ }^{25}+9.7\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=3.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.53(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.01$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right), 5.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.19-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=35.9\left(\mathrm{CH}_{2}\right), 56.1(\mathrm{CH}), 59.1\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Cl}\right)$, $90.1\left[\mathrm{~m}, C\left(\mathrm{CF}_{3}\right)_{2}\right], 120.4\left(\mathrm{q}, J=287 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.0(\mathrm{q}, J=290$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 128.4,129.4,129.8,134.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 168.2(\mathrm{CO})$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-0.43\left(\mathrm{q}, J=8.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 3.73(\mathrm{q}, J=9.1$ $\mathrm{Hz}, \mathrm{CF}_{3}$).
IR (film): $v=1845(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
MS (EI): $m / z(\%)=361(7)[M]^{+}, 326(30)[M-C l]^{+}, 132(25), 91$ (100).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClF}_{6} \mathrm{NO}_{2}$: C, 43.18; H, 2.79; N, 3.87. Found: C, 43.20; H, 2.73; N, 4.08.

(Z)-4-Benzylidene-2,2-bis(trifluoromethyl)-3-methyloxazoli-

 din-5-one (11a)Compound 10 was stirred at $145^{\circ} \mathrm{C}$ until the gas evolution (HCl) ceased (ca 1 h). The mixture of both isomers ($\mathbf{1 1 a} / \mathbf{1 1 b}, 1: 1$) was separated by distillation over a Vigreux column (20 cm) in vacuo. Colorless oil; yield: $1.4 \mathrm{~g}(22 \%)$; bp $84^{\circ} \mathrm{C} / 1.0$ Torr.
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.87\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 6.64(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}), 7.26-7.44\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. The olefinic proton gave no NOE with the N-methyl group.
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.8\left(\mathrm{CH}_{3}\right), 84.0\left[\mathrm{~m}, C\left(\mathrm{CF}_{3}\right)_{2}\right]$, $110.0(\mathrm{CH}), 120.8\left(\mathrm{q}, J=255 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 126.2$ (C), 128.7, 129.9 , 130.1, $132.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 162.7(\mathrm{CO})$.
${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.10\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right]$.
IR (film): $v=1823(\mathrm{C}=\mathrm{O}), 1641 \mathrm{~cm}^{-1}$.
MS (EI): $m / z(\%)=325(57)[M]^{+}, 256(36), 228(64), 132(11), 131$ (100).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$: C, 48.01; H, 2.79; N, 4.31. Found: C, 48.05; H, 2.76; N, 4.54.

(E)-4-Benzylidene-2,2-bis(trifluoromethyl)-3-methyloxazoli-

 din-5-one (11b)Distillation of the reaction mixture from 11a gave as second fraction 11b. Yield: 1.8 g (28%); slowly crystallizing colorless oil; mp $44^{\circ} \mathrm{C}$; bp $\sim 100^{\circ} \mathrm{C} / 1.0$ Torr.
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 5.99(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}), 7.26-7.36\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.55-7.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. The olefinic proton gave a NOE with the N -methyl group.
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.1\left(\mathrm{CH}_{3}\right), 88.2\left[\mathrm{~m}, C\left(\mathrm{CF}_{3}\right)_{2}\right]$, 112.6 (CH), 120.9 (q, $J=292 \mathrm{~Hz}, 2 \mathrm{CF}_{3}$), 126.2 (C), 128.6, 128.7, 130.2, $132.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 160.0(\mathrm{CO})$.
${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.76\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right]$.
IR (film): $v=1823(\mathrm{C}=\mathrm{O}), 1657 \mathrm{~cm}^{-1}$.
MS (EI): m/z (\%) = 325 (70) [M] ${ }^{+}, 278$ (9), 256 (51), 228 (7), 131 (100).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$: C, 48.01; H, 2.79; N, 4.31. Found: C, 47.96; H, 2.81; N, 4.39.

(4S)-4-Benzyl-2,2-bis(trifluoromethyl)-3-methyl-1,3-oxazoli-

 din-5-one (12)Compound $\mathbf{1 2}$ was obtained ${ }^{10}$ from 5 ($6.27 \mathrm{~g}, 20 \mathrm{mmol}$) via $\mathbf{1 0}$ (see above) as a colorless oil. Yield: $5.3 \mathrm{~g}(81 \%)$; bp $63-65^{\circ} \mathrm{C} / 0.7$ Torr; $[\alpha]_{\mathrm{D}}{ }^{25}+14.6\left(c=3.6, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.64\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 3.04(1 \mathrm{H}, \mathrm{m}$, CH_{2}), $3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.84(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.19-7.38(5 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.8\left(\mathrm{br}, \mathrm{CH}_{3}\right), 36.7\left(\mathrm{CH}_{2}\right), 62.3$ $(\mathrm{CH}), 90.0\left[\mathrm{~m}, C\left(\mathrm{CF}_{3}\right)_{2}\right], 120.8\left(\mathrm{q}, J=285 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.1(\mathrm{q}$, $\left.J=294 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 127.8,129.0,130.3,135.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 169.7(\mathrm{CO})$.
${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-1.69\left(\mathrm{q}, J=8.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 4.32$ (q, $J=8.1 \mathrm{~Hz}, \mathrm{CF}_{3}$).
IR (film): $v=1842(\mathrm{CO}) \mathrm{cm}^{-1}$.
MS (EI): $m / z(\%)=327(60)\left[\mathrm{M}^{+}, 280(25), 258\right.$ (7), 236 (64), 91 (100).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{NO}_{2}$: C, 47.70; H, 3.36; N, 4.28. Found: C, 47.44; H, 3.28; N, 4.47.

(2S)-N-Methylphenylalanine (13)

Compound 12 ($0.65 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in dioxane (3 mL)concd $\mathrm{HCl}(3 \mathrm{~mL})$ and stirred at $80^{\circ} \mathrm{C}$ for 12 h . The solution was evaporated to dryness and the residue dissolved in $\mathrm{EtOH}(1 \mathrm{~mL})$. Stirring with propylene oxide (3 mL) and drying the precipitate gave 13 as a white powder. Yield: $0.21 \mathrm{~g}(59 \%) ; \mathrm{mp} 233-241^{\circ} \mathrm{C}$ $\left(\right.$ Lit. $\left.{ }^{24} \mathrm{mp} 243-246{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}+19.0(c=0.5,5 \mathrm{~N} \mathrm{HCl})\left\{\right.$ Lit. 24 $[\alpha]_{\mathrm{D}}{ }^{25}+7.6(c=0.5,5 \mathrm{~N} \mathrm{HCl}\}$.
Analytical data are identical with the literature data. ${ }^{24}$
(2S)- $N^{u}-[(2 S)-N$-Methylphenylalanyl]phenylalanine Amide (14)
Compound $12(0.65 \mathrm{~g}, 2 \mathrm{mmol})$ and (S)-phenylalanine amide (0.48 $\mathrm{g}, 3 \mathrm{mmol})$ were dissolved in propan-2-ol (4 mL) and stirred for several days. After consumption of the starting material (reaction control by ${ }^{19} \mathrm{~F}$ NMR or TLC) the solvent was evaporated and the residue purified by flash chromatography ($\mathrm{R}_{\mathrm{f}} 0.25$) (eluent: light petro-leum- $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 3: 7: 1$) and recrystallization $\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ to give $\mathbf{1 4}$ as needles. Yield: $0.49 \mathrm{~g}(72 \%) ; \mathrm{mp} 79-81{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+8.4$ ($c=1.5, \mathrm{CHCl}_{3}+5 \% \mathrm{TFA}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+5 \% \mathrm{TFA}$): $\delta=2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \text { Phe }}\right), 2.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \mathrm{Phe}}\right), 3.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $4.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {Phe }}\right), 6.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CONH}_{2}\right), 6.90$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CONH}_{2}\right), 7.01-7.30\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.65(1 \mathrm{H}, \mathrm{m}$, CONH).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+5 \% \mathrm{TFA}$): $\delta=32.9\left(\mathrm{CH}_{3}\right), 37.6$ $\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{CH}_{2 \text { Phe }}\right), 55.4\left(\mathrm{CH}_{\text {Phe }}\right), 63.3(\mathrm{CH}), 128.5,129.5,129.7$, $129.8,130.2,132.6,135.4\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 168.1$ (CONH), 175.4 $\left(\mathrm{CONH}_{2}\right)$.
MS (ESI +): $m / \mathrm{z}=326.18607\left([\mathrm{M}+\mathrm{H}]^{+}\right.$requires 326.1863).

References

(1) Monsees, A.; Laschat, S.; Kotila, S.; Fox, T.; Würthwein, E.U. Liebigs Ann./Recueil 1997, 533; and references cited therein.
(2) Rozwadowska, M. D. Heterocycles 1994, 39, 903.
(3) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
(4) Morimoto, T.; Suzuki, N.; Achiwa, K. Tetrahedron: Asymmetry 1998, 9, 183.
(5) Waldmann, H.; Schmidt, G.; Henke, H.; Burkard, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 2425.
(6) (a) Soerens, D.; Sandrin, J.; Ungemach, F.; Mokry, P.; Wu, G. S.; Yamanaka, E.; Hutchins, L.; DiPierro, M.; Cook, J. M. J. Org. Chem. 1979, 44, 535. (b) Zhang, P.; Cook, J. M. Tetrahedron Lett. 1995, 36, 6999. (c) Mohan, R.; Chou, Y.L.; Morrissey, M. M. Tetrahedron Lett. 1996, 37, 3963. (d) Meutermans, W. D. F.; Alewood, P. F. Tetrahedron Lett. 1995, 36, 7709.
(7) (a) Kawate, T.; Yamada, H.; Soe, T.; Nakagawa, M. Tetrahedron: Asymmetry 1996, 7, 1249. (b) Tietze, L. F.; Zhou, Y.; Töpke, E. Eur. J. Org. Chem. 2000, 2247.
(8) Gibson (née Thomas), S. E.; Guillo, N.; Tozer, M. J. Tetrahedron 1999, 55, 585.
(9) Kotha, S.; Sreenivasachary, N. Chem. Commun. 2000, 503; and references cited therein.
(10) Spengler, J.; Burger, K. Synthesis 1998, 67.
(11) Schedel, H.; Burger, K. Monatsh. Chem. 2000, 132, 1011.
(12) (a) Carpes, M. J. S.; Miranda, P. C. M. L.; Correia, C. R. D. Tetrahedron Lett. 1997, 38, 1869. (b) Schedel, H.; Sieler, J.; Hennig, L.; Burger, K. Synthesis 1999, 152.
(13) Kammermeier, B. O. T.; Lerch, U.; Sommer, C. Synthesis 1992, 1157.
(14) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984.
(15) (a) Knoll, F.; Krumm, U. Chem. Ber. 1971, 104, 31.
(b) Deyrup, J. A.; Szabo, W. A. J. Org. Chem. 1975, 40, 2048.
(16) Copper, M. S.; Earle, M. J.; Fairhurst, R. A.; Heaney, H.; Papageorgiou, G.; Wilkins, R. F. Synlett 1990, 617.
(17) Spengler, J.; Burger, K. J. Chem. Soc., Perkin Trans. 1 1998, 2091.
(18) Spengler, J. Dissertation; Universität Leipzig: Germany, 1999.
(19) Schedel, H. Dissertation; Universität Leipzig: Germany, 2000.
(20) Pires, R.; Fehn, S.; Golubev, A.; Winkler, D.; Burger, K. Amino Acids 1996, 11, 301.
(21) Sheldrick, G. M. SHELXS 97, Program Used to Solve Structure; University of Göttingen: Germany, 1997.
(22) Sheldrick, G. M. SHELXL 97, Program Used to Refine Structure; University of Göttingen: Germany, 1997.
(23) Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data Centre, CCDC No. 161191 for $6 \mathbf{6}$. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1233336033 ; email: deposit@ccdc.cam.ac.uk or http:// www.ccdc.cam.ac.uk).
(24) Oppolzer, W.; Cintas-Moreno, P.; Tamura, O. Helv. Chim. Acta 1993, 76, 187.

