Alkaloid Synthesis

Total Synthesis of (\pm)-Scopolamine: Challenges of the Tropane Ring

Pierre-Antoine Nocquet ${ }^{[a]}$ and Till Opatz ${ }^{*[a]}$
Dedicated to Professor Dr. Dr. h.c. mult. Wittko Francke on the occasion of his 75th birthday

Abstract: Scopolamine was synthesized using 6,7-dehydrotropine as a key intermediate. Rhodium-catalyzed [$4+3$] cycloaddition chemistry and a modified Robinson-Schöpf reaction
were each independently evaluated for their utility in constructing the tropane core. Both synthetic approaches gave comparable overall yields.

Introduction

Tropane alkaloids are among the oldest medicines known to mankind and possess a wide range a biological activities. ${ }^{[1-4]}$ This family is comprised of roughly 200 alkaloids with the name tropane which designates the N -methyl-8-azabicyclo[3.2.1]octane framework (1) (Figure 1) as a key structural component. These alkaloids started to be isolated from plants around 1830 and are mainly found in the Solanaceae family but also are known in the Convolvulaceae, Erythroxylaceae, Proteaceae, and Rhizophoraceae families. ${ }^{[1,4,5]}$

1
N-Methyl-8-azabicyclo[3.2.1]octane

Figure 1. The tropane ring system.
The economically important tropane alkaloids are predominantly obtained by extraction from plants. Among them, scopolamine (2), also known as hyoscine, is highly valuable due to its widespread medical applications ranging from induction of antiemetic effects and inhibition of motion sickness to resuscitation. ${ }^{[3,5]}$ Datura is among the most alkaloid-rich natural plant genera but usually contains only $0.2-0.8 \%$ of total alkaloids. The concentration of scopolamine in these species is rather low. ${ }^{[3]}$ Only one total synthesis of scopolamine has been described so far, ${ }^{[6]}$ even though precursors to the final product have been reported, ${ }^{[7]}$ as in the syntheses of related alkaloids such as anisodine (3), ${ }^{[8,9]}$ or scopine. ${ }^{[10]}$ In the course of our

[^0]work on the synthesis of alkaloids, we became interested in a synthetic approach to scopolamine. We reasoned that 6,7dehydrotropine (4) could serve as a key, and potentially broadly applicable, intermediate since the oxirane ring is likely to cause side reactions when present at an early stage of the synthesis. Compound $\mathbf{4}$ could be used as a common precursor for several alkaloids such as scopolamine (2), anisodine (3), ${ }^{[8]}$ hyoscyamine (5), or anisodamine (6) (Figure 2). Herein, we describe the total synthesis of scopolamine (2) from key intermediate 4.

Figure 2. 6,7-Dehydrotropine (4) as a synthetic precursor to assorted tropanes.

Results and Discussion

Our first retrosynthetic approach to 6,7-dehydrotropine (4) called for dealkoxycarbonylation of keto ester 7. The tropane skeleton could be formed in a [4 + 3] cycloaddition between pyrrole 8 and diazo ester 9 as the key step (Figure 3). Even though [$4+3]$ cycloadditions involving oxyallyl cations are well known with furans and cyclopentadienes, examples of their use with pyrroles are limited. ${ }^{[11-13]}$ However, Davies et al. reported
of Organic Chemistry

Full Paper

in 1997 the synthesis of tropanes by a rhodium-catalyzed [$4+3$] cycloaddition between a chiral vinyl diazoacetate and N-Boc-pyrrole. ${ }^{[14]}$ This reaction was later exploited during the asymmetric synthesis of tropanes by the same group as well as by Riché and co-workers. ${ }^{[15,16]}$ Even though this process might not be scalable, it held promise as an easy and quick route to key intermediate 4.

Figure 3. Retrosynthetic analysis of $\mathbf{4}$ calling for [$4+3]$ cycloaddition.

Diazo esters $\mathbf{1 1}$ were obtained from acetoacetates $\mathbf{1 0}$ in 89 \% to quantitative yield using 4-acetamidobenzenesulfonyl azide (p-ABSA) as a safe diazo transfer agent (Scheme 1). ${ }^{[17,18]}$ TBS enol ethers 9 were obtained in quantitative yield from esters 11.

Scheme 1. Formation of diazo acetates 9.

Application of Davies' conditions to methyl ester 9a furnished the desired product 12a in 53% yield (Table 1, Entry 1). When Cul was used as a catalyst instead of $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$, no reaction occurred (Table 1, Entry 2). Using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ instead of hexane was also detrimental to the reaction (Table 1, Entry 3). Decreasing the amount of pyrrole 8a to 2.5 equiv. did not diminish the yield and up to 60% of desired product 12a was isolated (Table 1, Entries 4 and 5). However, a further reduction in the amount of pyrrole 8a led to a drop in yield of 12a (Table 1, Entry 6).

Table 1. $[4+3]$ cycloaddition optimization between $\mathbf{8 a}$ and $\mathbf{9 a} .{ }^{[a]}$

	 9a		$\mathrm{CO}_{2} \mathrm{Me}$ OTBS
Entry	8a [equiv.]	Catalyst.	Yield [\%]
1	5	$\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(1 \mathrm{~mol}-\%)$	53
2	5	Cul (5 mol-\%)	-
$3^{[b]}$	5	$\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$ ($1 \mathrm{~mol}-\%$)	33
4	2.5	$\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$ (1 mol-\%)	53
$5^{[c]}$	2.5	$\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(1 \mathrm{~mol}-\%)$	60
6	1.2	$\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(1 \mathrm{~mol}-\%)$	48

[a] Reaction performed on a 0.39 mmol scale. [b] Reaction performed in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~h})$. [c] Reaction performed on a 1.55 mmol scale.

Removal of the silyl group using TBAF led to desired keto esters 7 in 81-94 \% yield (Scheme 2). Next, the dealkoxycarbonylation of $\mathbf{7}$ was investigated. After a short screening of Krapcho-type conditions, ${ }^{[19]}$ desired ketone 13a was obtained from 7a in a maximum yield of 34% using LiCl in DMSO. Formation of pyrrole 14 resulting from a retro-Mannich reaction was also observed. ${ }^{[20]}$ Since the moderate yield may have been the result of the known sensitivity of the N-Boc group to high temperatures, N-methoxycarbonyl derivative 7b was synthesized from 9a in 56% over two steps. In this case, dealkoxycarbonylation product 13b was obtained in 41% yield. This result showed that the N-Boc protecting group was only partially responsible for the low yield of 13. Alternative methods for dealkoxycarbonylation were also investigated. Using basic aluminum oxide, 13b was isolated in 36 \% yield from 7b. Compound 7c, bearing a benzyl ester moiety, was then synthesized. We envisioned that facile O-debenzylation would lead to the corresponding α-keto carboxylic acid which should spontaneously decarboxylate to give 13b. However, the use of $\mathrm{BCl}_{3},{ }^{[21]}$ Raney nickel, ${ }^{[22]} \mathrm{Na}_{2} \mathrm{~S}_{1}^{[23]} \mathrm{TMSCI} / \mathrm{NaI}^{[24]}$ and $\mathrm{PdCl}_{2} / \mathrm{Et}_{3} \mathrm{SiH}^{[25]}$ all failed to give desired decarboxylated product. Hydrogenolysis as a

Scheme 2. Generation of alcohol 4 from keto ester 7.
means of O-debenzylation was not attempted since retention of the 6,7-double bond was essential.

With desired tropinone 13b in hand, diastereoselective ketone reduction with L-selectride ${ }^{\circledR}$ yielded the desired N -meth-oxycarbonyl-6,7-dehydrotropinone 15 in 75% yield. The carbamate moiety was then reduced to the N-methyl group with LAH thus rendering 4 in 70% yield as a mixture with the trieth-ylamine-derived salt ($\mathrm{Et}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{Cl} \mathrm{Cl}^{-}$). This salt was formed from the eluent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 3: 97+10 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ used in the chromatographic purification step. ${ }^{[26-28]}$ The N -methyl group in 4 could alternatively be introduced by dealkoxycarbonylation with TMSI followed by reductive methylation. ${ }^{[29]}$

Due to the moderate yields encountered for dealkoxycarbonylation of $\mathbf{7}$, the use of potentially hazardous diazo compounds 9 and the expensive catalyst $\left[\mathrm{Rh}_{2}(\mathrm{OOct})_{4}\right]$, an alternative pathway was investigated. Another attractive method for the construction of the tropinone skeleton was realized by Robinson in 1917 (later optimized by Schöpf) who used an ingenious three component one-pot reaction between succinaldehyde, methylamine hydrochloride and acetonedicarboxylic acid. ${ }^{[30,31]}$ Our second retrosynthetic approach to 4 involved the elimination of the hydroxy group in 6-hydroxytropinone (16) to generate the 6,7 -double bond (Figure 4). Alcohol 16 would be obtained by a modified Robinson-Schöpf reaction using hydroxysuccinaldehyde (17). ${ }^{[32,33]}$

Figure 4. Retrosynthetic analysis calling for a modified Robinson synthesis.
Thus, a modified Robinson reaction using commercial 2,5-dimethoxy-2,5-dihydrofuran (18) as the hydroxysuccinaldehyde precursor was carried out to form 6-hydroxytropinone (16) in 30% yield (Scheme 3). Even though the yield of 16 is moderate, the reaction is performed in water at ambient temperature and only involves inexpensive starting materials. Use of the corresponding diester instead of acetonedicarboxylic acid and sub-
sequent hydrolysis/decarboxylation gave a slightly lower overall yield (data not shown).

Scheme 3. Modified Robinson-Schöpf reaction using hydroxysuccinaldehyde 17.

Mesylation of alcohol 16 followed by elimination using a base (DBU, tBuOK) led only to decomposition (Scheme 4). Thermal elimination of the S-methyl xanthate derivative of 16 also failed to render 19. Attempts at direct elimination of $\mathbf{1 6}$ using Burgess' reagent or Martin's sulfurane only led to decomposition.

Scheme 4. Elimination attempts with alcohol 16.
Assuming that the encountered difficulties with elimination were due to the presence of the free keto group, 16 was converted to ethylene glycol ketal 20 in 90% yield (Scheme 5). ${ }^{[34]}$ Even though benzene as the solvent for keto protection gave the best yields of $\mathbf{2 0}$, the less toxic solvents toluene or acetonitrile gave comparable results. Tosylation of alcohol $\mathbf{2 0}$ gave sulfonate $\mathbf{2 1}$ which produced the desired olefin $\mathbf{2 2}$ in 82% yield upon subjection to $t B u O K$ and subsequent elimination. Deprotection of the acetal followed by reduction with L-selectride ${ }^{\ominus}$ afforded 6,7-dehydrotropine 4 in 53 \% yield over two steps.

Introduction of the tropic acid part was carried out by esterification between acetyltropic acid chloride and alcohol $\mathbf{2 3}$ using Čeković's procedure; ${ }^{[7]}$ desired ester $\mathbf{2 4}$ was generated in 56% yield over the two steps as a mixture with alcohol 4 (10 \% yield) which was removed in the subsequent step (Scheme 6). The use of ammonium salt $\mathbf{2 3}$ in the O -acylation proved crucial

Scheme 5. Elimination of the hydroxy moiety.
of Organic Chemistry
Full Paper

Scheme 6. Esterification of tropine 4.
for the esterification process since only acetylation of the hydroxy group occurred when alcohol 4 was used as the substrate without prior protonation.

Desired scopolamine 2 was then obtained by $\mathrm{H}_{2} \mathrm{O}_{2}$-mediated epoxidation of alkene 24 in only 16% yield (Scheme 7). The application of other epoxidation conditions $\left(\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{H}_{2} \mathrm{O}_{2}\right.$ or m(PBA) led only to partial recovery of starting material. This low yield of $\mathbf{2}$ may be due, in part, to concomitant formation of N oxide of 2. Interestingly, when the primary alcohol was TBS protected, epoxidation of $\mathbf{2 5}$ rendered the desired product $\mathbf{2 6}$ in 39% yield. However, attempts to remove the TBS group led to decomposition of starting material 26. It should be noted, however, that the final step yields en route to 26 were not optimized and that higher yields have been reported for similar substrates.

Scheme 7. Epoxidation of alkenes 24 and 25; a: TBSCI (1.2 equiv.), imidazole (1.7 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $16 \mathrm{~h}, 68 \%$.

Conclusions

In summary, scopolamine (2) has been synthesized in nine linear steps including a modified Robinson-Schöpf reaction from cheap starting materials. An approach via [4 + 3] cycloaddition to form the tropane ring proved to be problematic due to a low-yielding dealkoxycarboxylation of intermediate α-keto esters and resulted in a slightly lower overall yield. Elimination of 6-hydroxytropine was found to be feasible only if the keto group was protected. In terms of chemical yields, chemoselective epoxidation of the 6,7-double bond proved to be the single greatest limitation to this approach; no optimization of the presented endgame has, however, been undertaken thus far.

Experimental Section

Materials and Methods: All commercially available reagents were reagent grade and used without further purification. Reactions involving moisture or air sensitive reagents were performed under an argon atmosphere in oven-dried glassware. Tetrahydrofuran (THF) was distilled from sodium and benzophenone. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, hexane and benzene were distilled from calcium hydride. Triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$) was distilled from KOH and stored over KOH under an argon atmosphere. Thin layer chromatography (TLC) was carried out on 0.25 mm silica gel plates $\left(60 \mathrm{~F}_{254}\right)$ using UV light as a visualizing agent and colorized with a Seebach reagent or potassium permanganate and heat as a developing agent. Flash chromatography was performed using silica gel ($35-70 \mu \mathrm{~m}$) and the indicated solvent system. Melting points were determined using open capillary tubes. NMR spectra were recorded with a 300 MHz spectrometer ($300 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $75.5 \mathrm{MHz}{ }^{13} \mathrm{C}$), a 400 MHz spectrometer ($400 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$) and a 600 MHz spectrometer ($600 \mathrm{MHz}{ }^{1} \mathrm{H}, 150.9 \mathrm{MHz}{ }^{13} \mathrm{C}$). The chemical shifts were referenced to the deuterated solvent (e.g., for $\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}$ and 77.16 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively) and reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS, $\delta=$ $0.00 \mathrm{ppm}) .{ }^{[35]}$ Infrared spectra were recorded as FT-IR spectra using a diamond ATR unit. High-resolution masses were recorded using a Q-TOF-Instrument with a dual source and a suitable external calibrant.

Methyl 2-Diazo-3-oxobutanoate (11a): $\mathrm{Et}_{3} \mathrm{~N}(0.90 \mathrm{~mL}, 6.46 \mathrm{mmol}$, 3 equiv.) was added dropwise to a solution of methyl acetoacetate ($0.25 \mathrm{~mL}, 2.15 \mathrm{mmol}, 1$ equiv.) and p-ABSA ($569 \mathrm{mg}, 2.37 \mathrm{mmol}$, 1.1 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(11 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was warmed up to room temp. overnight. The mixture was placed in a freezer for 3 h , then filtered, washed with $\mathrm{Et}_{2} \mathrm{O} /$ pentane $(1: 4,4.1 \mathrm{~mL})$ and concentrated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O} /$ pentane ($1: 2,2.5 \mathrm{~mL}$) was then added and the mixture was placed in a freezer for 3 h . The mixture was then filtered through a pad of Florisil/Celite (1:1, wt/ $\mathrm{wt}, 414 \mathrm{mg}$) and washed with $\mathrm{Et}_{2} \mathrm{O} /$ pentane ($2: 3,8.3 \mathrm{~mL}$). The filtrate was then concentrated under reduced pressure to give crude title compound ($271 \mathrm{mg}, 89 \%$) as a yellow oil which was used without further purification. $R_{\mathrm{f}}=0.51$ (EtOAc/cyclohexane, 1:3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.48(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right)$ ppm. Spectroscopic data are in accordance with the literature. ${ }^{[17]}$

Benzyl 2-Diazo-3-oxobutanoate (11b): $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 7.54 \mathrm{mmol}$, 3 equiv.) was added dropwise to a solution of benzyl acetoacetate ($0.45 \mathrm{~mL}, 2.51 \mathrm{mmol}, 1$ equiv.) and $p-\mathrm{ABSA}$ ($655 \mathrm{mg}, 2.77 \mathrm{mmol}$, 1.1 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$, concentrated under reduced pressure and diluted with $\mathrm{Et}_{2} \mathrm{O}(17 \mathrm{~mL})$. The organic layer was washed with water ($2 \times 6.5 \mathrm{~mL}$), then with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure to give the crude benzyl 2-diazo-3-oxobutanoate (581 mg , quant.) as a light yellow
solid which was used without further purification. $R_{\mathrm{f}}=0.61$ (EtOAc/ cyclohexane, 1:3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.33(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. Spectroscopic data are in accordance with the literature. ${ }^{[18]}$
Methyl 3-[(tert-Butyldimethylsilyl)oxy]-2-diazobut-3-enoate (9a): TBSOTf ($0.53 \mathrm{~mL}, 2.29 \mathrm{mmol}, 1.2$ equiv.) was added to a solution of 11a ($271 \mathrm{mg}, 1.91 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}$, $2.38 \mathrm{mmol}, 1.25$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred and warmed up to room temp. overnight. The solution was diluted in hexane (22 mL). The organic layer was washed with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 14 \mathrm{~mL})$, brine (14 mL), dried with MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude silyl enol ether 9a (516 mg , quant.) as an orange oil. $R_{\mathrm{f}}=0.62$ (EtOAc/ cyclohexane, 1:8). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.00(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 0.91[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{SiCH}_{3}\right) \mathrm{ppm}$. Spectroscopic data are in accordance with the literature. ${ }^{[17]}$
Benzyl 3-[(tert-Butyldimethylsilyl)oxy]-2-diazobut-3-enoate (9b): TBSOTf ($1.0 \mathrm{~mL}, 4.45 \mathrm{mmol}, 1.20$ equiv.) was added to a solution of 11b ($810 \mathrm{mg}, 3.71 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.65 \mathrm{~mL}$, $4.64 \mathrm{mmol}, 1.25$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred and warmed up to room temp. overnight and diluted in hexane (42 mL). It was washed with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 26 \mathrm{~mL})$, brine (26 mL), dried with MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude silyl enol ether $\mathbf{9 b}$ (1.23 g , quant.) as an orange oil. $R_{\mathrm{f}}=0.58$ (EtOAc/cyclohexane, 1:3). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.02\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.26\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.23\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{SiCH} \mathrm{H}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.2(\mathrm{COO}), 140.8\left(\mathrm{Cq}=\mathrm{CH}_{2}\right), 136.0(\mathrm{Cq}-\mathrm{Ar})$, 128.7 (2 CH-Ar), $128.4(\mathrm{CH}-\mathrm{Ar}), 128.2(2 \mathrm{CH}-\mathrm{Ar}), 90.6\left(\mathrm{CH}_{2}\right), 66.4$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 25.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right],-4.7\left(2 \mathrm{SiCH}_{3}\right) \mathrm{ppm}$. IR (film): $\tilde{v}=2101,1709,1069,827,783 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z 333.1642 ([M $+\mathrm{H}^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si} 333.1634$).
8-tert-Butyl 2-Methyl 3-[(tert-Butyldimethylsilyl)oxy]-8-azabicy-clo[3.2.1]octa-2,6-diene-2,8-dicarboxylate (12a): A solution of diazo compound 9a ($397 \mathrm{mg}, 1.55 \mathrm{mmol}, 1$ equiv.) in hexane (32 mL) was added with a syringe pump ($10 \mathrm{~mL} / \mathrm{h}$) to a refluxing solution of freshly distilled N-Boc-pyrrole ($0.65 \mathrm{~mL}, 3.88 \mathrm{mmol}, 2.5$ equiv.) and $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(12 \mathrm{mg}, 15.5 \mu \mathrm{~mol}, 1 \mathrm{~mol}-\%)$ in hexane (32 mL). After the end of the addition, reflux was maintained for 1 h . After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:1 to 1:12) to afford the desired cycloadduct 12a ($368 \mathrm{mg}, 60 \%$) as a yellow oil. $R_{\mathrm{f}}=$ 0.29 (EtOAc/cyclohexane, 1:6). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.51-$ 6.47 (m, $1 \mathrm{H}, 7-\mathrm{H}), 5.91$ (dd, J = 5.9, 2.5 Hz, $1 \mathrm{H}, 6-\mathrm{H}$), 5.21-5.07 (br. $\mathrm{s}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}$), 4.70-4.60 (br. s, $1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}$), 3.72 (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 2.93-2.70\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.82\left(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 1.42$ $\left[\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.93\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH} 3), 0.16(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{SiCH}_{3}\right) \mathrm{ppm}$. Spectroscopic data are in accordance with the literature. ${ }^{[16]}$
2,8-Dimethyl 3-[(tert-Butyldimethylsilyl)oxy]-8-azabicyclo[3.2.1]-octa-2,6-diene-2,8-dicarboxylate (12b): A solution of diazo compound 9a ($515 \mathrm{mg}, 1.91 \mathrm{mmol}, 1$ equiv.) in hexane (39 mL) was added with a syringe pump ($10 \mathrm{~mL} / \mathrm{h}$) to a refluxing solution of freshly distilled N-Moc-pyrrole ($0.54 \mathrm{~mL}, 4.78 \mathrm{mmol}, 2.5$ equiv.) and $\mathrm{Rh}_{2}(\text { OOct })_{4}(15 \mathrm{mg}, 19.1 \mu \mathrm{~mol}, 1 \mathrm{~mol}-\%)$ in hexane (39 mL). After the end of the addition, reflux was maintained for 1 h . After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:7 to 1:5) to afford the de-
sired cycloadduct 12b ($408 \mathrm{mg}, 60 \%$) as a yellow oil. $R_{\mathrm{f}}=0.31$ (EtOAc/cyclohexane, 1:4). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.55-$ 6.44 (br. s, 1 H, H-7), 5.96-5.86 (br. s, 1 H, H-6), 5.31-5.14 (m, 1 H, $\mathrm{H}-1)$, 4.79-4.64 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.92-2.65 (m, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 1.85(\mathrm{~d}, \mathrm{~J}=17.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 0.92[\mathrm{~s}, 9$ $\left.\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (100 MHz): $\delta=165.6$ (CO), 158.4 (C-3), 154.2 (NCO), 138.4 (C-7), 127.6 (C-6), 115.2 (C-2), 56.5 (C-5), 56.3 (C-1), 52.7 $\left(\mathrm{OCH}_{3}\right), 51.2\left(\mathrm{OCH}_{3}\right), 33.1(\mathrm{C}-4), 25.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right],-3.60$ $\left(\mathrm{SiCH}_{3}\right),-3.65\left(\mathrm{SiCH}_{3}\right) \mathrm{ppm}$. IR (film): $\tilde{v}=1707,1686,1603,1198$, $840,779 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z} 376.1558$ ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{SiNa} 376.1556$).
2-Benzyl 8-Methyl 3-[(tert-Butyldimethylsilyl)oxy]-8-azabicy-clo[3.2.1]octa-2,6-diene-2,8-dicarboxylate (12c): A solution of diazo compound 9 b ($1.15 \mathrm{~g}, 3.46 \mathrm{mmol}, 1$ equiv.) in hexane (60 mL) was added with a syringe pump ($10 \mathrm{~mL} / \mathrm{h}$) to a refluxing solution of freshly distilled N-methoxycarbonylpyrrole ($0.97 \mathrm{~mL}, 8.65 \mathrm{mmol}$, 2.5 equiv.) and $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(27 \mathrm{mg}, 34.6 \mu \mathrm{~mol}, 1 \mathrm{~mol}-\%)$ in hexane $(60 \mathrm{~mL})$. At the end of the addition, the refluxed was maintained for 1 h . After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:8 to 1:7) to afford the desired cycloadduct $\mathbf{1 2 c}(760 \mathrm{mg}, 51 \%)$ as a yellow oil. $R_{\mathrm{f}}=0.16$ (EtOAc/cyclohexane, 1:8). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.42-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.54-6.44(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 5.96-$ $5.86(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 5.35-5.13\left(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.78-4.66(\mathrm{~m}, 1$ $\mathrm{H}, 5-\mathrm{H}), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.95-2.65\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.86(\mathrm{~d}, \mathrm{~J}=$ $\left.17.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 0.88\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.11$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 164.5 ($\mathrm{CO}_{2} \mathrm{Bn}$), 159.0 (C-3), 154.2 ($\mathrm{NCO}_{2} \mathrm{Me}$), 138.4 (C-7), 136.6 (CqAr), 128.6 ($3 \mathrm{CH}-\mathrm{Ar}$), 128.2 (CH-Ar), 128.1 (CH-Ar), 127.5 (C-6), 115.0 (C-2), $65.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.5(\mathrm{C}-5), 56.3(\mathrm{C}-1), 52.7\left(\mathrm{OCH}_{3}\right), 33.2(\mathrm{C}-4), 25.8$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.6\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right],-3.5\left(\mathrm{SiCH}_{3}\right),-3.6\left(\mathrm{SiCH}_{3}\right) \mathrm{ppm}$. IR (film): $\tilde{v}=$ 1706, $1193,839 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z} 452.1864$ ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SiNa} 451.1869$).

8-tert-Butyl 2-Methyl 3-Oxo-8-azabicyclo[3.2.1]oct-6-ene-2,8dicarboxylate (7a): TBAF (1 m in THF, $0.44 \mathrm{~mL}, 0.436 \mathrm{mmol}$, 1.5 equiv.) was added to a solution of silyl enol ether 12a (115 mg , $0.291 \mathrm{mmol}, 1$ equiv.) in THF (0.5 mL) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temp. for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ was then added and the product was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:3) to afford the desired keto ester 7 a ($60 \mathrm{mg}, 74 \%$) as an orange oil. $R_{\mathrm{f}}=0.28$ (EtOAc/ cyclohexane, 1:3). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.56-6.45$ ($\mathrm{m}, 0.6 \mathrm{H}, 7-\mathrm{H}$ dia 1), 6.36-6.16 (m, $1.4 \mathrm{H}, 7-\mathrm{H}$, dia 2, 6-H), 5.19 (s , $0.4 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}$, dia 2), $5.05-4.69(\mathrm{~m}, 1.6 \mathrm{H}, 1-\mathrm{H}, 5-\mathrm{H}), 3.86-3.58$ ($\mathrm{m}, 3.6 \mathrm{H}, \mathrm{OCH}_{3}, 2-\mathrm{H}$, dia 1), $3.27(\mathrm{~s}, 0.4 \mathrm{H}, 2-\mathrm{H}, \operatorname{dia} 2), 2.98(\mathrm{dd}, \mathrm{J}=$ $16.1,4.3 \mathrm{~Hz}, 0.4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$, dia 2), 2.83-2.54 (m, 0.6 H, 4- H_{a}, dia 1), 2.47-2.34 (m, $\left.1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 1.50\left[\mathrm{~s}, 5.4 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, dia 1], 1.47 [s, 5.4 $\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, dia 2] ppm. Spectroscopic data are in accordance with the literature. ${ }^{[15]}$

Dimethyl 3-Oxo-8-azabicyclo[3.2.1]oct-6-ene-2,8-dicarboxylate (7b): TBAF (1 m in THF, $1.7 \mathrm{~mL}, 1.73 \mathrm{mmol}, 1.5$ equiv.) was added to a solution of silyl enol ether $\mathbf{1 2 b}(408 \mathrm{mg}, 1.15 \mathrm{mmol}, 1$ equiv.) in THF $(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temp. for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was then added and the product was extracted with EtOAc $(6 \times 4 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:2 to 1:1) to afford the desired keto ester 7b
($258 \mathrm{mg}, 94$ \%) as a yellow oil. $R_{\mathrm{f}}=0.21$ (EtOAc/cyclohexane, 1:2). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}\right): \delta=6.51$ (dd, $J=6.2,2.5 \mathrm{~Hz}$, $0.5 \mathrm{H}, 7-\mathrm{H}, \operatorname{dia} 1$), 6.30 (dd, $J=6.1,2.4 \mathrm{~Hz}, 0.5 \mathrm{H}, 6-\mathrm{H}$, dia 2), 6.25 (dd, $J=6.1,2.5 \mathrm{~Hz}, 0.5 \mathrm{H}, 6-\mathrm{H}$, dia 1), 6.22 (dd, $J=6.0,2.5 \mathrm{~Hz}, 0.5$ H, 7-H, dia 2), 5.24-5.16 (br. s, $0.5 \mathrm{H}, 1-\mathrm{H}$, dia 2), 5.00-4.95 (br. s, 0.5 H, 1-H, dia 1), 4.95-4.90 (br. s, $0.5 \mathrm{H}, 5-\mathrm{H}$, dia 2), 4.89-4.82 (br. s, 0.5 $\mathrm{H}, 5-\mathrm{H}, \operatorname{dia} 1), 3.78\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right.$, dia 2$), 3.72$ ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}$), $3.71\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right.$, dia 1), 3.70-3.66 (m, 0.5 H, 2H, dia 1), 3.26 (s, 0.5 H, 2-H, dia 2), 3.00 (dd, $J=16.2,4.4 \mathrm{~Hz}, 0.5 \mathrm{H}$, $4-\mathrm{H}_{\mathrm{a}}$, dia 2), 2.76-2.62 (m, 0.5 H, 4- H_{a}, dia 1), $2.40(\mathrm{dt}, J=16.1$, $\left.1.3 \mathrm{~Hz}, 0.5 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.39\left(\mathrm{dd}, J=15.8,1.6 \mathrm{~Hz}, 0.5 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}$): $\delta=200.8$ (C-3, dia 2), 199.6 (C-3, dia 1), 168.4 (CO, dia 1), 168.2 (CO, dia 2), 153.2 (NCO), 153.1 (NCO), 136.3 (C-6, dia 2), 134.3 (C-6, dia 1), 133.5 (C-7, dia 1), 132.7 (C-7, dia 2), 62.4 (C-2, dia 1), 60.3 (C-2, dia 2), 59.5 (C-1, dia 2), 58.3 (C-1, dia 1), 57.1 (C-5, dia 2), 56.6 (C-5, dia 1), $53.0\left(\mathrm{OCH}_{3}\right), 52.8$ $\left(\mathrm{OCH}_{3}\right), 52.6\left(\mathrm{OCH}_{3}\right.$, dia 1$), 52.3\left(\mathrm{OCH}_{3}\right.$, dia 2$), 44.8(\mathrm{C}-4), 44.3(\mathrm{C}-$ 4) ppm. IR (film): $\tilde{v}=1738,1701,1450 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z $262.0688\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd. for $\left.\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{Na} 262.0691\right)$.
8-Methyl 2-Benzyl 3-Oxo-8-azabicyclo[3.2.1]oct-6-ene-2,8-dicarboxylate (7 c): TBAF (1 m in THF, $0.94 \mathrm{~mL}, 0.936 \mathrm{mmol}, 1.5$ equiv.) was added to a solution of silyl enol ether 12c ($268 \mathrm{mg}, 0.624 \mathrm{mmol}$, 1 equiv.) in THF (1.1 mL) at $0^{\circ} \mathrm{C}$. The solution was stirred at room temp. for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was then added and the product was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, $1: 3$ to 1:2) to afford the desired keto ester 7c ($159 \mathrm{mg}, 81$ \%) as a yellow oil. $R_{\mathrm{f}}=0.29$ (EtOAc/cyclohexane, 1:2). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}\right): \delta=7.40-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, 6.48 (dd, $J=6.2,2.5 \mathrm{~Hz}, 0.5 \mathrm{H}, 7-\mathrm{H}, \operatorname{dia} 1), 6.30(\mathrm{dd}, J=6.1,2.4 \mathrm{~Hz}$, $0.5 \mathrm{H}, 6-\mathrm{H}, \operatorname{dia} 2$), 6.24 (dd, $J=6.1,2.5 \mathrm{~Hz}, 0.5 \mathrm{H}, 6-\mathrm{H}$, dia 1), 6.20 (dd, $J=6.1,2.5 \mathrm{~Hz}, 0.5 \mathrm{H}, 7-\mathrm{H}$, dia 2), $5.27-5.25$ (br. s, $0.5 \mathrm{H}, 1-\mathrm{H}$, dia 2), 5.23 ($\mathrm{d}, J=12.3 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \operatorname{dia} 1$), $5.17(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 0.5$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$, dia 1), 5.13 (s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$, dia 2), 5.02-4.97 (br. s, 0.5 H , 1-H, dia 1) 4.97-4.91 (br. s, $0.5 \mathrm{H}, 5-\mathrm{H}$, dia 2), 4.89-4.82 (br. s, 0.5 H , 5-H, dia 1), 3.78-3.74 (m, 0.5 H, 2-H, dia 1), $3.76\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $3.64\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.31(\mathrm{~s}, 1 \mathrm{H}, 0.5 \mathrm{H}, 2-\mathrm{H}, \mathrm{dia} 2), 2.98$ (dd, $J=$ $16.1,4.4 \mathrm{~Hz}, 0.5 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$, dia 2), 2.76-2.61 (m, 0.5 H, 4-H , dia 1), 2.41 (d, $J=16.2 \mathrm{~Hz}, 0.5 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$, dia 2), 2.39 (dd, $J=15.9,1.6 \mathrm{~Hz}, 0.5 \mathrm{H}$, $4-\mathrm{H}_{\mathrm{b}}$, dia 1) ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, $\mathrm{HMBC}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}\right)$: $\delta=200.7$ (C-3, dia 2), 199.5 (C-3, dia 1), $167.8\left(\mathrm{CO}_{2} \mathrm{Bn}\right.$, dia 2), 167.6 $\left(\mathrm{CO}_{2} \mathrm{Bn}\right.$, dia 1), $153.2\left(\mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 153.0\left(\mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 136.4$ (C-6, dia 2), 135.6 (Cq-Ar, dia 1), 135.3 (Cq-Ar, dia 2), 134.2 (C-6, dia 1), 133.5 (C7, dia 1), 132.7 (C-7, dia 2), 128.73 (CH-Ar), 128.68 (CH-Ar), 128.53 (CH-Ar), 128.44 (0.5 CH-Ar), 128.35 (0.5 CH-Ar), 128.30 (CH-Ar), 67.6 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$, dia 2), $67.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$, dia 1), 62.5 (C-2, dia 1), 60.4 ($\mathrm{C}-2$, dia 2$)$, 59.5 (C-1, dia 2), 58.3 (C-1, dia 1), 57.0 (C-5, dia 1), 56.6 (C-5, dia 2), $52.9\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 44.9(\mathrm{C}-4$, dia 2), $44.3(\mathrm{C}-4$, dia 1) ppm. IR (film): $\tilde{v}=1737,1703,1450 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z} 338.1004$ ([M + $\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na} 338.1004$).
tert-Butyl 3-Oxo-8-azabicyclo[3.2.1]oct-6-ene-8-carboxylate (13a): A solution of β-keto ester 7a ($28 \mathrm{mg}, 99.2 \mu \mathrm{~mol}, 1$ equiv.), $\mathrm{LiCl}\left(11 \mathrm{mg}, 0.248 \mathrm{mmol}, 2.5\right.$ equiv.) and $\mathrm{H}_{2} \mathrm{O}$ (2 drops) in DMSO $(0.82 \mathrm{~mL})$ was heated at $130{ }^{\circ} \mathrm{C}$ for 1 h . After cooling, water (2 mL) was added and the product was extracted with EtOAc $(3 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:5) to afford the N-Boc-6,7-dehydrotropinone 13a (8 mg , 34%) as an orange solid. $R_{\mathrm{f}}=0.35$ (EtOAc/cyclohexane, $1: 3$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.26-6.16(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 4.88-4.69$ (br. d, $2 \mathrm{H}, 1-\mathrm{H}, 5-\mathrm{H}), 2.87-2.56\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.36(\mathrm{~d}, \mathrm{~J}=$
$\left.16.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}\right), 1.50\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ ppm. Spectroscopic data are in accordance with the literature. ${ }^{[36]}$
Methyl 3-Oxo-8-azabicyclo[3.2.1]oct-6-ene-8-carboxylate (13b): A solution of β-keto ester 7b ($51 \mathrm{mg}, 0.213 \mathrm{mmol}, 1$ equiv.), LiCl ($23 \mathrm{mg}, 0.532 \mathrm{mmol}, 2.5$ equiv.) and $\mathrm{H}_{2} \mathrm{O}$ (2 drops) in DMSO (1.7 mL) was heated at $130^{\circ} \mathrm{C}$ for 7 h . After cooling, water (3 mL) was added and the product was extracted with EtOAc $(5 \times 4 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 2:3) to afford the N-Moc-6,7-dehydrotropinone 13b (16 mg, 41%) as a white solid. $R_{\mathrm{f}}=0.39$ (EtOAc/cyclohexane, 1:1), m.p. $68-70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.29-6.17$ (br. s, $\left.2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}\right), 4.89-4.78$ (br. d, $2 \mathrm{H}, 1-\mathrm{H}, 5-\mathrm{H}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.84-2.59\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}, 4-\right.$ $\left.\mathrm{H}_{\mathrm{a}}\right), 2.39\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}\right) \mathrm{ppm}$. Spectroscopic data are in accordance with the literature. ${ }^{[37]}$

Methyl 3-Hydroxy-8-azabicyclo[3.2.1]oct-6-ene-8-carboxylate (15): L-Selectride ${ }^{\oplus}$ (1 m in THF, $0.19 \mathrm{~mL}, 0.188 \mathrm{mmol}, 1.1$ equiv.) was added dropwise to a solution of $\mathbf{1 3 b}$ in THF (1.7 mL) at $-78^{\circ} \mathrm{C}$. The solution was then stirred at room temp. for 50 min . After cooling to $0^{\circ} \mathrm{C}, 1 \mathrm{~m} \mathrm{NaOH}(0.58 \mathrm{~mL})$ and 35% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.58 \mathrm{~mL})$ were added. The solution was stirred at room temp. for 15 min and 1 m $\mathrm{HCl}(0.58 \mathrm{~mL})$ was added. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 2:1 to $4: 1$) to afford the alcohol 15 ($24 \mathrm{mg}, 75 \%$) as a pale yellow oil. $R_{\mathrm{f}}=0.19$ (EtOAc/cyclohexane, 4:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 6.48-6.34 (br. s, $2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}$), 4.70-4.52 (br. d, $J=21.8 \mathrm{~Hz}, 2 \mathrm{H}, 1-$ $\mathrm{H}, 5-\mathrm{H}), 3.94(\mathrm{tt}, \mathrm{J}=5.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.35-$ 2.11 (m, 2 H, 2-Ha, 4-Ha), 2.09-1.94 (br. s, $1 \mathrm{H}, \mathrm{OH}$), 1.79 (dd, J = $15.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}$) ppm. Spectroscopic data are in accordance with the literature. ${ }^{[38]}$

6-Hydroxytropinone (16): 2,5-Dihydro-2,5-dimethoxyfuran ($1.20 \mathrm{~mL}, 9.89 \mathrm{mmol}, 1$ equiv.) was added to 3 N aq. $\mathrm{HCl}(18 \mathrm{~mL})$. The solution was stirred at room temp. for 15 h . The solution was then neutralized using 6 m aq. $\mathrm{NaOH}(\approx 8 \mathrm{~mL})$ and stirred for 30 min . This solution was added to a solution of $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(5.65 \mathrm{~g}$, $41.6 \mathrm{mmol}, 4.2$ equiv.), $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}(735 \mathrm{mg}, 10.9 \mathrm{mmol}, 1.1$ equiv.) and 3 -oxoglutaric acid ($1.59 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.1$ equiv.) in $\mathrm{H}_{2} \mathrm{O}$ $(69 \mathrm{~mL})$. The solution was stirred at room temp. for $5 \mathrm{~d} . \mathrm{K}_{2} \mathrm{CO}_{3}$ $(7.4 \mathrm{~g})$ and $\mathrm{NaCl}(7.4 \mathrm{~g})$ were added and the solution was stirred at room temp. for 45 min . The product was extracted with $\mathrm{CHCl}_{3}(12 \times$ 50 mL). The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 99\right.$ to 3:97 $\left.+10 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford hydroxytropinone 15 ($450 \mathrm{mg}, 30 \%$) as a brown solid. An analytical sample of 16 was purified by recrystallization in $i \mathrm{PrOH}$ to obtain the spectroscopic data. $R_{\mathrm{f}}=0.36(\mathrm{MeOH} /$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95+10 \% \mathrm{Et}_{3} \mathrm{~N}\right)$, m.p. $120-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=4.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.63-3.56(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}), 2.74-2.61\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}, 4-\right.$ $\left.\mathrm{H}_{\mathrm{a}}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24-2.13\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{b}}, \mathrm{OH}\right), 2.13-$ $1.94\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{b}}, 7-\mathrm{H}\right) \mathrm{ppm}$. Spectroscopic data are in accordance with the literature. ${ }^{[39]}$

8-Methyl-8-azaspiro[bicyclo[3.2.1]octane-3,2'-[1,3]dioxolan]-6ol (20): $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}(244 \mathrm{mg}, 1.28 \mathrm{mmol}, 1.1$ equiv.) was added to a solution of hydroxytropinone 16 ($181 \mathrm{mg}, 1.17 \mathrm{mmol}, 1$ equiv.) and ethylene glycol ($0.65 \mathrm{~mL}, 11.7 \mathrm{mmol}, 10$ equiv.) in benzene $(5.5 \mathrm{~mL})$. The solution was refluxed with a Dean-Stark trap for 3 h . After cooling, $\mathrm{Na}_{2} \mathrm{CO}_{3}(366 \mathrm{mg})$ and brine $(11 \mathrm{~mL})$ were added. The product was extracted with $\mathrm{CHCl}_{3}(6 \times 10 \mathrm{~mL})$. The combined or-
ganic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 97$ to 5: $95+10 \% \mathrm{Et} \mathrm{H}_{3} \mathrm{~N}$) to afford the desired acetal $20(210 \mathrm{mg}, 90 \%)$ as a brown solid. $R_{f}=0.38(\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 5:95 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$), m.p. 91-93 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR, COSY (300 MHz , CDCl_{3}): $\delta=4.40$ (dd, $J=7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 3.94-3.86 (m, 2 H , $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.82-3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.35-3.27(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H})$, 3.10-3.04 (m, $1 \mathrm{H}, 5-\mathrm{H}), 2.58-2.45\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.09-1.98 (m, 2 H, 2-H $\left.\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.81-1.70\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}\right), 1.59(\mathrm{dt}, \mathrm{J}=$ $\left.14.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 1.43\left(\mathrm{dt}, J=14.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=106.5$ (C-3), 74.9 (C-6), $67.4(\mathrm{C}-5), 64.3\left(\mathrm{OCH}_{2}\right), 63.2\left(\mathrm{OCH}_{2}\right), 58.7(\mathrm{C}-1), 40.4(\mathrm{C}-7), 35.0$ (NCH_{3}), 34.5 (C-2), 33.1 (C-4) ppm. IR (film): $\tilde{v}=3367,2936 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z 200.1293 ([M + H] ${ }^{+}$, calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3}$ 200.1287).

8-Methyl-8-azaspiro[bicyclo[3.2.1]octane-3,2'-[1,3]dioxolan]-6yl 4-Methylbenzenesulfonate (21): DMAP ($15 \mathrm{mg}, 0.126 \mathrm{mmol}$, 0.1 equiv.) followed by $\mathrm{Et}_{3} \mathrm{~N}(0.23 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.3$ equiv.) and $\mathrm{TsCl}(311 \mathrm{mg}, 1.63 \mathrm{mmol}, 1.3$ equiv.) were added to a solution of alcohol 20 ($250 \mathrm{mg}, 1.26 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.4 mL). The solution was stirred at room temp. for 26 h before DMAP (15 mg , $0.126 \mathrm{mmol}, 0.1$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(0.23 \mathrm{~mL}, 1.63 \mathrm{mmol}, 1.3$ equiv.) and $\mathrm{TsCl}(311 \mathrm{mg}, 1.63 \mathrm{mmol}, 1.3$ equiv.) were added. The solution was stirred for 17 h . Water (5 mL) was then added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 3:1 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford the tosylate 21 $(413 \mathrm{mg}, 93 \%)$ as a yellow oil. $R_{\mathrm{f}}=0.45$ (EtOAc/cyclohexane, 6:1 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.33 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 5.31$ (dd, $J=7.5,2.8 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 3.94-3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.83-3.74(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.33-3.28 (m, $\left.1 \mathrm{H}, 1-\mathrm{H}\right), 3.38-3.24$ (br. s, $\left.1 \mathrm{H}, 5-\mathrm{H}\right), 2.48-$ $2.40\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$ or $\left.\mathrm{Cq}^{2}-\mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$ or Cq-CH $)_{3}$, 2.08-1.92 (m, 3 H, 2- H_{a}, $4-\mathrm{H}_{\mathrm{a}}$, $7-\mathrm{H}_{\mathrm{b}}$), 1.67-1.60 (m, 1 H , 4- H_{b}), 1.53-1.45 (m, $\left.1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.7$ [$\left.\mathrm{Cq}-\operatorname{Ar}\left(\mathrm{CH}_{3}\right)\right], 134.5(\mathrm{Cq}-\mathrm{Ar}), 129.9(2 \mathrm{CH}-$ Ar), 127.9 (2 CH-Ar), 106.3 (C-3), 85.8 (C-6), 65.9 (C-5), $64.5\left(\mathrm{OCH}_{2}\right)$, $63.5\left(\mathrm{OCH}_{2}\right), 59.8(\mathrm{C}-1), 37.8\left(\mathrm{NCH}_{3}\right), 37.5(\mathrm{C}-2), 36.4(\mathrm{C}-4), 36.3(\mathrm{C}-7)$, 21.8 (C-12) ppm. IR (film): $\tilde{v}=2934,1190,1097,925 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z} 354.1387$ ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S} 354.1375$).
8-Methyl-8-azaspiro[bicyclo[3.2.1]oct[6]ene-3,2'-[1,3]dioxolane] (22): tBuOK (1 m in THF, $2.6 \mathrm{~mL}, 2.63 \mathrm{mmol}, 2.5$ equiv.) was added to a solution of tosylate 21 ($372 \mathrm{mg}, 1.05 \mathrm{mmol}, 1$ equiv.) in THF $(6.2 \mathrm{~mL})$. The solution was stirred at room temp. for 6 h . Water $(5 \mathrm{~mL})$ was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \times$ $5 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 4:1 to 6:1 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford alkene $22(174 \mathrm{mg}, 91 \%)$ as a yellow oil. $R_{\mathrm{f}}=$ 0.33 (EtOAc/cyclohexane, 6:1 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$). ${ }^{1} \mathrm{H}$ NMR, COSY (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.98(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 3.87-3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 3.76-3.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.48-3.43 (m, $\left.2 \mathrm{H}, 1-\mathrm{H}, 5-\mathrm{H}\right), 2.23(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.12\left(\mathrm{dd}, J=13.9,3.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.78(\mathrm{dt}, J=$ $\left.12.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=131.3(\mathrm{C}-6, \mathrm{C}-7), 106.9(\mathrm{C}-3), 65.6(\mathrm{C}-1, \mathrm{C}-5), 64.2\left(\mathrm{OCH}_{2}\right)$, $63.2\left(\mathrm{OCH}_{2}\right), 40.9\left(\mathrm{NCH}_{3}\right), 40.4(\mathrm{C}-2, \mathrm{C}-4) \mathrm{ppm}$. IR (film): $\tilde{\mathrm{v}}=2933$, $1083 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z} 182.1173$ ([M + H $]^{+}$, calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2}$ 182.1181).
6,7-Dehydrotropine (4): 6 m aq. $\mathrm{HCl}(1 \mathrm{~mL})$ was added to a solution of acetal 20 ($153 \mathrm{mg}, 0.841 \mathrm{mmol}, 1$ equiv.) in THF (1 mL). The solution was stirred at room temp. for $16 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ was then added $(\mathrm{pH} \approx 8-9)$ and the product was extracted with EtOAc $(3 \times 2 \mathrm{~mL})$.

The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude ketone obtained was used without further purification. L-Selectride ${ }^{\ominus}(1 \mathrm{~m}$ in THF, $0.93 \mathrm{~mL}, 0.926 \mathrm{mmol}, 1.1$ equiv.) was added dropwise to a solution of previously formed ketone in THF $(8.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was then stirred at room temp. for 1 h . After cooling to $0^{\circ} \mathrm{C}$, water $(0.11 \mathrm{~mL})$ and 35% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.21 \mathrm{~mL})$ were added. Saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$ was added. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and the combined aqueous layer was extracted with $\mathrm{CHCl}_{3}(8 \times 4 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 5: 95+10 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford alcohol 4 ($62 \mathrm{mg}, 53 \%$) as a pale yellow oil. $R_{f}=0.30\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95+\right.$ $10 \% \mathrm{Et}_{3} \mathrm{~N}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.25(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H})$, 3.90 (t, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.57-3.51$ (br. s, $2 \mathrm{H}, 1-\mathrm{H}, 5-\mathrm{H}), 2.41-$ $2.32\left(\mathrm{~m}, 5 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}, \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}, 4-\right.$ H_{b}) ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.0(\mathrm{C}-6$, $\mathrm{C}-7), 66.4$ (C-1, C-5), $65.0(\mathrm{C}-3), 41.4\left(\mathrm{CH}_{3}\right), 37.1(\mathrm{C}-2, \mathrm{C}-4) \mathrm{ppm} . \mathrm{IR}$ (film): $\tilde{v}=3357,3324,1073,1044 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z} 140.1082$ ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}$ 140.1075).
8-Methyl-8-azabicyclo[3.2.1]oct-6-en-3-yl 3-Hydroxy-2-phenylpropanoate (24): Water from $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($145 \mathrm{mg}, 0.762 \mathrm{mmol}$, 1 equiv.) was removed by coevaporation with benzene ($2 \times 3 \mathrm{~mL}$). The dried p TsOH was then dissolved in $\mathrm{Et}_{2} \mathrm{O}(4.8 \mathrm{~mL})$ and was added to a suspension of 4 ($106 \mathrm{mg}, 0.762 \mathrm{mmol}, 1$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(4.8 \mathrm{~mL})$. The solution was stirred at room temp. for 40 min . The product was filtered, washed with dry $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and dried in vacuo to obtain the ammonium salt 21 ($174 \mathrm{mg}, 73 \%$) as a white solid which was used without further purification. $\mathrm{SOCl}_{2}(0.11 \mathrm{~mL}, 1.48 \mathrm{mmol}$, 5.5 equiv.) was added to a solution of acetyltropic acid ${ }^{[40]}(79 \mathrm{mg}$, $0.378 \mathrm{mmol}, 1.4$ equiv.) in benzene (0.30 mL). The solution was stirred at $65{ }^{\circ} \mathrm{C}$ for 2.5 h . After cooling, the solution was concentrated under reduced pressure. The crude product was dissolved in benzene (0.4 mL) and $\mathbf{2 1}(84 \mathrm{mg}, 0.270 \mathrm{mmol}, 1$ equiv.) was added. The solution was refluxed for 4 h . After cooling, $6 \mathrm{~m} \mathrm{HCl}(0.33 \mathrm{~mL})$ was added and the reaction was stirred at room temp. for 13 h . $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added (until $\mathrm{pH} 7-8$) and the solution was diluted in a mixture of $\mathrm{MeOH} / \mathrm{CHCl}_{3}(1: 1,40 \mathrm{~mL})$. The solution was filtered and concentrated under reduced pressure. The oil was dissolved in a mixture of $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ (1:5). The solution was filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography with alumina ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1: 100$) to afford a mixture of ester 24 and alcohol $\mathbf{4}$ ($71.5 \mathrm{mg}, 84 \% \mathrm{wt}$ of $\mathbf{2 4}, 56 \%$ over the two steps) as a pale yellow oil. Separation was carried out in the subsequent step. $R_{f}=0.25\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1: 100\right.$, neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, 6.22 ($\left.\mathrm{s}, 0.75 \mathrm{H}, 6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.79$ (dd, $J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}$), $5.40(\mathrm{dd}, J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}), 4.98(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ H), $4.10\left(\mathrm{dd}, J=10.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 3.87-3.66\left(\mathrm{~m}, 2.38 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$, $\left.8-\mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 3.42\left(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 0.75 \mathrm{H}, 1^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 3.32(\mathrm{dt}, J=4.0$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}), 3.22(\mathrm{dt}, J=4.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H})$, 2.27-2.05 (m, 2.75 H, 2'- H_{a}, $\left.4^{\prime}-\mathrm{H}_{\mathrm{a}}, 2-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.24\left(\mathrm{~s}, 1.13 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 0.75 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.66(\mathrm{dt}$, $J=14.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$ or $\left.4-\mathrm{H}_{\mathrm{b}}\right), 1.49(\mathrm{dt}, J=15.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ H_{b} or $4-\mathrm{H}_{\mathrm{b}}$) ppm. ${ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.0$ (CO), 136.1 (Cq-Ar), 134.5 (C-6', C-7'), 131.64 (C-6 or C-7), 131.60 (C6 or C-7), 128.8 (2 CH-Ar), 128.4 (2 CH-Ar), 127.7 (CH-Ar), 67.8 (C-3), 66.1 (C-1', C-5'), 65.40 ($\mathrm{C}-1$ or $\mathrm{C}-5$), 65.38 (C-3'), 65.3 ($\mathrm{C}-1$ or $\mathrm{C}-5$), $64.2(\mathrm{C}-9), 54.5(\mathrm{C}-8), 41.7\left(\mathrm{CH}_{3}\right), 41.5\left(\mathrm{CH}_{3}\right), 37.6\left(\mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}\right), 33.6(\mathrm{C}-$ 2 or C-4), 33.5 (C-2 or C-4) ppm. IR (film): $\tilde{v}=3368,2937,1724$, 1170, $1037 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z 288.1597 ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3} 288.1600$).

Scopolamine (2): 35% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.1 \mathrm{~mL})$ was added to a solution of 24 ($16.7 \mathrm{mg}, 58.1 \mu \mathrm{~mol}, 1$ equiv.) in formic acid (0.1 mL). The solution was stirred at room temp. for 1 d . A second portion of 35% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.1 \mathrm{~mL})$ was added and the solution was stirred at room temp. for 2 d. Sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and CHCl_{3} were added. 2 M NaOH was then added (until pH 8-9) and the product was extracted with $\mathrm{CHCl}_{3}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on alumina ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 0.5: 100$ to $1: 100$) to afford $2(2.8 \mathrm{mg}, 16 \%)$ as a pale yellow oil. $R_{\mathrm{f}}=0.25\left(\mathrm{EtOAc} /\right.$ cyclohexane, $\left.1: 3+10 \% \mathrm{Et}_{3} \mathrm{~N}\right) .{ }^{1} \mathrm{H}$ NMR, COSY, NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.04(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.17\left(\mathrm{dd}, J=11.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 3.82(\mathrm{dd}$, $\left.J=11.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 3.75(\mathrm{dd}, J=8.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.38$ ($\mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}$), $3.12(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}$, $1-\mathrm{H}$ or $5-\mathrm{H}), 2.64(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.36-2.20 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OH}$), 2.20-2.08 ($\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$ or $4-\mathrm{H}_{\mathrm{a}}$), 2.08-1.96 $\left(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{a}}\right), 1.65-1.58\left(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{b}}\right), 1.34(\mathrm{~d}, \mathrm{~J}=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$ or $4-\mathrm{H}_{\mathrm{b}}$) ppm. Spectroscopic data are in accordance with the literature. ${ }^{[41]}$
9-Methyl-3-oxa-9-azatricyclo[3.3.1.0 ${ }^{2,4}$]nonan-7-yl 3-[(tert-But-yldimethylsilyl)oxy]-2-phenylpropanoate (26): TBSCI (42 mg , $0.279 \mathrm{mmol}, 1.2$ equiv.) and imidazole ($27 \mathrm{mg}, 0.396 \mathrm{mmol}$, 1.7 equiv.) were added to a solution of 24 ($49 \mathrm{mg}, 0.171 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$. The solution was stirred at room temp. for 16 h . Water (2 mL) was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:3 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford the TBS-protected olefin 25 ($47 \mathrm{mg}, 68 \%$) as a pale yellow oil. $R_{\mathrm{f}}=0.27$ (EtOAc/cyclohexane, $\left.1: 3+10 \% \mathrm{Et}_{3} \mathrm{~N}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}, \operatorname{COSY}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.24$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$), 5.88 (dd, $J=5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}), 5.65(\mathrm{dd}, J=$ $5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}), 4.98(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.16(\mathrm{t}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.76\left(\mathrm{dd}, J=9.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 3.67(\mathrm{dd}, J=$ $\left.9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 3.35(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}$), $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.23-2.18\left(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{a}}\right), 2.14$ (ddd, $J=14.9,6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$ or $\left.4-\mathrm{H}_{\mathrm{a}}\right), 1.69(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ H_{b} or $\left.4-\mathrm{H}_{\mathrm{b}}\right), 1.56\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{b}}\right), 0.85[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}$, HSQC, HMBC ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5$ (CO), 136.3 (Cq-Ar), 131.72 (C-6 or C-7), 131.67 (C-6 or C-7), 128.6 (2 CH-Ar), 128.4 (2 CH-Ar), 127.6 (CH-Ar), 67.4 (C-3), 65.6 (C-1 or C-5), 65.5 (C-1 or C-5), 65.3 (C8), 55.2 (C-9), $41.7\left(\mathrm{CH}_{3}\right), 33.9$ (C-2 or $\left.\mathrm{C}-4\right), 33.6$ (C-2 or $\left.\mathrm{C}-4\right)$), 25.9 $\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.4\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right],-5.3\left(\mathrm{SiCH}_{3}\right),-5.4\left(\mathrm{SiCH}_{3}\right) \mathrm{ppm} . \mathrm{V}_{2} \mathrm{O}_{5}$ $(3 \mathrm{mg})$ and 35% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.64 \mathrm{~mL})$ were added to a solution of 25 ($21 \mathrm{mg}, 52.5 \mu \mathrm{~mol}, 1$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(0.8 \mathrm{~mL})$. The solution was stirred at $45^{\circ} \mathrm{C}$ for 20 h . After cooling, the solution was then concentrated under reduced pressure. Sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ was added and the product was extracted with $\mathrm{CHCl}_{3}(4 \times 2 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/cyclohexane, 1:7 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford title compound $26(8.6 \mathrm{mg}, 39 \%)$ as a pale yellow oil. $R_{\mathrm{f}}=$ 0.63 (EtOAc/cyclohexane, 1:3 + $10 \% \mathrm{Et}_{3} \mathrm{~N}$). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.35-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.00(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.18$ $\left(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 3.78\left(\mathrm{dd}, J=9.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 3.70$ (dd, $J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}$), 3.17-3.12 (br. s, $1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}$), 3.10 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-$ H), 3.07-3.02 (br. s, $1 \mathrm{H}, 1-\mathrm{H}$ or $5-\mathrm{H}), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15-2.08(\mathrm{~m}$, $1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$ or $\left.4-\mathrm{H}_{\mathrm{a}}\right), 2.08-1.99\left(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{a}}\right), 1.65-1.60(\mathrm{~m}, 1$ $\mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$ or $\left.4-\mathrm{H}_{\mathrm{b}}\right), 1.46-1.38\left(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right.$ or $\left.4-\mathrm{H}_{\mathrm{b}}\right), 0.86[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR,

HSQC, HMBC ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3$ (CO), 135.9 (Cq-Ar), 128.9 (2 CH-Ar), 128.2 (2 CH-Ar), 127.7 (CH-Ar), 65.7 (C-3), 65.2 (C-9), 58.1 ($\mathrm{C} 1, \mathrm{C}-5$), 56.7 (C-6 or C-7), 56.4 (C-6 or C-7), $55.2(\mathrm{C}-8), 42.3\left(\mathrm{NCH}_{3}\right)$, $31.2(\mathrm{C}-2$ or $\mathrm{C}-4), 30.9(\mathrm{C}-2$ or $\mathrm{C}-4), 26.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right],-5.3$ $\left(\mathrm{SiCH}_{3}\right),-5.4\left(\mathrm{SiCH}_{3}\right) \mathrm{ppm}$. IR (film): $\tilde{v}=2928,1732,837 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z 418.2424\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. for $\left.\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si} 418.2414\right)$.

Acknowledgments

This work was supported by Boehringer Ingelheim Pharma GmbH \& Co. KG. The authors thank Dr. J. C. Liermann (University of Mainz) for NMR spectroscopy and Dr. N. Hanold (University of Mainz) for mass spectrometry.

Keywords: Total synthesis • Natural products • Alkaloids Tropane • Cycloaddition
[1] T. A. Henry, The Plant Alkaloids, 4th ed., Blakiston, Philadelphia, PA, 1949. [2] W. J. Griffin, G. D. Lin, Phytochemistry 2000, 53, 623-637.
[3] G. Grynkiewicz, M. Gadzikowska, Pharmacol. Rep. 2008, 60, 439-463.
[4] P. Christen, in: Studies in Natural Products Chemistry: Bioactive Natural Products, part C (Ed.: A.-U. Rahman), Elsevier, Amsterdam, The Netherlands, 2000, vol. 22, pp. 717-749.
[5] E. Fattorusso, O. Taglialatela-Scafati, Modern Alkaloids - Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim, Germany, 2008.
[6] P. Dobó, G. Fodor, G. Janzsó, I. Koczor, J. Tóth, I. Vincze, J. Chem. Soc. 1959, 3461-3465.
[7] G. B. Petrović, R. N. Saičić, Ž. M. Čeković, Helv. Chim. Acta 2003, 86, 31793186.
[8] J. Chang, W. Xie, L. Wang, N. Ma, S. Cheng, J. Xie, Eur. J. Med. Chem. 2006, 41, 397-400.
[9] Y.-F. Wu, W. Lü, Q. Lu, W.-S. Zhang, Chin. Chem. Lett. 2005, 16, 1287-1289.
[10] D. E. Justice, J. R. Malpass, Tetrahedron 1996, 52, 11977-11994.
[11] J. H. Rigby, F. C. Pigge, Org. React. 1997, 51, 1-536.
[12] J. L. Mascareñas, M. Gulías, F. López, in: Comprehensive Organic Synthesis II, 2nd edition (Ed.: P. Knochel), Elsevier, Amsterdam, The Netherlands, 2014, p. 595-655.
[13] M. Harmata, Chem. Commun. 2010, 46, 8886-8903.
[14] H. M. L. Davies, J. J. Matasi, L. M. Hodges, N. J. S. Huby, C. Thornley, N. Kong, J. H. Houser, J. Org. Chem. 1997, 62, 1095-1105.
[15] F. Riché, F. Masri, M. Lopez, Tetrahedron Lett. 2007, 48, 1609-1612.
[16] R. P. Reddy, H. M. L. Davies, J. Am. Chem. Soc. 2007, 129, 10312-10313.
[17] B. D. Schwartz, J. R. Denton, Y. Lian, H. M. L. Davies, C. M. Williams, J. Am. Chem. Soc. 2009, 131, 8329-8332.
[18] M. E. Meyer, E. M. Ferreira, B. M. Stoltz, Chem. Commun. 2006, 13161318.
[19] A. P. Krapcho, E. Ciganek, Org. React. 2004, 81, 1-536.
[20] Ring-opening is known to occur under acidic conditions, see: N. Cramer, J. Juretschke, S. Laschat, A. Baro, W. Frey, Eur. J. Org. Chem. 2004, 13971400.
[21] U. Schmidt, M. Kroner, H. Griesser, Synthesis 1991, 294-300.
[22] S. Hashimoto, Y. Miyazaki, T. Shinoda, S. Ikegami, Tetrahedron Lett. 1989, 30, 7195-7198.
[23] P.-F. Xu, S. Li, T.-J. Lu, C.-C. Wu, B. Fan, G. Golfis, J. Org. Chem. 2006, 71, 4364-4373.
[24] G. A. Olah, S. C. Narang, B. G. Balaram Gupta, R. Malhotra, J. Org. Chem. 1979, 44, 1247-1251.
[25] J. Ma, W. Yin, H. Zhou, X. Liao, J. M. Cook, J. Org. Chem. 2009, 74, $264-$ 273.
[26] N. Menschutkin, Z. Phys. Chem. 1890, 5, 589-601
[27] G. O. Nevstad, J. Songstad, Acta Chem. Scand. B 1984, 38, 469-477.
[28] B. Almarzoqi, A. V. George, N. S. Isaacs, Tetrahedron 1986, 42, 601-607.
[29] S. Vlahovic, N. Schädel, S. Tussetschläger, S. Laschat, Eur. J. Org. Chem. 2013, 1580-1590.
[30] R. Robinson, J. Chem. Soc. Trans. 1917, 111, 762-768.
[31] J. W. Medley, M. Movassaghi, Chem. Commun. 2013, 49, 10775-10777.
[32] N. Cramer, S. Laschat, A. Baro, Synlett 2003, 2178-2181.
[33] A. Stoll, B. Becker, E. Jucker, Helv. Chim. Acta 1952, 35, 1263-1269.
[34] T. A. Montzka, J. D. Matiskella, J. Med. Chem. 1977, 20, 453-456.
[35] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 21762179.
[36] D. M. Hodgson, E. Paruch, Tetrahedron 2004, 60, 5185-5199.
[37] J. Mann, L.-C. de Almeida Barbosa, J. Chem. Soc. Perkin Trans. 1 1992, 787-790.
[38] O. Affolter, A. Baro, S. Laschat, P. Fischer, Z. Naturforsch. B 2007, 62, 8292.
[39] B. L. Murr, B. J. Parkhill, A. Nickon, Tetrahedron 1992, 48, 4845-4862.
[40] S. Dei, A. Bartolini, C. Bellucci, C. Ghelardini, F. Gualtieri, D. Manetti, M. N. Romanelli, S. Scapecchi, E. Teodori, Eur. J. Med. Chem. 1997, 32, 595-605. [41] W. J. Chazin, L. D. Colebrook, J. Org. Chem. 1986, 51, 1243-1253.

Received: November 12, 2015
Published Online: January 29, 2016

[^0]: [a] Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
 E-mail: opatz@uni-mainz.de
 http://www.chemie.uni-mainz.de/OC/AK-Opatz/index.php
 Supporting information and ORCID(s) from the author(s) for this article
 (iD are available on the WWW under http://dx.doi.org/10.1002/ ejoc. 201501430.

