Synthesis of ${ }^{13} C_{4}$-labelled oxidized metabolites of the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene

Anhui $\mathrm{Wu}^{\mathrm{a}, \dagger}$, Daiwang $\mathrm{Xu}^{\mathrm{a}, \dagger}$, Ding Lu ${ }^{\mathrm{b}}$, Trevor M. Penning ${ }^{\mathrm{b}}$, Ian A. Blair ${ }^{\mathrm{b}}$, Ronald G. Harvey ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, United States
${ }^{\mathrm{b}}$ The Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States

A R T I C L E I N F O

Article history:

Received 22 April 2012
Received in revised form 29 May 2012
Accepted 31 May 2012
Available online 12 June 2012

Keywords:

Benzo[a]pyrene (BaP)
Carcinogenic polycyclic aromatic hydrocarbons (PAHs)
Synthesis of ${ }^{13} C_{4}$-labelled BaP
${ }^{13} C_{4}$-Labelled oxidized metabolites of $\mathrm{B} a \mathrm{P}$ Enzymatic activation of PAH carcinogens Synthesis of PAHs via Pd-catalyzed crosscoupling reactions

Abstract

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are ubiquitous environmental contaminants that are implicated in causing lung cancer. BaP is a component of tobacco smoke that is transformed enzymatically to active forms that interact with DNA. We reported previously development of a sensitive stable isotope dilution LC/MS method for analysis of BaP metabolites. We now report efficient syntheses of ${ }^{13} C_{4}$ - Ba P and the complete set of its ${ }^{13} C_{4}$-labelled oxidized metabolites needed as internal standards They include the metabolites not involved in carcinogenesis (Group A) and the metabolites implicated in initiation of cancer (Group B). The synthetic approach is novel, entailing use of Pdcatalyzed Suzuki, Sonogashira, and Hartwig cross-coupling reactions combined with PtCl_{2}-catalyzed cyclization of acetylenic compounds. This synthetic method requires fewer steps, employs milder conditions, and product isolation is simpler than conventional methods of PAH synthesis. The syntheses of ${ }^{13} C_{4}$ - Ba P and ${ }^{13} \mathrm{C}_{4}$ - $\mathrm{Ba} \mathrm{P}-8$-ol each require only four steps, and the ${ }^{13} \mathrm{C}$-atoms are all introduced in a single step. ${ }^{13} C_{4}$-BaP-8-ol serves as the synthetic precursor of all the oxidized metabolites of ${ }^{13} \mathrm{C}$ - Ba P implicated in initiation of cancer. The isotopic purities of the synthetic ${ }^{13} C_{4}$ - BaP metabolites were estimated to be $\geq 99.9 \%$.

© 2012 Published by Elsevier Ltd.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are implicated in initiation of lung cancer. ${ }^{1-3}$ PAHs are produced in the combustion of fossil fuels and other organic matter, ${ }^{1,3,4}$ and significant levels of PAHs are present

[^0]in tobacco smoke, ${ }^{5}$ auto and diesel engine emissions, ${ }^{6}$ and in fried, smoked, and charbroiled meats. ${ }^{1,3}$

Metabolic activation of PAHs is required for expression of their carcinogenic activity. ${ }^{1,7,8}$ Benzo[a]pyrene (BaP)* has been most intensively investigated, and current evidence indicates that BaP is activated via three pathways, the diol epoxide path, the quinone path, and the radical-cation path (Fig. 1). ${ }^{1,3,7}$

The diol epoxide path entails cytochrome P450 catalyzed oxidation of $\mathrm{B} a \mathrm{P}$ to form metastable arene oxide metabolites that rearrange to phenols and/or undergo hydration to dihydrodiols. ${ }^{1}$ The (\pm)-trans-7,8-dihydrodiol of BaP ($\mathrm{BaP} 7,8$-diol) (1) undergoes further enzyme-catalyzed oxidation to form highly mutagenic (\pm)-anti- and (\pm)-syn-diol epoxide metabolites ($\mathbf{4}$ and $\mathbf{5}$) that react with DNA to form adducts. ${ }^{1,8}$ The quinone path entails aldo-keto reductase (AKR)mediated oxidation of $\mathbf{1}$ to $\mathrm{BaP} 7,8$-catechol (3). This enters into a redox cycle with O_{2} to form BaP 7,8-dione (2) and reactive oxygen species (ROS) that attack DNA to form 8^{\prime}-hydroxy- 2^{\prime}-deoxyguanosine ($8^{\prime}-\mathrm{HO}-2^{\prime}-d \mathrm{Gua}$) and cause DNA strand breaks. ${ }^{1,7 c, 9}$ The quinone 2 also combines with DNA to furnish stable and depurinating adducts. Collectively these events result in initiation of cancer. An analogous pathway involving quinone metabolites of steroids is involved in oestrogen-related carcinogenesis leading to breast cancer. ${ }^{10}$ The radical-cation path entails one-electron oxidation of BaP catalyzed by P450 monooxygenase or peroxidase to form

BaP 7,8-diol (1)
(\pm)-anti-BPDE (4)
(\pm)-syn-BPDE (5)
AKR1A1
AKR1C1-1C4

BaP 7,8-catechol (3)
BaP 7,8-dione (2)

Fig. 1. Pathways of enzymatic activation of benzo[a]pyrene (BaP).
a BaP radical-cation that attacks DNA to yield depurinating adducts. ${ }^{11 \mathrm{a}}$ The signature metabolites formed via this pathway are BaP 1,6-dione (6) and BaP 3,6-dione (7). However, the involvement of the radical-cation pathway in carcinogenesis is disputed. ${ }^{1 \mathrm{a}, 11 \mathrm{~b}}$

Human bronchoalveolar H358 cells were examined recently as a model for study of the metabolism of BaP in normal human lung cells. ${ }^{12,13}$ The findings indicated that activation of $\mathbf{1}$ in these cells involves the AKR-mediated quinone pathway. ${ }^{14}$ More recently, we developed a stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometric method to assay quantitatively the metabolites formed by all three metabolic pathways. ${ }^{15}$ The ${ }^{13} C_{4}$-BaP metabolites whose syntheses are reported herein were employed as internal standards. In other studies, the syntheses of ${ }^{13} C_{2}-\mathrm{BaP},{ }^{13} C_{2}-\mathbf{1}$, and ${ }^{13} C_{2}-2$ were also reported. ${ }^{16}$

2. Results

The aim of this investigation was to develop methods for efficient synthesis of the ${ }^{13} C_{4}$-labelled analogues of the complete set of oxidized metabolites of BaP . The BaP metabolites may be divided into two groups on the basis of their involvement in carcinogenesis. Group A includes the oxidized metabolites of BaP that current evidence indicates do not play a role in carcinogenesis [the 1-, 2-, 3-, 9-, and 12-phenol isomers of $\mathrm{BaP}, \mathrm{BaP}-1,6$-dione ($\mathbf{6}$) and $\mathrm{BaP}-3,6$-dione (7)] (Fig. 1). Group B includes the oxidized metabolites of BaP implicated in carcinogenesis [BaP 7,8-diol (1), BaP 7,8-dione (2), BaP 7,8-catechol diacetate (3), (\pm)-anti-BPDE (4), and (\pm)-syn-BPDE (5)] (Fig. 1) plus 8-HO-BaP and 9-HO-BaP. The ${ }^{13} C_{4}$-labelled BaP metabolites are needed as internal standards for LC/MS analysis of the BaP metabolites formed in human cells. This methodology is expected to provide a tool to assess the relative contributions of the three metabolic pathways to induction of cancer.

The methods of synthesis of the ${ }^{13} C_{4}$-labelled BaP metabolites involve the use of Pd-catalyzed cross-coupling reactions (Suzuki, Sonogashira, and/or Hartwig) in combination with PtCl_{2}-catalyzed
cyclization of acetylenic intermediates. This novel synthetic approach requires fewer steps and employs milder reaction conditions than the conventional methods for construction of PAH ring systems based on Friedel-Crafts chemistry. This synthetic method also has the advantage that the requisite ${ }^{13} \mathrm{C}$-labelled precursors are available from commercial sources.

2.1. Part I. BaP metabolites not implicated in carcinogenesis (Group A)

The initial synthetic targets were the ${ }^{13} C$-labelled 1-, 2-, 3-, 9-, and 12-phenols of BaP. Exploratory studies to establish the feasibility of the planned synthetic approach were carried out with unlabelled precursors.

2.1.1. Synthesis of benzo[a]pyren-1-ol, -2-ol, and -3-ol.

2.1.1.1. Benzo[a]pyren-3-ol (14f). It was shown previously that $\mathbf{1 4 f}$ is the principal phenol metabolite of BaP formed in H 358 human cells. ${ }^{13}$ Synthesis of $\mathbf{1 4 f}$ was carried out by the sequence in Scheme 1. Palladium-catalyzed Suzuki-Miyaura cross-coupling of 1-bromo-2iodobenzene (8) with the 2-boronate ester of 7-methoxynaphthalene (9c) took place at the iodo position regiospecifically to furnish 2-(2-bromophenyl)-7-methoxynaphthalene (10c). Pd-catalyzed cross-coupling of $\mathbf{1 0 c}$ with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{R}$ was carried out by a procedure based on Hartwig's method. ${ }^{17}$ The choice of this route was dictated by the commercial availability of ${ }^{13} \mathrm{C}_{2}-\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$. However, only tert-butyl esters were employed in the published examples of this reaction. Direct reaction of $\mathbf{1 0 c}$ with the zinc enolate of tert-butyl acetate afforded the expected tert-butyl ester adduct (11a) in moderate yield, but similar reaction of $\mathbf{1 0 c}$ with the zinc enolate of ethyl acetate failed to furnish the adduct of the ethyl ester (11b). However, cross-coupling of $\mathbf{1 0 c}$ with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ took place smoothly in the presence of $\operatorname{Pd}(\mathrm{dba})_{2}$ and $\mathrm{Q}-\mathrm{phos}$ to yield ethyl 2-(7methoxynaphthalenyl)phenylacetate (11b) in moderate yield (40\%).

9a: $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
b: $R_{1}=R_{3}=H ; R_{2}=O M e$
c: $R_{1}=R_{2}=H ; R_{3}=O M e$

10a: $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
b: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OMe}$
c: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OMe}$

11a: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OMe} ; \mathrm{R}=t-\mathrm{Bu}$
b: $R_{1}=R_{2}=H ; R_{3}=O M e ; R=E t$
c: $R_{1}=R_{2}=H ; R_{3}=O M e ; R=H$
d: $R_{1}=O M e ; R_{2}=R_{3}=H ; R=E t$
e: $R_{1}=O M e ; R_{2}=R_{3}=H ; R=H$
f: $R_{1}=R_{3}=H ; R_{2}=O M e ; R=E t$
$g: R_{1}=R_{3}=H ; R_{2}=O M e ; R=H$

12a: $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}=\mathrm{H}$
b: $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}=\mathrm{Tf}$
c: $R_{1}=R_{3}=H ; R_{2}=O M e ; R=H$
d: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OMe} ; \mathrm{R}=\mathrm{Tf}$
e: $R_{1}=R_{2}=H ; R_{3}=O M e ; R=H$
f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OMe} ; \mathrm{R}=\mathrm{Tf}$

14a: $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
13a: $R_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}=\mathrm{SiMe}_{3}$
b: $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
b: $R_{1}=O M e ; R_{2}=R_{3}=H ; R=H$
c: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OMe}$
c: $R_{1}=R_{3}=H ; R_{2}=O M e ; R=\mathrm{SiMe}_{3}$
d: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH}$
d: $R_{1}=R_{3}=H ; R_{2}=O M e ; R=H$
e: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OMe}$
e: $R_{1}=R_{2}=H ; R_{3}=O M e ; R=S i M e_{3}$
f: $R_{1}=R_{2}=H ; R_{3}=O H$
f: $R_{1}=R_{2}=H ; R_{3}=O M e ; R=H$
Scheme 1.

A brief study of this reaction was undertaken with the intent of improving the yield of 11b (Table 1). The yield was significantly improved by: (1) increasing the ratio of $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ from 1.1 equiv to $2.0-3.0$ equiv and (2) increasing the catalyst ratio from $1.0 \mathrm{~mol} \%$ to $5.0 \mathrm{~mol} \%$. On the other hand, decreasing reaction time from 12 h to 1.5 h had minimal effect. The syntheses of the ${ }^{13} \mathrm{C}$-labelled compounds were carried out using the conditions in entry 5.

Treatment of 11b with NaOH in EtOH gave 2-(7-methoxynaphthalen-2-yl)phenylacetic acid (11c) (90\%) (Scheme 1), and 11c underwent cyclization in the presence of $\mathrm{MeSO}_{3} \mathrm{H}$ at $50^{\circ} \mathrm{C}$ to furnish 3-methoxychrysen-5-ol (12e) (77\%). This was

Table 1
Effect of conditions on reaction of $\mathbf{1 0 c}$ with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}^{\mathrm{a}}$

Entry	Time (h)	$\mathrm{Pd}(\mathrm{dba})_{2} /$ Q-phos (mol \%)	$\mathrm{BrZnCH}_{2} \mathrm{CO}_{2}$ Et (equiv)	Yield 11b (\%)
1	12	1	1.1	40
2	12	5	1.1	52
3	12	1	3.0	62
4	1.5	1	3.0	92
$5^{\text {b }}$	1.5	5	2.0	85
6	1.5	10	3.0	90
7	1.5	20	3.0	95

${ }^{\text {a }}$ Reactions were carried out by the method reported. ${ }^{17}$
${ }^{\mathrm{b}}$ Syntheses of ${ }^{13} \mathrm{C}$-labelled analogues were carried out under these conditions.
converted to the triflate ester (12f), by treatment with trifluoromethanesulfonic anhydride, and Sonogashira coupling ${ }^{18}$ of 12 f with (trimethylsilyl) acetylene (TMSA) in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, CuI, and TEA in DMF gave (3-methoxychrysen-5-ylethynyl)-trimethylsilane (13e) (89\%). Desilylation of 13e with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{THF}$ furnished 5-ethynyl-3-methoxychrysene (13f) (90\%), and PtCl_{2}-catalyzed cyclization ${ }^{19}$ of $\mathbf{1 3 f}$ afforded 3methoxybenzo[a]pyrene (14e) (60\%). Demethylation of $\mathbf{1 3 f}$ with BBr_{3} gave benzo[a]pyren-3-ol (14f).
2.1.1.2. Benzo[a]pyren-1-ol (14b) and benzo[a]pyren-2-ol (14d). Syntheses of $\mathbf{1 4 b}$ and $\mathbf{1 4 d}$ were carried out by the method in Scheme 1. The 2-boronate ester of 5-methoxynaphthalene (9a) was prepared from 5-methoxy-2-naphthol, ${ }^{19,20}$ and Suzuki crosscoupling of $\mathbf{8}$ with $\mathbf{9 a}$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ provided 2-(2-bromophenyl)-5-methoxynaphthalene (10a). Hartwig coupling ${ }^{17}$ of 10a with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ in the presence of $\mathrm{Pd}(\mathrm{dba})_{2}$ and Q-phos afforded ethyl 2-(5-methoxynaphthalenyl)phenylacetate (11b). Ethanolysis of 11b gave 11e, and acid-catalyzed cyclization of 11e furnished 1-methoxychrysen-5-ol (12a). Sonogashira coupling of the triflate ester ($\mathbf{1 2 b}$) with TMSA yielded (1-methoxychrysen-5ylethynyl)trimethylsilane (13a). Removal of the TMS group followed by PtCl_{2}-catalyzed cyclization ${ }^{18}$ afforded 1-methoxybenzo [a]pyrene (14a), and demethylation gave 14b. Synthesis of benzo [a]pyren-2-ol (14d) was carried out via an analogous sequence based on reaction of $\mathbf{8}$ with the 2-boronate ester of 6methoxynaphthalene (9b) (Scheme 1).
2.1.2. Synthesis of benzo[alpyren-9-ol (21b). Synthesis of 21b was accomplished via an analogous sequence employing consecutive Suzuki, Hartwig, and Sonogashira cross-coupling reactions (Scheme 2). Pd-catalyzed Suzuki cross-coupling of 1-bromo-2-iodo-4-methoxybenzene ($\mathbf{1 5})^{21}$ with naphthalene 2 -boronic acid ester (16) furnished 2-(2-bromo-5-methoxyphenyl)naphthalene (17). Pd-catalyzed Hartwig coupling of 17 with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ provided ethyl 2-(napththalen-2-yl)-5-methoxyphenyl acetate
(18a). Ethanolysis of 18a gave 18b, which underwent acid-catalyzed cyclization to 3-methoxychrysen-11-ol (19a) and esterification to the triflate ester 19b. Sonogashira coupling of 19b with TMSA furnished ((9-methoxychrysen-5-yl)ethynyl) trimethylsilane (20a), and removal of the trimethylsilyl group gave 5-ethynyl-9methoxychrysene (20b). Finally, PtCl_{2}-catalyzed cyclization of 20b furnished 9-methoxy-BaP (21a), and demethylation gave 21b.

In principle, benzo[a]pyren-8-ol and its ${ }^{13} C_{4}$-labelled analogue are accessible via an analogous sequence employing 1-bromo-2-iodo-5-methoxybenzene in place of 15 . However, 8-HO-BaP was synthesized by the alternative method described in Part II.
2.1.3. Synthesis of benzo[alpyren-12-ol (27b). Synthesis of 27b was accomplished by consecutive application of the Suzuki, Hartwig, and Sonogashira cross-coupling methods (Scheme 3). 4-Methoxynaphthalene-2-boronate ester (22) was synthesized from 2-bromo-4-methoxynapthalene ${ }^{22}$ by modification of the method for preparation of $\mathbf{9 c}$. Pd-catalyzed Suzuki cross-coupling of 22 with 8 gave 2-(2-bromophenyl)-4-methoxynaphthalene (23), and Pdcatalyzed cross-coupling of $\mathbf{2 3}$ with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ provided ethyl 2-(4-methoxynapththalen-2-yl)phenyl acetate (24a). Ethanolysis of 24a afforded the carboxylic acid (24b), which underwent acidcatalyzed cyclization to 12 -methoxychrysen-5-ol (25a). This phenol was converted to the triflate ester (25b), and Sonogashira coupling of 25b with TMSA afforded 26a. Desilylation of 26a gave 26b, and PtCl_{2}-catalyzed cyclization of the latter gave 12-methoxy$\mathrm{BaP}(\mathbf{2 7 a})$, which underwent demethylation to furnish 27b.
2.1.4. Synthesis of benzo[alpyren-1,6-dione (6) and -3,6-dione (7). The BaP-1,6- and 3,6-diones ($\mathbf{6}$ and 7) were prepared by oxidation of $\mathrm{BaP}-1$-ol (14b) and BaP-3-ol (14f) with bis(trifluoroacetoxy)iodobenzene (BTI) by the method reported. ${ }^{20,23}$
2.1.5. Synthesis of ${ }^{13} C_{4}$-labelled BaP and its Group A metabolites. BaP and ${ }^{13} C_{4}-\mathrm{Ba}$ P were synthesized by two methods. Method A was modelled on the synthesis of the $1-, 2$-, and 3 -phenols of BaP

24a: $R=E t$;
b: $R=H$

Scheme 3.
(Scheme 1). Initial studies were conducted with unlabelled precursors (Scheme 4). Pd-catalyzed Suzuki coupling of $\mathbf{8}$ with naph-thalene-2-boronate ester (28) gave 2-(2-bromophenyl) naphthalene (29), and cross-coupling of 29 with $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ by the modified Hartwig method gave ethyl 2-(2-naphthalenyl)-phenylacetate (30a). Conversion of 30a to the carboxylic acid (30b) and acid-catalyzed cyclization of 30b gave chrysen-5-ol (31a). Sonogashira cross-coupling of the triflate ester ($\mathbf{3 1 b}$) with TMSA yielded (chrysen-5-ylethynyl)trimethyl silane (32a). Removal of the TMS group by treatment of 32a with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{THF}$ afforded 32b, and PtCl_{2}-catalyzed cyclization gave BaP .

Synthesis of ${ }^{13} C_{4}$-BaP was accomplished in seven steps from 29 (Scheme 4). The ${ }^{13} \mathrm{C}$-atoms were incorporated in pairs, the first pair in
the cross-coupling of the Reformatsky ester ${ }^{13} \mathrm{C}_{2}$ - $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{R}$ with 29, and the second pair in the Sonogashira cross-coupling ${ }^{24}$ of ${ }^{13} \mathrm{C}_{2}$ TMSA with the triflate ester of ${ }^{13} \mathrm{C}_{2}$-chrysen-5-ol (31b). The ${ }^{13} \mathrm{C}$-atoms in ${ }^{13} C_{4}$-BaP are located at the $C-4,-5,-5 a$, and -6 aromatic ring positions.

The ${ }^{13} C_{4}-\mathrm{Ba} a$ phenol isomers (Fig. 2) were synthesized by methods analogous to those used for synthesis of the unlabelled BaP phenols. The ${ }^{13} \mathrm{C}$-atoms were at the $4,5,5 \mathrm{a}$, and 6 -positions of $\mathrm{B} a \mathrm{P}$, the same as those of the ${ }^{13} \mathrm{C}$-atoms in ${ }^{13} \mathrm{C}_{4}$ - BaP . The methods for syntheses of ${ }^{13} C_{4}-1-\mathrm{HO}-\mathrm{BaP},{ }^{13} \mathrm{C}_{4}-2-\mathrm{HO}-\mathrm{BaP}$, and ${ }^{13} \mathrm{C}_{4}-3-\mathrm{HO}-\mathrm{BaP}$ were analogous to those used for preparation of ${ }^{13} \mathrm{C}_{4}$ - BaP (Scheme $4)$, using the appropriate methoxy-substituted derivatives ($\mathbf{9 a}, \mathbf{9 b}$, and $\mathbf{9 c}$) of the boronate ester in place of $\mathbf{2 8}$. Similarly, the syntheses of ${ }^{13} \mathrm{C}_{4}$-HO-9-BaP and ${ }^{13} \mathrm{C}_{4}-12-\mathrm{HO}-\mathrm{BaP}$ were carried out by

*Sites of the ${ }^{13} \mathrm{C}$-atoms.

${ }^{13} \mathrm{C}_{4}-1-\mathrm{HO}-\mathrm{BaP}$

${ }^{13} \mathrm{C}_{4}$-2-HO-BaP

${ }^{13} \mathrm{C}_{4}$-3-HO-BaP

${ }^{13} \mathrm{C}_{4}-9-\mathrm{HO}-\mathrm{BaP}$

${ }^{13} C_{4}$-BaP-1,6-dione

${ }^{13} C_{4}$-BaP-3,6-dione

${ }^{13} \mathrm{C}_{4}$-12-HO-BaP

Fig. 2. ${ }^{13} \mathrm{C}_{4}$-Labelled BaP phenols and quinones (${ }^{*}$ sites of ${ }^{13} \mathrm{C}$-atoms).
appropriate modification of the procedures for synthesis of unlabelled 9-HO-BaP (Scheme 2) and 12-HO-BaP (Scheme 3).

The ${ }^{13} C_{4}$-labelled 1,6- and 3,6-quinones of BaP (Fig. 2) were prepared by oxidation of ${ }^{13} C_{4}-1-\mathrm{HO}-\mathrm{BaP}$ and ${ }^{13} \mathrm{C}_{4}-3-\mathrm{HO}-\mathrm{BaP}$ with bis-(trifluoroacetoxy)iodobenzene (TBI). ${ }^{20,23}$

2.2. Part II. BaP metabolites implicated in carcinogenesis (Group B)

The synthetic targets in this phase were the ${ }^{13} C_{4}$-labelled oxidized metabolites of BaP in Group B. They include the BaP metabolites implicated in initiation of cancer [Fig. 1: BaP 7,8-diol (1), BaP 7,8-dione (2), BaP 7,8-catechol diacetate (3), (\pm)-anti-BPDE (4), and (\pm)-syn-BPDE (5)] plus the 8- and 9-phenol isomers ($\mathbf{3 7} \mathbf{c}$ and $\mathbf{3 7 e}$).
2.2.1. Synthesis of BaP, benzo[a]pyren-8-ol (37c), and BaP-9-ol (37e) via Method B. The BaP metabolites $\mathbf{1}-\mathbf{5}$ were shown previously to be accessible via a synthetic route based on benzo[a]pyren-8-ol (37c). ${ }^{20}$ Synthesis of BaP via an analogous route (designated Method B) was initially investigated. This method (Scheme 5) entailed Pd-catalyzed Suzuki-Miyaura cross-coupling of naphthylboronic acid (33a) with 1-bromo-2,6-dimethoxy benzene (34a). Reaction took place in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} \mathrm{Cl}_{2}$, biphe-nyl(di-tert-butylphosphine), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in THF at $40^{\circ} \mathrm{C}$ to yield 2-(2,6-dimethoxyphenyl)naphthalene (35a). Demethylation of 35a with BBr_{3} yielded 2-(2,6-dihydroxyphenyl)naphthalene (35b), and treatment of the latter with triflic anhydride and pyridine afforded the triflate diester ($\mathbf{3 5 c}$). Sonogashira coupling ${ }^{24}$ of $\mathbf{3 5 c}$ with TMSA in the presence of $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}$, CuI, and TEA in DMF furnished 36a. Reaction of 36a with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{THF}$ provided 2-(2,6diethynylphenyl)naphthalene (36b), and PtCl_{2}-catalyzed cyclization ${ }^{18}$ of 36b gave $\mathrm{BaP}(\mathbf{3 7 a})$. This synthetic route to BaP is shorter than Method A (Scheme 4), and the availability of these two synthetic approaches provides the basis for the synthesis of two different pure ${ }^{13} C_{4}$-BaP isotopomers.

Benzo[a]pyren-8-ol (37c) was synthesized by an analogous sequence (Scheme 5). 1-Bromo-2,6-dibenzyoxybenzene (34c) was prepared by demethylation of $\mathbf{3 4 a}$ with BBr_{3} and base-catalyzed reaction of 1-bromo-2,6-dihydroxybenzene (34b) with benzyl bromide. Pdcatalyzed Suzuki cross-coupling of 34c with 6-methoxynaphthy lboronic acid (33b) furnished 2-(2,6-dibenzyloxyphenyl)-6methoxynaphthalene (35d), and removal of the benzyl groups (by hydrogenation over a Pd/C catalyst) afforded 2-(2,6-dihydroxy phenyl)-6-methoxynaphthalene (35e). Treatment of $\mathbf{3 5 e}$ with triflic anhydride and pyridine provided the triflate diester (35f), and Pd-
catalyzed Sonogashira coupling of $\mathbf{3 5 e}$ with TMSA furnished 36c. Reaction of $\mathbf{3 6 c}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{THF}$ afforded 2-(2,6diethynylphenyl)naphthalene (36d), and PtCl_{2}-catalyzed cyclization of $\mathbf{3 6 d}$ furnished $8-\mathrm{MeO}-\mathrm{BaP}(\mathbf{3 7 b})$. Demethylation of $\mathbf{3 7 b}$ with BBr_{3} afforded 37c.

The synthetic approach in Scheme 5 was improved by use of 2,6-dibromo-1-iodobenzene ($\mathbf{3 8})^{25}$ in place of 34a as the aryl halide reactant (Scheme 6). Compound $\mathbf{3 8}$ was prepared from 2,6dibromoaniline by a modification of the literature method. ${ }^{25}$ Suzuki cross-coupling of $\mathbf{3 3 a}$ with $\mathbf{3 8}$ took place smoothly in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and KF in refluxing dioxane to provide 2-(2,6-dibromophenyl)naphthalene (39a). Double Sonogashira coupling of 39a with TMSA followed by removal of the TMS groups and PtCl_{2}-catalyzed cyclization gave BaP (37a). Synthesis of BaP via this route requires only four steps.

Benzo[a]pyren-8-ol (37c) was synthesized by a similar sequence (Scheme 6). Pd-catalyzed Suzuki coupling of 33b with $\mathbf{3 8}$ provided 2-(2,6-dibromophenyl)-6-methoxynaphthalene (39b), and Pdcatalyzed double Sonogashira coupling of 39b with TMSA furnished 40c. This was transformed to 37c by removal of the TMS groups to give 40d, PtCl_{2}-catalyzed cyclization to yield $\mathbf{3 7 b}$, and demethylation to $\mathbf{3 7 c}$.

Benzo[a]pyren-9-ol (37e) was synthesized by an analogous sequence (Scheme 6). Pd-catalyzed Suzuki-Miyaura crosscoupling of $\mathbf{3 3 c}$ with 38 furnished 39 c , and this was converted to $9-\mathrm{HO}-\mathrm{BaP}$ (37e) via double Sonogashira coupling with TMSA, removal of the TMS groups, PtCl_{2}-catalyzed cyclization, and demethylation. The boronate ester 2-(7-methoxynaphthalen-2-yl)-5,5-dimethyl-[1,3,2]dioxaborinane may be used in place of $\mathbf{3 3 c}$.
2.2.2. Synthesis of BaP metabolites (1-5) implicated in carcinogenesis. The BaP metabolites ($\mathbf{1 - 5}$) implicated in initiation of cancer were shown previously to be synthetically accessible via a sequence based on $\mathbf{3 7 c}$ (Scheme 7). ${ }^{20,23}$ This approach was employed for the synthesis of the BaP metabolites $\mathbf{1 - 5}$ and their ${ }^{13} \mathrm{C}_{4}$-labelled analogues. Oxidation of $\mathbf{3 7} \mathbf{c}$ with o-iodoxybenzoic acid (IBX) gave BaP 7,8-dione (2), ${ }^{19,20,23}$ and reduction of 2 with $\mathrm{NaBH}_{4} / \mathrm{O}_{2}$ furnished (\pm)-BaP 7,8-diol (1). Although BaP 7,8-catechol (3a) decomposes in air, it may be obtained pure as its diacetate derivative (3b) by reduction of 2 with NaBH_{4} in DMF and diacetylation with $\mathrm{Ac}_{2} \mathrm{O}$ / pyridine. ${ }^{20,23,26}$
anti-BPDE (4) is by definition the BaP diol epoxide isomer with the epoxide oxygen atom on the molecular face opposite the benzylic hydroxyl group, whereas syn-BPDE (5) bears these groups on

37a: H
b: $\mathrm{R}=\mathrm{OMe}$
c: $\mathrm{R}=\mathrm{OH}$
Scheme 5.
the same face (Fig. 1). ${ }^{1 \mathrm{~b}}(\pm)$-anti-BPDE was synthesized by epoxidation of $\mathbf{1}$ with m-chloroperbenzoic acid, ${ }^{1 \mathrm{~b}, 27,28}$ and (\pm)-syn-BPDE was prepared by conversion of $\mathbf{1}$ to the trans-bromohydrin (41) and base-catalyzed cyclization by established methods. ${ }^{27,28}$ The pure enantiomers of $\mathbf{1}$ are readily accessible by chromatographic separation of the diastereomeric (-)-menthoxyacetate or MTPA esters of $1 .{ }^{29}$ Small amounts of the (+) and (-)-enantiomers of 1 may be obtained by chromatography of the racemates on chiral HPLC columns. ${ }^{30}$
2.2.3. ${ }^{13} \mathrm{C}_{4}$-Labelled metabolites of BaP. Syntheses of ${ }^{13} \mathrm{C}_{4}$ - BaP and its $1-, 2-, 3-, 9$-, and 12 -phenol isomers (with ${ }^{13} \mathrm{C}$ at $\mathrm{C}-4,-5$, -5 a, and -6) ((Scheme 4 and Fig. 2) via Method B were described in Part I. Syntheses of ${ }^{13} \mathrm{C}_{2}$-BaP and its key oxidized metabolites ${ }^{13} \mathrm{C}_{2}$ - BaP trans-7,8-diol $\left({ }^{13} \mathrm{C}_{2}\right.$-1 $)$ and ${ }^{13} \mathrm{C}_{2}$-BaP-7,8-dione $\left({ }^{13} \mathrm{C}_{2}\right.$-2 $)$ with ${ }^{13} \mathrm{C}$ at C-5,11) (Fig. 2) were reported previously. ${ }^{16}$

The structures of the ${ }^{13} C_{4}$-labelled BaP derivatives synthesized in Part II via Method B are shown in Fig. 3. They include ${ }^{13} C_{4}$-BaP, ${ }^{13} C_{4}-8$-HO-BaP $\left({ }^{13} C_{4}-37 \mathrm{c}\right.$), and ${ }^{13} C_{4}-9-\mathrm{HO}-\mathrm{BaP}\left({ }^{13} C_{4}-37 e\right)$ (with ${ }^{13} \mathrm{C}$ at $C-4,-5,-11$, and -12). Also included are the ${ }^{13} C_{4}$-labelled metabolites of BaP implicated in carcinogenesis $\left[{ }^{13} C_{4}\right.$-BaP trans-7,8diol $\left({ }^{13} C_{4}-\mathbf{1}\right)$, ${ }^{13} C_{4}$-BaP 7,8-dione (${ }^{13} C_{4}$-2), BaP 7,8-catechol $\left({ }^{13} C_{4}-\mathbf{3}\right)$ and ${ }^{13} C_{4}-(\pm)$-anti-BPDE $\left({ }^{13} C_{4}-4\right)$ with ${ }^{13} \mathrm{C}$ at $\mathrm{C}-4,-5,-11$, and -12] (Fig. 3). BaP 7,8-catechol (3) was previously shown to undergo decomposition in air. ${ }^{26}$ For this reason the ${ }^{13} C_{4}$-BaP 7,8-catechol was isolated as its stable diacetate $\left({ }^{13} C_{4}-3\right.$ diacetate). And finally,
the mixed ${ }^{13} C_{4}$-BaP tetraol isomers were prepared by hydrolysis of ${ }^{13} C_{4}$-(\pm)-anti-BPDE.
${ }^{13} C_{4}-\mathrm{BaP}\left({ }^{13} \mathrm{C}\right.$ at $\mathrm{C}-4,-5,-11$, and -12$)$ was synthesized by a sequence similar to that for synthesis of unlabelled BaP (Scheme 8). Use of this method allowed incorporation of both pairs of ${ }^{13} \mathrm{C}_{4}$ atoms to take place in a single step. Thus, Pd-catalyzed double Sonogashira coupling of ${ }^{13} \mathrm{C}_{2}$-TMSA with 39a furnished ${ }^{13} \mathrm{C}_{4}-\mathbf{4 0 a}$. Removal of the TMS groups by treatment of ${ }^{13} \mathrm{C}_{4}-\mathbf{4 0 a}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{THF}$ converted it to ${ }^{13} \mathrm{C}_{4}-\mathbf{4 0 b}$, and PtCl_{2}-catalyzed cyclization ${ }^{18}$ of the latter afforded ${ }^{13} C_{4}-\mathrm{BaP}\left({ }^{13} C_{4}-\mathbf{3 7 a}\right)$.

The 8 - and 9 -phenols of ${ }^{13} C_{4}$-BaP $\left({ }^{13} C_{4}-37 \mathrm{c}\right.$ and ${ }^{13} C_{4}-37 \mathbf{e}$ with ${ }^{13} \mathrm{C}$ at $C-4,-5,-11$, and -12) were synthesized from 39b and $\mathbf{3 9} \mathbf{c}$ via analogous sequences (Scheme 8). The ${ }^{13} C_{4}$-labelled carcinogenic metabolites $\left[{ }^{13} C_{4}-\mathbf{1},{ }^{13} C_{4}-2,{ }^{13} C_{4}-4\right.$, and ${ }^{13} C_{4}-\mathbf{3}$ diacetate] were prepared from ${ }^{13} \mathrm{C}_{4}-\mathbf{3 7 c}$ (Scheme 9) by methods analogous to those for synthesis of the unlabelled BaP metabolites (Scheme 7). Since the ${ }^{13} \mathrm{C}_{4}$-BaP metabolites derive from a common synthetic precursor $\left({ }^{13} C_{4}-37 c\right)$, their ${ }^{13} C$-atoms are at the same sites ($C-4,-5,-11$, and -12).

The isotopic purity of the synthetic ${ }^{13} C_{4}$-labelled BaP metabolites was estimated by measurement of their product precursor ion transitions in the [12C] and [13C] channels (Supplemental Fig. 1). Based on a limit-of-detection (100), which is 10 fmol for the BaP-tetrol- 1 and 6 fmol for all other BaP metabolites, and the injection of 10 pmol of each ${ }^{13} \mathrm{C}_{4}$-labelled compound on column, it is estimated that BaP-tetrol-1 has an isotopic purity $>99.9 \%$ and for all other compounds the isotopic purity is $>99.94 \%$.

3. Discussion

The principal aim of this investigation was to synthesize the complete set of ${ }^{13} \mathrm{C}_{4}$-labelled oxidized metabolites of BaP needed as internal standards for a stable isotope dilution LC/MS method for their analysis. ${ }^{15}$ The BaP metabolites were divided into two groups (A and B) on the basis of their role in carcinogenesis. Group A includes the BaP metabolites that have no role in carcinogenesis [1-HO-, 2- HO-, 3- HO-, 9- HO-, and 12-HO-BaP, BaP-1,6-dione (6) and BaP-3,6-dione (7)] (Fig. 1), and the BaP metabolites in Group B

3a: $R-H ; b: R=A c$

Scheme 7.
are those implicated in initiation of cancer [BaP 7,8-diol (1), BaP 7,8dione (2), BaP 7,8-catechol (diacetate) (3), (\pm)-anti-BPDE (4), and (\pm)-syn-BPDE (5)] (Fig. 1), plus 8- and 9-HO-BaP.

3.1. Synthesis of ${ }^{13} C_{4}$-labelled oxidized metabolites of BaP

This paper reports efficient syntheses of BaP and its oxidized metabolites in Groups A and B and their ${ }^{13} C_{4}$-labelled analogues. The synthetic design was influenced by: (1) the cost of the available ${ }^{13} \mathrm{C}$-labelled precursors; (2) the advantage of introducing the ${ }^{13} \mathrm{C}$ atoms late in the sequence; (3) the need to minimize the number of synthetic steps; and (4) the need for operational simplicity.

The Group A metabolites were synthesized via Method A (Suzuki, Sonogashira, and Hartwig cross-coupling reactions in combination with PtCl_{2}-catalyzed cyclization of an acetylenic intermediate) (Scheme 1). The Group B metabolites were synthesized via Method B (Suzuki and Sonogashira cross-coupling reactions combined with PtCl_{2}-catalyzed cyclization of a diacetylenic intermediate) (Scheme 8). The use of Suzuki cross-coupling for synthesis of biphenyls and other PAHs has been described, ${ }^{16,31}$ and the use of Sonogashira cross-coupling for synthesis of substituted phenanthrenes and terphenyls was reported. ${ }^{18,32}$

Synthesis of PAHs by transition metal-catalyzed cross-coupling chemistry has advantages over their synthesis via conventional Friedel-Crafts chemistry. ${ }^{1 \mathrm{~b}, 33,34}$ This approach requires fewer steps, employs milder reaction conditions (no Lewis acid catalysts), isomeric coproducts are not formed, and purification of products is relatively simple and straightforward.

The only compounds synthesized by both methods were BaP, 8-HO-BaP (37c), and their ${ }^{13} C_{4}$-labelled analogues (${ }^{13} C_{4}$-BaP and ${ }^{13} C_{4}$ 37c). The synthesis of BaP by Method A requires eight steps (Scheme 1), whilst its synthesis by Method B requires only four steps (Scheme 6). Synthesis of the ${ }^{13} \mathrm{C}_{4}$-labelled analogues of BaP and 37 c by Method A affords ${ }^{13} C_{4}$-BaP and ${ }^{13} C_{4}-37 \mathrm{c}$ (with ${ }^{13} \mathrm{C}$ at $\mathrm{C}-4,-5,-5 \mathrm{a}$, and -6) (Scheme 4), whilst their synthesis by Method B affords the

${ }^{13} C_{4}-\mathbf{B} a \mathbf{P}$

${ }^{13} C_{4}-1$

${ }^{13} C_{4}-37 \mathrm{c}$

${ }^{13} C_{4}-37 \mathrm{e}$

${ }^{13} C_{4}-3$

${ }^{13} C_{4}$-BaP tetraols

Fig. 3. ${ }^{13} C_{4}$-labelled BaP metabolites synthesized by Method B (${ }^{*}$ sites of ${ }^{13} C$-atoms).

40a: $R=R_{1}=H ; R^{\prime}=\mathrm{SiMe}_{3}$

b: $R=R_{1}=R^{\prime}=H$
c: $\mathrm{R}=\mathrm{OMe} ; \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{SiMe}_{3}$
d: R = OMe; $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{H}$
e: $R=H ; R_{1}=O M e ; R^{\prime}=\mathrm{SiMe}_{3}$
f: $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}^{\prime}=\mathrm{H}$

37a: $R=R_{1}=H$
b: $\mathrm{R}=\mathrm{OMe}$; $\mathrm{R}_{1}=\mathrm{H}$
c: $R=O H ; R_{1}=H$
d: $R=H ; R_{1}=O M e$
e: $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{OH}$
Scheme 8.

Scheme 9.
isotopomers (with ${ }^{13} \mathrm{C}$ at C-4, $-5,-11$, and -12) (Fig. 3). Method B has the major advantage that all four ${ }^{13} \mathrm{C}$-atoms are introduced simultaneously in a single step. The ease of synthesis of ${ }^{13} C_{4}-37 \mathrm{c}$ via this route combined with the fact that ${ }^{13} \mathrm{C}_{4}-37 \mathrm{c}$ is a convenient synthetic precursor of all the ${ }^{13} C_{4}$-labelled active metabolites $\left({ }^{13} C_{4}-\mathbf{1},{ }^{13} C_{4}-\mathbf{2}\right.$, ${ }^{13} C_{4}-3,{ }^{13} C_{4}-4$, and ${ }^{13} C_{4}-5$) (Scheme 9) makes these compounds now all of them readily available for research in carcinogenesis.

3.2. Comparison with the syntheses of the ${ }^{13} C_{6}$-labelled BaP metabolites

Synthesis of ${ }^{13} C_{6}$-labelled analogues of several Group B BaP metabolites (1, 4, 5, and BaP tetraols) was reported by Diel et al. ${ }^{35}$ Their synthetic approach entailed multistep synthesis of ${ }^{13} C_{6}$-pyrene from ${ }^{13} C_{6}$-benzene followed by its use as starting compound for synthesis of ${ }^{13} C_{6}$-9,10-dihydro-BaP (42) (Fig. 4) by Friedel-Crafts chemistry. ${ }^{1 \text { b,33,34 }}$

Fig. 4. ${ }^{13} C_{6}-9,10$-Dihydro-BaP was obtained as a mixture of isotopomers (42A and 42B) that were transformed into the (\pm)-dihydrodiols (${ }^{13} C_{6}-\mathbf{1 A}$ and ${ }^{13} C_{6}-\mathbf{1 B}$), and they were converted into the anti- and syn-(\pm)-diol epoxides (only the anti-isomers, ${ }^{13} C_{6}-\mathbf{4 A}$ and ${ }^{13} C_{6}-\mathbf{4 B}$, are shown). Sites of ${ }^{13} C$-atoms are indicated by asterisks ${ }^{4} *$.

As a consequence of the symmetry of ${ }^{13} C_{6}$-pyrene, 42 was obtained as a pair of isotopomers (42A and 42B) each possessing six ${ }^{13} \mathrm{C}$-atoms, but in different aromatic rings (Fig. 4). This mixture was converted into the mixed ${ }^{13} C_{6}$-BaP 7,8-diol isotopomers $\left({ }^{13} C_{6}-\mathbf{1 A}\right.$ and $\left.{ }^{13} C_{6}-\mathbf{1 B}\right)$, and this was further transformed into the mixed ${ }^{13} C_{6}$-(\pm)-anti-BPDEs (${ }^{13} C_{6}-4 A$ and $\left.{ }^{13} C_{6}-4 B\right)$ by the established methods. The ${ }^{13} C_{6}-(\pm)$-syn-BPDEs (structures not shown) and the mixed ${ }^{13} C_{6}$-tetraols (from hydrolysis of the anti- and synBPDEs) were also prepared. The principal drawbacks to the use of these ${ }^{13} C_{6}$-labelled BaP analogues in biological studies are the large number of synthetic steps required, the ${ }^{13} C_{6}$-BaP metabolites are mixtures of isotopomers, and many of the likely ${ }^{13} C_{6}$ - BaP metabolites (e.g., those in Group A) are not obtainable by this approach.

4. Conclusions

This paper reports efficient syntheses of the complete set of oxidized metabolites of the prototypical carcinogenic PAH BaP (Group A and Group B metabolites) and their ${ }^{13} C_{4}$-labelled analogues. The synthetic ${ }^{13} \mathrm{C}_{4}$-BaP metabolites were required as standards for quantitation of the metabolic profiles of BaP in human bronchoalveolar (H358) cells by stable isotope dilution liquid chromatography. ${ }^{15}$ The syntheses of these polycyclic aromatic molecules were accomplished by a novel approach based on use of Pd-catalyzed Suzuki, Sonogashira, and Hartwig cross-coupling reactions in combination with PtCl_{2}-catalyzed cyclization of acetylenic intermediates. This method requires fewer steps, employs milder conditions, and product isolation is simpler than the conventional methods of PAH synthesis based on Friedel-Crafts chemistry. It is also potentially applicable to the synthesis of a broad range of other PAH compounds and their ${ }^{13} \mathrm{C}$-labelled analogues.

5. Experimental section

5.1. Caution

Benzo[a]pyrene (BaP) has been designated a human carcinogen by the World Health Organization. ${ }^{2}$ It should be handled with caution following procedures recommended in the NIH Guidelines for the Laboratory Use of Chemical Carcinogens. Although the oxidized metabolites of BaP are not included in the official list of carcinogens, prudence suggests that they should also be handled with caution.

5.2. Synthesis of $1-, 2-$, and $3-\mathrm{HO}-\mathrm{BaP}$ (14b, 14d, and 14f) and their ${ }^{13} C_{4}$ analogues

These phenols were synthesized by Pd-catalyzed Suzu-ki-Miyaura cross-coupling of $\mathbf{8}$ with the 2-boronate esters of 5-, 6-, and 7-methoxynaphthalene (9a, 9b, or $\mathbf{9 c}$) (Scheme 1).
5.2.1. 2-(2-Bromophenyl)-7-methoxynaphthalene (10c). To a solution of $\operatorname{Pd}(\mathrm{OAc})_{2}(101 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{PPh}_{3}(354 \mathrm{mg}, 1.35 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20.0 \mathrm{mmol})$ in DME $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ at room temperature under argon was added 9c ($3.0 \mathrm{~g}, 11 \mathrm{~mol}$). The resulting solution was stirred for 10 min , then $\mathbf{8}(2.83 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added, and the solution was heated at reflux for 23 h and monitored by TLC. The resulting solution was cooled to room temperature, EtOAc (100 mL) was added, and the solution was washed with a saturated brine solution and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Following evaporation of the solvent under reduced pressure, the residue was purified by chromatography on a silica gel column eluted with hexane/EtOAc (150:1) to yield 10c ($2.84 \mathrm{~g}, 91 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dt}, J=7.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 3 \mathrm{H})$, 3.97 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,142.7,139.1,134.2$, 133.1, 131.4, 129.2, 128.7, 128.1, 127.3, 127.1. 125.3, 122.7, 119.1, 106.0, 55.3; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+} 313.0223$, found 313.0225.
5.2.2. 2-(2-Bromophenyl)-5-methoxynaphthalene (10a). Reaction of 9a with 8 gave 10a (70%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43$ (d , $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.66 (dd, $J=8.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.57$ (m, 4H), 7.66 (td, $J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) δ 155.5, 142.6, 139.1, 134.1, 133.1, 131.5, 128.8, 127.8, 127.4, 126.9, 126.4, 124.7, 122.8, 121.7, 120.4, 104.2, 55.5; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$313.0223, found 313.0253.
5.2.3. 2-(2-Bromophenyl)-6-methoxynaphthalene (10b). Reaction of $\mathbf{9 b}$ with $\mathbf{8}$ gave 10b. Yield: 68% : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.50 (m, 2H), 7.20-7.30 (m, 3H), $3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 158.0,142.6,136.4,133.8,133.1,131.5,129.6$, 128.6, 128.5, 128.05, 128.02, 127.4, 126.2, 122.9, 119.1, 105.6, 55.3; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$313.0223, found 313.0248.
5.2.4. Ethyl 2-(7-methoxynaphthalenyl)phenylacetate (11b). To a solution of $\mathbf{1 0 c}$ ($156 \mathrm{mg}, 0.5 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(14.5 \mathrm{mg}, 0.025 \mathrm{mmol})$,
and Q-phos ($18 \mathrm{mg}, 0.025 \mathrm{mmol}$) in THF (0.5 mL) was added $\mathrm{ZnBrCH} 2 \mathrm{CO}_{2} \mathrm{Et}(1 \mathrm{M}$ in $\mathrm{THF}, 1.5 \mathrm{~mL}$) dropwise at room temperature under argon. The resulting mixture was stirred for 2 h , monitored by TLC, and diluted with $\operatorname{EtOAc}(20 \mathrm{~mL})$. After evaporation of the solvent, the residue was purified by chromatography on a silica gel column. Elution with hexane/EtOAc (40:1 to 20:1) gave 11b (147 mg, 92\%): ${ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=8.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,157.9,142.5,138.1,134.3,132.0,130.29,130.25,129.1$, $127.8,127.5,127.4,127.1,126.9,125.3,118.8,105.8,60.6,55.2,39.0$, 14.0; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 321.1485$, found 321.1483.
5.2.5. Ethyl ${ }^{13} C_{2}$-2-(7-methoxynaphthalenyl)phenylacetate $\left({ }^{13} C_{2}\right.$ 11b). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=8.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (s, 3H), 3.68 (dd, $J=129.0$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.20(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0(\mathrm{~d}$, $J=228.0 \mathrm{~Hz}), 39.0(\mathrm{~d}, J=228.0 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}$345.1372, found 345.1349.
5.2.6. Ethyl 2-(5-methoxynaphthalenyl)phenylacetate (11d). Reaction of 10a with $\mathrm{ZnBrCH} \mathrm{CO}_{2} \mathrm{Et}$ gave $\mathbf{1 1 d}(93 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.89$ (dd, $J=6.5$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, 2 H), $1.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,155.4$, $142.4,139.1,134.2,132.0,130.31,130.26,127.6,127.5,127.1,126.8$, 126.3, 124.5, 121.9, 120.2, 103.9, 60.6, 55.5, 38.9, 14.0; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$343.1305, found 343.1330.
5.2.7. Ethyl 2-(6-methoxynaphthalenyl)phenylacetate (11f). Reaction of 10b with $\mathrm{ZnBrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ afforded $\mathbf{1 1 f}(90 \%)$: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H})$, 4.10 (q, J=7.0 Hz, 2H), 3.98 (s, 3H), 3.67 (s, 2H), 1.20 (t, J=7.0 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,157.9,142.5,136.4,133.6,132.2$, 130.5, 130.4, 129.6, 128.7, 128.1, 127.9, 127.5, 127.2, 126.6, 119.2, 105.6, 60.8, 55.4, 39.1, 14.2; HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 321.1485$, found 321.1517.
5.2.8. 2-(7-Methoxynaphthalenyl)phenylacetic acid (11c). To a solution of $11 \mathbf{b}(467 \mathrm{mg}, 1.46 \mathrm{mmol})$ in $\mathrm{EtOH}(18 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added NaOH ($175 \mathrm{mg}, 4.38 \mathrm{mmol}$). The resulting mixture was heated at reflux for 1 h , and reaction was monitored by TLC. This was evaporated to dryness, and the residue was diluted with water (50 mL), and acidified with $37 \% \mathrm{HCl}$. The solid was filtered off, and dried to provide $11 \mathrm{c}(385 \mathrm{mg}, 90 \%)$: ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 8.02-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}$, 5 H), 7.19 (dd, $J=9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO- d_{6}) $\delta 173.3,158.1,142.4,139.4,134.6,133.2$, 131.3, 130.3, 129.6, 127.9, 127.4, 127.0, 125.4, 119.2, 106.7, 55.7; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}]^{+}$292.1094, found 292.1061.

5.2.9. 2-(5-Methoxynaphthalenyl)phenylacetic

acid
(11e). Hydrolysis of 11d gave 11e (92\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{dd}$, $J=5.5$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO-d d_{6}) $\delta 173.2,155.3,142.1,139.3,134.3,133.1,131.4$, 130.3, 128.0, 127.7, 127.5, 127.2, 127.0, 124.2, 121.9, 120.6, 105.1, 56.1, 39.1; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$293.1172, found 293.1143.
5.2.10. 2-(6-Methoxynaphthalenyl)phenylacetic acid (11g). Hydrolysis of $\mathbf{1 1 f}$ gave $\mathbf{1 1 g}$ (90%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz ,

DMSO- d_{6}) $\delta 173.3,157.9,142.3,136.5,133.7,133.1,131.3,130.5,129.9$, 128.7, 128.2, 127.83, 127.75, 127.4, 127.0, 119.5, 106.2, 55.7, 39.1; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$293.1172, found 293.1143.
5.2.11. ${ }^{13} \mathrm{C}_{2}$-2-(7-Methoxynaphthalenyl)phenylacetic acid $\quad\left({ }^{13} \mathrm{C}_{2}\right.$ 11c). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}$) $\delta 12.23$ (br s, 1H), 8.00-7.83 (m, 2H), $7.87(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=128.5$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO- d_{6}) $\delta 173.2(\mathrm{~d}, J=218.0 \mathrm{~Hz}), 39.0(\mathrm{~d}, J=218.0 \mathrm{~Hz}) ;$ HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$295.1239, found 295.1211.
5.2.12. 3-Methoxychrysen-5-ol (12e). A suspension of 11c (292 mg , 1 mmol) in $\mathrm{MeSO}_{3} \mathrm{H}$ was heated at $50^{\circ} \mathrm{C}$ for 1 h and monitored by TLC, then cooled to room temperature, and poured onto crushed ice $(50 \mathrm{~g})$. The solid was filtered off, and dissolved in EtOAc (50 mL). The solution was washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent under reduced pressure, the residue was chromatographed on a silica gel column. Elution with hexane/EtOAc ($10: 1$ to $5: 1$) gave 12e ($221 \mathrm{mg}, 77 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 9.79$ (s, 1H), $9.62(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.78 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.72$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, 1 H), 7.99 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.45$ (m, 3 H), 7.33 (dd, $J=8.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}\right.$, acetone $-d_{6}$) $\delta 158.1,154.4,133.3,132.2,131.5,129.3$, 128.1, 127.9, 126.8, 126.1, 126.0, 123.7, 123.4, 119.0, 116.6, 110.2, 108.6, 54.7; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$275.1067, found 275.1062.
5.2.13. ${ }^{13} \mathrm{C}_{2}$-3-Methoxychrysen-5-ol (${ }^{13} \mathrm{C}_{2}$-12e). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}) 10.87 ($\mathrm{s}, 1 \mathrm{H}$), 9.51 ($\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.78 ($\mathrm{d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.72$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33$ (dd, $J=9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, DMSO-d d_{6}) $\delta 154.9$ (d, $J=277.5 \mathrm{~Hz}$), 108.7 (d, $J=277.5 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}$276.1055, found 276.1056.
5.2.14. 1-Methoxychrysen-5-ol (12a). Similar acid-catalyzed cyclization of 11e gave 12a (80\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 9.66$ ($\mathrm{s}, 1 \mathrm{H}$), 9.65 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.86 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.81 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.49$ (m, 4H), 7.17 (d, J=7.5 Hz, 1H), $4.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone $-d_{6}$) $\delta 155.2,154.3,133.2,131.9,131.3,126.8,126.2,126.01$, 125.96, 124.3, 123.8, 123.4, 121.5, 121.4, 120.5, 109.0, 108.9, 105.2, 55.2; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$275.1067, found 275.1091.
5.2.15. ${ }^{13} \mathrm{C}_{2}$-1-Methoxychrysen-5-ol $\left({ }^{13} \mathrm{C}_{2}\right.$-12a). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, acetone $-d_{6}$) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 9.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 1 \mathrm{H})$, $7.65-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone- d_{6}) $\delta 154.8(\mathrm{~d}, J=277.5 \mathrm{~Hz}), 109.1(\mathrm{~d}, J=277.5 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$277.1134, found 277.1093.
5.2.16. 2-Methoxychrysen-5-ol (12c). Acid-catalyzed cyclization of 11g gave 12c (87\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 9.98$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.66(\mathrm{~s}, 1 \mathrm{H}), 8.82$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.76$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.40(\mathrm{~m}, 4 \mathrm{H})$, 7.32 (dd, $J=9.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone- d_{6}) δ 157.7, 153.9, 134.9, 132.7, 130.8, 129.6, 127.9, 126.3, 126.2, 126.0, 125.4, 123.8, 123.0, 121.8, 121.4, 117.0, 109.0, 107.6, 54.7; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$275.1067, found 275.1085.
5.2.17. ${ }^{13} C_{2}$-2-Methoxychrysen-5-ol $\left({ }^{13} C_{2}\right.$-12c). This unstable compound was used directly.
5.2.18. 3-Methoxychrysen-5-ol trifluoromethanesulfonate (12f). To a solution of $\mathbf{1 2 e}(180 \mathrm{mg}, 0.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added pyridine ($103 \mathrm{mg}, 1.3 \mathrm{mmol}$), and the mixture was stirred for

10 min at room temperature. Then $\mathrm{Tf}_{2} \mathrm{O}(275 \mathrm{mg}, 0.98 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$, and the mixture was warmed to room temperature, and stirred overnight. Then it was diluted with diethyl ether (50 mL), filtered, and the filtrate was washed with brine and water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was purified by chromatography on a silica gel column eluted with hexane/EtOAc (40:1) to yield 12 f (188 mg , 70%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.92-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.34$ (dd, $J=8.5$ and 2.5 Hz , $1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.6, 145.8, 132.1, 130.7, 130.0, 129.8, 129.35, 129.28, 128.4, 128.0, 127.7, 127.6, 123.5, 120.7, 119.2, 118.72, 118.67 ($\mathrm{q}, J=1277.5 \mathrm{~Hz}$), 118.2; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$429.0379, found 429.0365.
5.2.19. ${ }^{13} C_{2}$-3-Methoxychrysen-5-ol trifluoromethanesulfonate (${ }^{13} \mathrm{C}_{2}$ 12f). This unstable compound was used directly in the next step.
5.2.20. 1-Methoxychrysen-5-ol trifluoromethanesulfonate (12b). Esterification of 12a by a similar procedure gave 12b (75%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80-8.75(\mathrm{~m}, 2 \mathrm{H}), 8.69(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, 1 H), 8.61 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.98 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (s, 1H), $7.80-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,145.6,131.9,130.8,129.7,129.2,128.4$, 127.9, 127.7, 127.3, 124.7, 123.6, 123.1, 121.3, 120.0, 119.8, 119.4, 118.7 (q, $J=1277.0 \mathrm{~Hz}$), 106.0, 55.8; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 407.0559, found 407.0575.
5.2.21. ${ }^{13} C_{2}$-1-Methoxychrysen-5-ol trifluoromethanesulfonate (${ }^{13} C_{2}$ 12b). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.77$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.73$ (d, $J=9.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18-7.78$ (m, 3H), 7.78-7.62 (m, 2H), 7.10 (d, J=8.0 Hz, 1H), 4.11 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6$ (d, $J=308.0 \mathrm{~Hz}$), 120.1 (d , $J=308.0 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}$-labelled $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$ 408.0553, found 408.0536.
5.2.22. 2-Methoxychrysen-5-ol trifluoromethanesulfonate (12d). Esterification of 12c gave 12d (76%): ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=9.5$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~s}, 3 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,145.3,134.9$, $130.3,130.2,129.8,128.9,128.7,128.5,127.9,127.2,123.2,122.6$, 121.7, 121.2, 120.1, 118.7 (q, $J=1276.0 \mathrm{~Hz}$), 118.0, 108.2, 55.4; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$407.0559, found 407.0588.
5.2.23. 3-Methoxy-5-(trimethylsilylethynyl)chrysene (13e). To a solution of $\mathbf{1 2 f}$ ($406 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (15 mL) were added $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($35 \mathrm{mg}, 0.05 \mathrm{mmol}$), CuI ($9.5 \mathrm{mg}, 0.05 \mathrm{mmol}$), TEA (1.3 mL), (trimethylsilyl)acetylene ($120 \mathrm{mg}, 1.2 \mathrm{mmol}$) under argon. The mixture was stirred for 2 h at room temperature and monitored by TLC. It was then diluted with EtOAc (100 mL), washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Following evaporation of the solvent under vacuum, the residue was chromatographed on a silica gel column. Elution with hexane/EtOAc (120:1) gave 13e ($334 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}$, $1 \mathrm{H}), 8.00-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.62(\mathrm{~m}, 2 \mathrm{H})$, 7.34 (dd, $J=8.5$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 157.8,137.5,132.2,130.9,130.5,129.7,129.4$, 127.94, 127.88, 127.7, 127.6, 126.8, 126.1, 123.3, 118.8, 117.5, 117.4, 108.7, 108.1, 99.7, 55.9, 0.12; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$ 354.1440 , found 354.1454 .
5.2.24. ${ }^{13} C_{4}$-3-Methoxy-5-(trimethylsilylethynyl)chrysene $\quad\left({ }^{13} C_{4}\right.$ 13e). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95$ (s, 1H), 8.73 (d, J=8.5 Hz,
$1 \mathrm{H}), 8.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ (dd, $J=99.5$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.62$ (m, 2H), 7.34 (dd, $J=9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (s, 3 H), 0.38 (d, $J=2.5 \mathrm{~Hz}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5$ (dd, $J=251.0$ and 9.5 Hz), 117.5 (ddd, $J=331.5,251.0$, and 36.0 Hz), 108.6 (dd, $J=542.0$ and 331.5 Hz), 99.7 (ddd, $J=542.0,36.0$, and 9.5 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 358.1575$, found 358.1580 .
5.2.25. 1-Methoxy-5-(trimethylsilylethynyl)chrysene (13a). Synthesis from 12b by the foregoing procedure gave 13a (90\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.80-8.60(\mathrm{~m}, 2 \mathrm{H}), 8.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (s, 1H), 7.93 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,136.8,132.1,130.9,130.5,129.6$, 128.0, 127.7, 126.9, 126.8, 125.3, 124.5, 123.4, 121.8, 120.4, 119.4, 117.9, 108.6, 105.5, 99.6, 55.8, -0.11 ; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$ 354.1440, found 354.1460.
5.2.26. ${ }^{13} C_{4}$-1-Methoxy-5-(trimethylsilylethynyl)chrysene $\quad\left({ }^{13} C_{4}\right.$ 13a). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.73$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (dd, $J=162.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}$, 3 H), 0.40 (d, $J=2.5 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8$ (dd, $J=252.5$ and 10.0 Hz), 117.8 (ddd, $J=332.5,252.5$, and 36.0 Hz), 108.5 (dd, $J=543.0$ and 332.5 Hz), 99.6 (ddd, $J=543.0,36.0$, and 10.0 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right) 358.1575$, found 358.1560 .
5.2.27. 2-Methoxy-5-(trimethylsilylethynyl)chrysene (13c). Synthesis from 12d by the foregoing procedure gave 13c (92\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.46(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1H), 7.88 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (t, $J=7.5 \mathrm{~Hz}$, 1H), $7.38-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0,136.8,134.7,130.7,130.5,128.7,128.0$, 127.8, 127.70, 127.68, 127.3, 126.4, 125.7, 123.0, 121.7, 117.3, 116.3, 108.6, 107.4, 99.5, 55.4, -0.07; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$ 354.1440, found 354.1426.
5.2.28. 3-Methoxy-5-ethynylchrysene (13f). To a solution of 13e $(124 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF (3.6 mL) and $\mathrm{MeOH}(3.6 \mathrm{~mL}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(75 \mathrm{mg}, 0.54 \mathrm{mmol})$. The resulting mixture was stirred for 1 h at room temperature and monitored by TLC. Evaporation of the solvent under reduced pressure and chromatography of the residue on a silica gel column eluted with hexane/EtOAc (40:1) gave 13f (94 mg, 92\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.87(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H})$, $8.00-7.7 .82(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.04(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,137.3,132.0,130.7,130.6,129.7,129.5$, 128.0, 127.9, 127.74, 127.70, 126.8, 126.4, 123.3, 118.7, 117.9, 116.3, 107.2, 87.1, 82.1, 55.6; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$282.1045, found 282.1056.
5.2.29. ${ }^{13} C_{4}$-3-Methoxy-5-ethynylchrysene $\quad\left({ }^{13} C_{4}-\mathbf{1 3 f}\right) .{ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.89$ ($\mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}$), $8.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.60$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (dd, $J=162.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.85$ (m, $3 \mathrm{H}), 7.75-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H})$, 4.00-3.30 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3$ (dd, $J=253.0$ and 11.5 Hz), 116.3 (ddd, $J=347.0,253.0$, and 53.5 Hz), 87.2 (dd, $J=704.5$ and 347.0 Hz), 82.0 (ddd, $J=704.5,53.5$, and 11.5 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 286.1178, found 286.1190.
5.2.30. 1-Methoxy-5-ethynylchrysene (13b). Similar reaction of 13a gave 13b (95\%): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$,
8.73 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.37(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.55$ (m, 2H), $7.06(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,137.6,132.0,130.9,130.6,129.6,127.9$, 127.8, 126.9, 126.8, 125.7, 124.5, 123.4, 121.9, 120.4, 119.1, 116.8, 105.5, 86.9, 82.5, 55.8; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right) 282.1045$, found 282.1069.
5.2.31. ${ }^{13} C_{4}$-1-Methoxy-5-ethynylchrysene $\quad\left({ }^{13} C_{4}-\mathbf{1 3 b}\right) .{ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.73 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ (dd, $J=162.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.08$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.98-3.30(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5$ (dd, $J=253.0$ and 11.5 Hz), 116.8 (ddd, $J=346.5,253.0$, and 55.5 Hz), 86.8 (dd, $J=706.0$ and 346.5 Hz), 82.3 (ddd, $J=706.0,55.5$, and 11.5 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}$ $\left(\mathrm{M}^{+}\right)$286.1178, found 286.1167.
5.2.32. 2-Methoxy-5-ethynylchrysene (13d). Similar reaction of 13c gave 13d (90\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.34(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H})$, $7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 158.0, 137.6, 134.6, 130.8, 130.4, 128.3, 128.0, 127.83, $127.81,127.78,127.3,126.5,125.6,123.0,121.7,116.6,116.2,107.7$, 86.8, 82.4, 55.4; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1117, found 283.1116.
5.2.33. 3-Methoxybenzo[alpyrene (14e). To a solution of $\mathbf{1 3 f}$ $(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ in toluene (5.2 mL) was added $\mathrm{PtCl}_{2}(9 \mathrm{mg}$, 0.035 mmol). The resulting mixture was heated overnight at $80^{\circ} \mathrm{C}$. After evaporation of the solvent under reduced pressure, the residue was purified by chromatography on a column of silica gel. Elution with hexane/EtOAc (40:1) gave $\mathbf{1 4 e}\left(70 \mathrm{mg}, 70 \%\right.$). The ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{e}$ matched that of an authentic sample.
5.2.34. ${ }^{13} \mathrm{C}_{4}$-3-Methoxybenzo[alpyrene $\quad\left({ }^{13} \mathrm{C}_{4}\right.$-14e). ${ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.88 (d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.65-7.72(\mathrm{~m}, 8 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.3$ (dd, $J=247.0$ and 219.0 Hz), 127.0 (ddd, $J=255.0,219.0$, and 8.0 Hz), 123.5 (ddd, $J=247.0,26.0$ and 8.0 Hz), 121.3 (ddd, $J=255.0,26.0$, and 8.0 Hz); HRMS calcd for ${ }^{13} C_{4}$-labelled $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}\left(\mathrm{M}^{+}\right)$286.1178, found 286.1198.
5.2.35. 1-Methoxybenzo[a]pyrene (14b). Analogous PtCl_{2}-catalyzed reaction of $\mathbf{1 3 b}$ gave $\mathbf{1 4 b}(65 \%)$. The NMR spectral data matched that of an authentic sample.
5.2.36. ${ }^{13} C_{4}$-1-Methoxybenzo[a]pyrene $\quad\left({ }^{13} C_{4}\right.$-14b). ${ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05-8.95(\mathrm{~m}, 2 \mathrm{H}), 8.69(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.59-8.22$ (m, 2H), 8.04-7.92 (m, 2H), 7.82-7.75 (m, 2H), 7.68-7.62 $(\mathrm{m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , CDCl_{3}) $\delta 130.3$ (ddd, $J=249.0,212.5$ and 3.5 Hz), 127.0 (ddd, $J=256.0$, 26.0 , and 3.5 Hz), 125.5 (ddd, $J=256.0,212.5$ and 8.0 Hz), 123.8 (ddd, $J=249.0,26.0$, and 8.0 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 286.1178, found 286.1167.

5.3. Synthesis of 9-HO-BaP (21b) (Scheme 2)

5.3.1. 2-(2-Bromo-4-methoxyphenyl)naphthalene (18). Pd-catalyzed coupling of $\mathbf{1 5}$ with $\mathbf{1 6}$ by the method for preparation of $\mathbf{1 0 c}$ gave 2-(2-bromo-5-methoxyphenyl)naphthalene (17) (78\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (q, J=3.0 Hz, 2H), 7.55 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dd, $J=8.5$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.9, 143.4, 138.7, 133.8, 133.1, 132.7, 128.23, 128.21, 127.8, 127.6,
127.5, 126.3, 117.0, 114.9, 113.3, 55.6; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}$ $[\mathrm{M}+\mathrm{H}]^{+} 313.0223$, found 313.0205.
5.3.2. Ethyl2-(napththalen-2-yl)-5-methoxyphenyl acetate(18a). Pdcatalyzed coupling of $\mathbf{1 7}$ with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ with 16 gave $\mathbf{1 8 a}(90 \%)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.41$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.65(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3$, 158.6,143.6,138.8, 133.3,132.6,131.6,128.14,128.05,127.9,127.8,127.6, 126.4, 126.2, 124.5, 115.7, 113.5, 60.7, 55.4, 38.3, 14.2; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$321.1485, found 321.1472.
5.3.3. Ethyl ${ }^{13} \mathrm{C}_{2}$-2-(napththalen-2-yl)-5-methoxyphenyl acetate $\left({ }^{13} \mathrm{C}_{2}-18 a\right) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.89(\mathrm{~m}, 4 \mathrm{H})$, $7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.09$ (qd, $J=7.0$ and $4.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.56$ (dd, $J=127.0$ and 8.0 Hz , $2 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2$ (d, $J=229.0 \mathrm{~Hz}$), $38.2(\mathrm{~d}, J=229.0 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}$ $[\mathrm{M}]^{+}$322.1477, found 322.1514.
5.3.4. 2-(Napththalen-2-yl)-5-methoxyphenylacetic acid (18b). Hydr olysis of 18a by the procedure for preparation of 11c gave 18b (91\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 9.30$ (br s, 1H), 7.98-7.80 (m, 4H), $7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, 3H), 3.65 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone- d_{6}) $\delta 173.3,158.7$, 143.5, 139.0, 133.4, 132.6, 132.0, 128.1, 127.9, 127.8, 127.7, 127.5, 126.4, 126.2, 124.7, 115.4, 113.3, 54.5, 37.5; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 315.0992$, found 315.0966.
5.3.5. ${ }^{13} \mathrm{C}_{2}$-2-(Napththalen-2-yl)-5-methoxyphenylacetic acid (${ }^{13} \mathrm{C}_{2}$ 18b). ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 10.62$ (br s, 1H), 8.10-7.90 $(\mathrm{m}, 3 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0$ and 4.0 Hz , $1 \mathrm{H}), 6.98$ (dd, $J=8.5$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, 3 H), 3.57 (dd, $J=128.0$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO- d_{6}) $\delta 173.5$ (d, $J=218.5 \mathrm{~Hz}$), 38.2 ($\mathrm{d}, J=218.5 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$295.1239, found 295.1220.
5.3.6. 3-Methoxychrysen-11-ol (19a). Acid-catalyzed cyclization of 18b by the method for preparation of 12e gave 19a (52\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$) $\delta 10.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.84$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.5$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone- d_{6}) $\delta 156.8,152.5,133.1,131.0$, 130.2, 129.3, 128.1, 127.95, 127.92, 127.5, 127.1, 126.1, 126.0, 121.7, 121.4, 118.3, 109.2, 103.7, 54.9; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$ 274.0994, found 274.0976.
5.3.7. ${ }^{13} \mathrm{C}_{2}$-3-Methoxychrysen-11-ol (${ }^{13} \mathrm{C}_{2}$-19a). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$, $8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=155.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.06$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9$ (d, $J=286.5 \mathrm{~Hz}$), 109.7 (d, $J=286.5 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 277.1134$, found 277.1161.
5.3.8. 3-Methoxychrysen-11-ol triflate (19b). Esterification of 19a with triflic anhydride and pyridine gave 19b (72\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00-7.60(\mathrm{~m}, 7 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,143.7,133.1,131.2,130.4,129.8$, 129.0, 128.7, 128.1, 127.2, 127.1, 127.0, 125.4, 121.8, 120.5, 119.9, 118.8, 118.7 (q, $J=1276.5 \mathrm{~Hz}$), 103.8, 55.4 ; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$407.0559, found 407.0542.
5.3.9. ${ }^{13} \mathrm{C}_{2}$-3-Methoxychrysen-11-ol triflate $\left({ }^{13} \mathrm{C}_{2}-\mathbf{3 - 1 9 b}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.10-7.60(\mathrm{~m}, 7 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8(\mathrm{~d}, J=308.0 \mathrm{~Hz}$), $120.0(\mathrm{~d}, J=308.0 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}$-labelled $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$408.0553, found 408.0555.
5.3.10. ((9-Methoxychrysen-5-yl)ethynyl)trimethylsilane (20a). Sonogashira coupling of 19b with (trimethylsilyl)acetylene afforded 20a (90\%): ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ ($500 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$) $\delta 10.70-10.55(\mathrm{~m}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, $8.00-7.85$ (m, 3H), 7.82 (d, J=8.5 Hz, 1H), 7.73-7.64 (m, 2H), 7.28 (d, J=8.5 Hz, 1H), 4.03 (s, 3H), $0.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , CDCl_{3}) $\delta 159.3,136.6,133.0,132.0,131.1,129.6,128.4,128.1,127.9$, 127.6, 127.1, 126.6, 126.0, 125.3, 121.2, 118.0, 115.0, 108.8, 103.6, 98.8, 55.5, -0.03 ; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right) 354.1440$, found 354.1446 .
5.3.11. ${ }^{13} C_{4}$-((9-Methoxychrysen-5-yl)ethynyl)trimethylsilane (${ }^{13} \mathrm{C}_{4}$ 20a). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.70-10.55$ (m, 1H), $8.62(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=162.0$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.95(\mathrm{~m}, 3 \mathrm{H})$, $7.86(\mathrm{dd}, J=8.5$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.6$ (dd, $J=251.5$ and 10.0 Hz), 115.0 (ddd, $J=334.0,251.5$, and 37.0 Hz), 108.6 (dd, $J=541.0$ and 334.0 Hz), 98.8 (ddd, $J=541.0,37.0$, and 10.0 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}$ $\left(\mathrm{M}^{+}\right)$358.1575, found 358.1583.
5.3.12. 5-Ethynyl-9-methoxychrysene (20b). Removal of the trimethylsilyl group of 20a gave 20b (92\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.43$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H})$, $8.00-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.27$ (dd, $J=8.5$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (s, 3H), 3.67 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,137.3,132.9,132.1,130.9,129.6,128.4$, 128.2, 127.9, 127.6, 126.8, 126.6, 125.9, 125.7.121.1, 118.1, 113.9, 103.6, 87.0, 81.9, 55.5; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.1117, found 283.1105.
5.3.13. ${ }^{13} C_{4}$-5-Ethynyl-9-methoxychrysene $\quad\left({ }^{13} C_{4}-20 b\right) .{ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32$ (dd, $J=162.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.95$ (m, 3H), 7.86 (dd, $J=8.5$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.5 \mathrm{and} 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (s , 3H), 3.99-3.30 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3$ (dd, $J=252.5$ and 11.5 Hz), 114.0 (ddd, $J=350.0,252.5$, and 54.0 Hz), 86.9 (dd, $J=706.0$ and 350.0 Hz), 81.7 (ddd, $J=706.0,54.0$, and 11.5 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right): 286.1178$, found 286.1194.
5.3.14. 9-Methoxybenzo[a]pyrene (21a). Cyclization of 20b catalyzed by PtCl_{2} gave 21a (60\%) whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched those of an authentic standard.
5.3.15. ${ }^{13} C_{4}$-9-Methoxybenzo[alpyrene $\quad\left({ }^{13} C_{4}\right.$-21a). ${ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.63-8.27(\mathrm{~m}, 3 \mathrm{H})$, $8.25-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.15-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.47$ (dd, $J=9.0$ and 2.0 Hz , 1 H), $4.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 128.4-124.4(\mathrm{~m}$, 4C); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 286.1178, found 286.1190.

5.4. Synthesis of $12-\mathrm{HO}-\mathrm{BaP}$ (27b) (Scheme 3)

5.4.1. 2-(2-Bromophenyl)-4-methoxynaphthalene (23). Pd-catalyzed Suzuki cross-coupling of $\mathbf{8}$ with 22 by the usual method furnished 23 (75%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47-8.38$ (m, $1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.0$ and $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57$ (m, 2H), 7.55-7.53 (m, 2H), 7.46 (td, $J=8.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (td, $J=8.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{31} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,142.8,138.8,134.0,133.1,131.4$, 128.7, 127.7, 127.3, 126.7, 125.5, 124.8, 122.7, 121.9, 120.6, 106.0,
55.5; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}$313.0223, found 313.0250 .
5.4.2. Ethyl 2-(4-methoxynapththalen-2-yl)phenyl acetate (24a). Pdcatalyzed coupling of $\mathbf{2 3}$ with $\mathrm{BrZnCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ provided $\mathbf{2 4 a}(85 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.9, 155.0, 142.7, 138.8, 134.1, 132.0, 130.3, 130.1, 127.53, 127.52, 127.0, 126.7, 125.2, 124.5, 121.8, 120.3, 105.9, 60.7, 55.5, 38.9, 14.0; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 343.1305 , found 343.1307 .
5.4.3. Ethyl ${ }^{13} \mathrm{C}_{2}$-2-(4-methoxynapththalen-2-yl)phenyl acetate $\left({ }^{13} C_{2}-24 a\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.23$ (br s, 1 H), $8.00-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=128.5$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 173.2$ (d, $J=218.0 \mathrm{~Hz}$), 39.0 (d, $J=218.0 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$ 295.1239, found 295.1211.
5.4.4. 2-(4-Methoxynapththalen-2-yl)phenylacetic acid (24b). Ethan olysis of 24a provided 24b (91\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.98-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone- d_{6}) $\delta 173.3,158.7,143.5,139.0,133.4,132.6,132.0$, 128.1, 127.9, 127.8, 127.7, 127.5, 126.4, 126.2, 124.7, 115.4, 113.3, 54.5, 37.5; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$315.0992, found 315.0966.
5.4.5. ${ }^{13} C_{2}$-2-(4-Methoxynapththalen-2-yl)phenylacetic acid (${ }^{13} C_{2}$ 24b). ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 12.33$ (brs, 1 H), 8.17 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88$ (d, J=8.0 Hz, 1H), 7.60-7.50 (m, 2H), 7.50-7.30 (m, 5H), 6.91 $(\mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.57$ (dd, $J=128.0$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, DMSO- d_{6}) $\delta 173.5(\mathrm{~d}, J=218.5 \mathrm{~Hz}$), $39.2(\mathrm{~d}, J=218.5 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$295.1239, found 295.1219.
5.4.6. 12-Methoxychrysen-5-ol (25a). Acid-catalyzed cyclization of 24b afforded 25a (82\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 10.06$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=8.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.60-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , acetone- d_{6}) δ 154.6, 154.2, 133.5, 132.1, 132.0, 129.0, 126.71, 126.68, $126.3,126.0,125.63,125.60,123.5,123.3,121.5,116.2,106.9,98.3$, 55.2; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$275.1067, found 275.1094.
5.4.7. ${ }^{13} \mathrm{C}_{2}$-12-Methoxychrysen-5-ol (${ }^{13} \mathrm{C}_{2}$-25a). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$, $8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=155.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}$, 3H); ${ }^{13}$ C NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9$ (d, $J=286.5 \mathrm{~Hz}$), 109.7 (d, $J=286.5 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$277.1134, found 277.1161.
5.4.8. 12-Methoxychrysen-5-ol triflate (25b). Esterification of 25a with triflic anhydride and pyridine provided 25b (60\%): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ (d, J=8.5 Hz, 1H), $7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$, $7.80-7.65(\mathrm{~m}, 4 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6$, $145.5,132.7,131.1,129.2,129.1,128.6,127.7,127.6,127.4,127.0,126.9$, $126.7,123.4,122.4,118.7$ (q, $J=1276.0 \mathrm{~Hz}$), 117.5, 116.7, 97.4, 55.6 ; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$406.0485, found 406.0458.
5.4.9. ${ }^{13} C_{2}$-12-Methoxychrysen-5-ol triflate $\left({ }^{13} C_{2}-25 b\right) .{ }^{1} \mathrm{H} \quad$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.77$ ($\mathrm{s}, 1 \mathrm{H}$), 9.96 (d, J=8.5 Hz, 1H), 8.82 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.62(\mathrm{~m}, 3 \mathrm{H})$, 7.56 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=176.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 154.6$ (d,
$J=277.5 \mathrm{~Hz}$), $107.0(\mathrm{~d}, \mathrm{~J}=277.5 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$277.1134, found 277.1155.
5.4.10. ((Chrysen-5-yl)ethynyl)trimethylsilane (26a). Sonogashira coupling of 25b with (trimethylsilyl)acetylene afforded 26a (95\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.48$ (dd, $J=6.5$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.63 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=6.5$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}$, 1 H), 7.91 (d, J=8.5 Hz, 1H), $7.75-7.60(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,134.5,131.9,131.1,130.1$, 130.0, 128.1, 127.2, 126.8, 126.7, 126.4, 126.3, 126.0, 123.1, 122.3, $121.8,117.3,108.5,99.5,97.8,55.5,-0.12$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}$ $\left(\mathrm{M}^{+}\right)$354.1440, found 354.1417.
5.4.11. ${ }^{13} C_{4}$-((Chrysen-5-yl)ethynyl)trimethylsilane $\quad\left({ }^{13} C_{4}-26 \boldsymbol{a}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.48$ (dd, $J=6.5$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.61 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (dd, $J=6.5$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ (dd, $\mathrm{J}=163.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87$ (m, 2H), $7.72-7.58(\mathrm{~m}, 4 \mathrm{H}), 4.21(\mathrm{~s}, 3 \mathrm{H}), 0.44$ (d, $J=3.0 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.4$ (dd, $J=251.5$ and 10.0 Hz), 117.3 (ddd, $J=331.5,251.5$, and 36.0 Hz), 108.5 (ddd, $J=541.5,331.5$, and 3.0 Hz), 99.4 (ddd, $J=541.5,36.0$, and 10.0 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OSi}\left(\mathrm{M}^{+}\right) 358.1575$, found 358.1545.
5.4.12. 5-Ethynyl-12-methoxychrysene (26b). Treatment of 26a with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{THF}$ provided 26b (91\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78-7.60(\mathrm{~m}, 4 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , CDCl_{3}) δ 154.6, 135.2, 131.8, 131.1, 130.3, 130.1, 128.1, 127.3, 126.8, 126.5, 126.4, 126.3, 123.2, 122.4, 121.9, 116.3, 97.8, 86.8, 82.3, 55.5; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$, 282.1045, found 282.1053.
5.4.13. ${ }^{13} \mathrm{C}_{4}$-5-Ethynyl-12-methoxychrysene $\quad\left({ }^{13} \mathrm{C}_{4}\right.$-26b). ${ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.48 (dd, $J=8.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (dd, $J=163.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.96 (s, 1H), $7.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.60(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{~s}, 3 \mathrm{H})$, 3.90-3.30 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 135.3$ (dd, $J=252.5$ and 11.5 Hz), 116.3 (ddd, $J=345.0,252.5$, and 55.5 Hz), 86.9 (dd, $J=704.5$ and 345.0 Hz), 82.2 (ddd, $J=704.5,55.5$, and $11.5 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right) 286.1178$, found 286.1167.
5.4.14. 12-Methoxybenzo[a]pyrene (27a). PtCl_{2}-catalyzed cyclization of 26b gave $\mathbf{2 7 a}$ (70%); the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched those of an authentic sample.
5.4.15. ${ }^{13} C_{4}$-12-Methoxybenzo[a]pyrene $\quad\left({ }^{13} C_{4}\right.$-27a). ${ }^{1} \mathrm{H} \quad$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.37 (dd, $J=159.0$ and $5.0,1 \mathrm{H}), 8.32-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.15-7.98(\mathrm{~m}$, $3 \mathrm{H}), 7.88-7.70(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.0-127.1$ (m,3C), 122.4 (ddd, $J=219.0,25.0$, and 16.0 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$286.1178, found 286.1192.

5.5. Syntheses of BaP, ${ }^{13} \mathrm{C}_{4}$-BaP, and the ${ }^{13} \mathrm{C}_{4}$-BaP phenols

5.5.1. 2-(2-Bromophenyl)naphthalene (29). Pd-catalyzed Suzuki cross-coupling of $\mathbf{8}$ with $\mathbf{2 8}$ by the method for preparation of 11c afforded 29 (87%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.95(\mathrm{~m}, 4 \mathrm{H})$, 7.83 (dd, $J=8.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.70(\mathrm{~d}, J=8.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{td}, J=7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.5,138.6,133.1,133.0,132.6,131.5,128.8,128.2,128.1$, 127.7, 127.6, 127.39, 127.36, 126.22, 126.20, 122.8; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}(\mathrm{M})^{+}: 282.0044$, found 282.0040 .
5.5.2. Ethyl 2-(2-naphthalenyl)phenylacetate (30a). Coupling of 29 with $\mathrm{ZnBrCH} \mathrm{CO}_{2} \mathrm{Et}$ by the method for preparation of $\mathbf{1 1 b}$ gave

30a (93 \%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.86$ $(\mathrm{s}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.35(\mathrm{~m}, 4 \mathrm{H}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}$, 2H), 3.67 ($\mathrm{s}, 2 \mathrm{H}$), 1.21 (t, J=7.0 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 171.8, 142.3, 138.6, 133.1, 132.3, 132.1, 130.34, 130.30, 127.99, 127.96, 127.7, 127.62, 127.58, 127.5, 127.1, 126.2, 125.9, 60.7, 39.0, 14.0; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 291.1380$, found 291.1373.
5.5.3. Ethyl ${ }^{13} \mathrm{C}_{2}$-2-(2-naphthalenyl)phenylacetate $\quad\left({ }^{13} \mathrm{C}_{2}\right.$-30a). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$, $7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.35(\mathrm{~m}, 4 \mathrm{H}), 4.13(\mathrm{qd}, J=7.0$ and 3.0 Hz , 2 H), 3.67 (dd, $J=129.0$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0(\mathrm{~d}, J=229.0 \mathrm{~Hz}$), 39.0 (d, $J=229.0 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{+} 292.1375$, found 292.1374.
5.5.4. 2-(2-Naphthalenyl)phenylacetic acid (30b). Hydrolysis of 30a by the usual method gave $\mathbf{3 0 b}$ (91\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 12.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H})$, $7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}$, $4 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 173.3,142.2$, 138.8, 133.3, 133.1, 132.4, 131.4, 130.4, 128.4, 128.1, 128.03, 128.02, 127.9, 127.8, 127.4, 126.9, 126.6, 39.1; HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$263.1063, found 263.1012.
5.5.5. ${ }^{13} \mathrm{C}_{2}$-2-(2-Naphthalenyl)phenylacetic acid $\left({ }^{13} \mathrm{C}_{2}-\mathbf{3 0 b}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 10.68$ (br s, 1 H), $8.03-7.90(\mathrm{~m}, 3 \mathrm{H})$, $7.87-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 3.67$ (dd, $J=128.5$ and $8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO- d_{6}) $\delta 173.2$ (d, $J=223.5 \mathrm{~Hz}$), $39.1(\mathrm{~d}, J=223.5 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$287.0953, found 287.0933.
5.5.6. Chrysen-5-ol (31a). Acid-catalyzed cyclization of 30b by the usual method gave 31a (87\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 10.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.76$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, acetone- d_{6}) $\delta 154.4,133.2,133.1,131.1,130.9,129.2$, $128.5,128.2,126.8,126.3,126.09,126.08,126.0,123.9,123.3,121.4$, 121.1, 109.1; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$245.0961, found 245.0970.
5.5.7. ${ }^{13} \mathrm{C}_{2}$-Chrysen-5-ol $\left({ }^{13} \mathrm{C}_{2}\right.$-31a). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.87$ (br s, 1H), $9.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15-8.00 (m, 2H), 7.85-7.90 (m, 1H), 7.70-7.31 ($\mathrm{m}, 5 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, DMSO- d_{6}) $\delta 154.8(\mathrm{~d}, \mathrm{~J}=277.5 \mathrm{~Hz}$), 109.2 ($\mathrm{d}, \mathrm{J}=277.5 \mathrm{~Hz}$); HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 247.1032, found 247.1019.
5.5.8. Chrysen-5-ol triflate (31b). Esterification of 31a gave 31b (80%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.72$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.92(\mathrm{~m}, 4 \mathrm{H}), 7.80-7.64$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 145.5, 133.0, 131.6, 130.8, 129.73, 129.66, 128.7, 128.5, 128.1, 127.9, 127.7, 127.20, 127.16, 127.1, 123.4, 121.5, 120.6, 120.1, 118.7 (q, $J=1276.5 \mathrm{~Hz}$); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$376.0381, found 376.0385.
5.5.9. ${ }^{13} C_{2}$-Chrysen-5-ol triflate $\left({ }^{13} \mathrm{C}_{2}\right.$-31b). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{dd}$, $J=164.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.64(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.5(\mathrm{~d}, J=358.0 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=358.0 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{2}-\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$378.0429, found 378.0435.
5.5.10. (Chrysen-5-ylethynyl)trimethylsilane (32a). Sonogashira coupling of 31b with trimethylsilylacetylene by the usual procedure
gave 32a (91\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.60-10.55(\mathrm{~m}, 1 \mathrm{H})$, $8.70-8.50(\mathrm{~m}, 2 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.10-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.50(\mathrm{~m}$, 4 H), 0.51 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,132.8,130.9$, $130.8,130.4,129.2,128.3,128.1,127.9,127.6,127.0,126.9,126.7$, 126.5, 125.3, 123.2, 121.1, 117.5, 108.4, 99.6, -0.15; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Si}\left(\mathrm{M}^{+}\right)$324.1334, found 324.1322.
5.5.11. ${ }^{13} C_{4}$-(Chrysen-5-ylethynyl)trimethylsilane $\quad\left({ }^{13} C_{4}-32 a\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.52(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.75-8.70$ (m , 2 H), 8.36 (dd, $J=163.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.90(\mathrm{~m}, 3 \mathrm{H})$, $7.78-7.60(\mathrm{~m}, 4 \mathrm{H}), 0.43(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.8$ (dd, $J=251.5$ and 10.5 Hz), 117.6 (ddd, $J=332.0,251.5$, and 36.0 Hz), 108.6 (dd, $J=542.5$ and 332.0 Hz), 99.6 (ddd, $J=542.5$, 36.0 , and 10.5 Hz); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Si}\left(\mathrm{M}^{+}\right) 328.1468$, found 328.1469.
5.5.12. 5-Ethynylchrysene (32b). Removal of the TMS group of 32a gave 32b (85\%): ${ }^{1} \mathrm{H} \operatorname{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.45$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.70-8.55$ (m, 2H), 8.39 (s, 1H), 8.05-7.80 (m, 3H), 7.80-7.50 (m, $4 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 137.6, 132.9, 130.9, $130.8,130.6,129.3,128.5,128.3,128.0,127.9,127.1,126.9,126.7$, 126.6, 125.8, 123.3, 121.1, 116.6, 86.8, 82.6; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{13}$ $[\mathrm{M}+\mathrm{H}]^{+}$253.1012, found 253.1006.
5.5.13. ${ }^{13} C_{4}$-5-Ethynylchrysene $\quad\left({ }^{13} C_{4}-32 b\right) .{ }^{1} \mathrm{H} \quad$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.80-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.39(\mathrm{dd}$, $J=162.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.50(\mathrm{~m}, 4 \mathrm{H})$, 4.10-3.30 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5$ (dd, $J=253.0$ and 11.0 Hz), 116.5 (ddd, $J=346.0,253.0$, and 56.0 Hz), 86.7 (ddd, $J=706.0,346.0$, and 4.5 Hz), 82.4 (ddd, $J=706.0,56.0$, and $11.0 \mathrm{~Hz})$; HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{20} \mathrm{H}_{12}\left(\mathrm{M}^{+}\right)$256.1073, found 256.1046.
5.5.14. Benzo[a]pyrene (BaP). PtCl_{2}-catalyzed cyclization of 32b furnished BaP (65\%). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in good agreement with those of an authentic sample.
5.5.15. ${ }^{13} \mathrm{C}_{4}$-Benzo[a]pyrene (${ }^{13} \mathrm{C}_{4}$-BaP). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.12-9.02(\mathrm{~m}, 2 \mathrm{H}), 8.72-8.22(\mathrm{~m}, 4 \mathrm{H}), 8.20-7.94(\mathrm{~m}, 3 \mathrm{H})$, 7.90-7.75 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.3-124.5$ ($\mathrm{m}, 4 \mathrm{C}$); HRMS calcd for ${ }^{13} \mathrm{C}_{4}-\mathrm{C}_{20} \mathrm{H}_{14}\left(\mathrm{M}^{+}\right): 256.1073$, found 256.1079.

5.6. BaP-1,6- and 3,6 -dione (5 and 6) and their ${ }^{13} C_{4}$-labelled analogues (${ }^{13} \mathrm{C}_{4}$-BaP-1,6-dione and ${ }^{13} \mathrm{C}_{4}$-BaP-3,6-dione) (Fig. 1)

These quinones were synthesized by oxidation of $\mathrm{BaP}-1-\mathrm{ol}(\mathbf{7 b})$ and BaP-3-ol (7f) with BTI by the methods reported. ${ }^{20,24}$ Check refs!!
5.6.1. ${ }^{13} C_{4}$-BaP-1,6-dione and ${ }^{13} C_{4}$-BaP-3,6-dione. These quinones were synthesized by oxidation of ${ }^{13} C_{4}$-BaP-1-ol and ${ }^{13} C_{4}$-BaP-3-ol with BTI by methods analogous to those for oxidation of the unlabelled analogues.
${ }^{13} \mathrm{C}_{4}$-BaP-1,6-dione: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=3.5,7 \mathrm{~Hz}), 8.31(\mathrm{~d}$, $J=8 \mathrm{~Hz}), 8.05-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H})$, 6.76 (d, $J=9.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.58,183.55$, 183.48, 183.42, 183.30, 183.17, 183.14, 183.10, 131.14, 131.10, 130.95, $130.82,130.74,130.70,130.66,130.35,129.97,129.92,129.87,129.80$, 129.64, 129.49, 129.41, 129.35.
${ }^{13} \mathrm{C}_{4}$-BaP-3,6-dione: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70-8.66$ (m, $1 \mathrm{H}), 8.60-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.49-8.46(\mathrm{~m}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}$, $J=10 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.60,183.58,183.56$, 183.55, 183.17, 183.16, 183.14, 183.13, 132.53, 132.49, 132.10, 132.08,
$132.07,131.66,131.62,129.99,129.95,129.92,129.55,129.52,129.48$, 129.38, 129.36, 128.93, 128.92, 128.49, 128.48.

Acknowledgements

This investigation was supported by NIH grants R01-ES015857 and P30-ES013508 (awarded to T.M.P.) and R01-CA130038 (awarded to I.A.B.).

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2012.05.130.

References and notes

1. (a) Harvey, R. G. In Chemical Carcinogenesis; Penning, T. M., Ed.; Humana: New York, NY, 2011; Chapter 1, pp 1-26; (b) Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity; Cambridge University Press: Cambridge, UK, 1991; (c) Harvey, R. G.; Geacintov, N. Acc. Chem. Res. 1988, 21, 66-73.
2. Straif, K.; Boan, R.; Grosse, Y.; Secretan, B.; Ghissassi, F. E.; Cogliano, V. Nat. Oncol. 2005, 6, 931-932.
3. International Agency for Research on Cancer. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1983; Vol. 32.
4. The total quantity of BaP emitted into the atmosphere in the USA in 1979 was estimated to be ~ 1260 ton: Grimmer, G. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity; CRC: Boca Raton, FL, 1983.
5. (a) International Agency for Research on Cancer. Tobacco Smoke and Involuntary Smoking. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 2004; Vol. 83; (b) World Health Organization. Tobacco or Health: A Global Status Report; WHO: Geneva, 1997, pp 10-48; (c) Pfiefer, G. P.; Denissenko, M. F.; Olivier, M.; Tretyakova, N.; Hecht, S.; Hainaut, P. Oncogene 2002, 21, 7435-7451; (d) Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T. Environ. Health Perspect. 2004, 112, 970-978.
6. Marr, L. C.; Kirschstetter, T. W.; Hurley, R. A.; Miguel, A. H.; Haring, S. V.; Hammond, S. K. Environ. Sci. Technol. 1999, 3, 3091-3099.
7. (a) Park, J.-H.; Mangal, D.; Frey, A. J.; Harvey, R. G.; Blair, I. A.; Penning, T. M. J. Biol. Chem. 2009, 284, 29725-29734; (b) Park, J.-H.; Mangal, D.; Tacka, K. A.; Quinn, A. M.; Harvey, R. G.; Blair, I. A.; Penning, T. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6845-6851; (c) Quinn, A.M.; Harvey, R. G.; Penning, T. M. Chem. Res. Toxicol. 2008, 21, 2207-2215. (d) Ruan, Q.; Gelhaus, S.; Penning, T. M.; Harvey, R. G.; Blair, I. A. Chem. Res. Toxicol. 2007, 20, 424-431.
8. (a) Jennette, K. W.; Jeffrey, A. M.; Blobstein, S. H.; Beland, F. A.; Harvey, R. G.; Weinstein, I. B. Biochemistry 1977, 16, 932-938; (b) Weinstein, I. B.; Jeffrey, A. M.; Jennette, K.; Blobstein, S.; Harvey, R. G.; Harris, C.; Autrup, H.; Kasai, H.; Nakanishi, K. Science 1976, 193, 592-595; (c) Jeffrey, A. M.; Jennette, K. W.; Blobstein, S. H.; Weinstein, I. B.; Beland, F. A.; Harvey, R. G.; Kasai, H.; Miura, I.; Nakanishi, K. J. Am. Chem. Soc. 1976, 98, 5714-5716.
9. (a) Park, J.-H.; Mangal, D.; Frey, A. J.; Harvey, R. G.; Blair, I. A.; Penning, T. M. J. Biol. Chem. 2009, 284, 29725-29734; (b) Park, J.-H.; Mangal, D.; Tacka, K. A.; Quinn, A. M.; Harvey, R. G.; Blair, I. A.; Penning, T. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6845-6851; (c) Ruan, Q.; Gelhaus, S.; Penning, T. M.; Harvey, R. G.; Blair, I. A. Chem. Res. Toxicol. 2007, 20, 424-431; (d) Park, J.-H.; Gelhaus, S.; Vedantam, S.; Olivia, A.; Batra, A.; Blair, I. A.; Field, J. Chem. Res. Toxicol. 2008, 21, 1039-1049; (e) Flowers, L.; Ohnishi, S. T.; Penning, T. M. Biochemistry 1997, 36, 8640-8648.
10. Schultz, C. A.; Quinn, A. M.; Park, J.-A.; Harvey, R. G.; Bolton, J. L.; Maser, E.; Penning, T. M. Chem. Res. Toxicol. 2011, 24, 2153-2166; Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Chem. Res. Toxicol. 2000, 13, 135-160.
11. (a) Cavalieri, E. L.; Rogan, E. G. Xenobiotica 1995, 25, 677-688; (b) MelendezColon, V.; Luch, A.; Seidel, A.; Baird, W. Carcinogenesis 1999, 20, 1885-1891.
12. Jiang, H.; Gelhaus, S. L.; Mangal, D.; Harvey, R. G.; Blair, I. A.; Penning, T. M. Chem. Res. Toxicol. 2007, 20, 1331-1341.
13. Ruan, Q.; Gelhaus, S.; Penning, T. M.; Harvey, R. G.; Blair, I. A. Chem. Res. Toxicol. 2007, 2, 424-431.
14. Park, J. H.; Mangal, D.; Tacka, K. A.; Quinn, A.; Harvey, R. G.; Blair, I. A.; Penning, T. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6846-6851.
15. Lu, D.; Harvey, R. G.; Blair, I. A.; Penning, T. M. Chem. Res. Toxicol. 2011, 24, 1905-1914.
16. (a) Ran, C.; Xu, D.; Dai, Q.; Penning, T. M.; Blair, I. A.; Harvey, R. G. Tetrahedron Lett. 2008, 49, 4531-4533; (b) Harvey, R. G.; Dai, Q.; Ran, C.; Lim, K.; Blair, I. A.; Penning, T. M. Polycyclic Aromat. Compds. 2005, 25, 371-391.
17. Hama, Y.; Liu, X.; Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 11176-11177.
18. Fürstner, A.; Musnam, V. J. Org. Chem. 2002, 67, 6264-6267.
19. Xu, D.; Penning, T. M.; Blair, I. A.; Harvey, R. G. J. Org. Chem. 2009, 74, 597-604.
20. Harvey, R. G.; Dai, Q.; Ran, C.; Penning, T. J. Org. Chem. 2004, 69, 2024-2032.
21. Orito, K.; Hatakey, T.; Takeo, M.; Suginome, H. Synthesis 1995, 1273-1277.
22. Demirtas, I.; Erenler, R.; Cakmak, O. J. Chem. Res., Synop. 2002, 524-526.
23. Wu, A.; Duan, Y.; Xu, D.; Penning, T. M.; Harvey, R. G. Tetrahedron 2010, 66, 2111-2118.
24. Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874-922.
25. Kukyanek, S. M.; Fang, X.; Jordan, R. F. Organometallics 2009, 28, 300-305.
26. Cho, H.; Harvey, R. G. J. Chem. Soc., Perkin Trans. 1 1976, 836-839.
27. Beland, F. A.; Harvey, R. G. J. Chem. Soc., Chem. Commun. 1976, 84-85.
28. Harvey, R. G.; Fu, P. P. In Polycyclic Hydrocarbons and Cancer, Environment, Chemistry, and Metabolism; Gelboin, H. V., Ts'o, P. O. P., Eds.; Academic: New York, NY, 1978; Vol. 1, pp 133-165.
29. Harvey, R. G.; Tang, X.-Q. Tetrahedron Lett. 1995, 36, 2737-2740; Harvey, R. G.; Cho, H. Anal. Biochem. 1977, 80, 540-546; Yang, S. K.; Gelboin, H. V.; Weber, I. D.; Sankaran, V.; Fischer, D. L.; Engel, J. F. Anal. Biochem. 1977, 78, 520-526; Yagi, H.; Akagi, H.; Thakker, D. R.; Mah, H. D.; Koreeda, M.; Jerina, D. M. J. Am. Chem. Soc. 1976, 99, 2358-2359.
30. Yang, S. K.; Weems, H. B.; Mushtaq, M.; Fu, P. P.J. Chromatogr. 1994, 316, 569-584.
31. (a) Kumar, S.; Saravanan, S. Polycyclic Aromat. Compds. 2009, 29, 282-288; (b) Ran, C.; Xu, D.; Dai, Q.; Penning, T. M.; Blair, I. A.; Harvey, R. G. Tetrahedron Lett.

2008, 49, 4531-4533; (c) Sharma, A. K.; Gowdahalli, K.; Gimbor, M.; Amin, S. Chem. Res. Toxicol. 2008, 21, 1154-1162; (d) Xu, D.; Duan, Y.; Blair, I. A.; Penning, T.; Harvey, R. G. Org. Lett. 2008, 10, 1059-1062; (e) Feng, X.; Wu, J.; Ai, M.; Pisula, W.; Zhi, L.; Rabe, J. P.; Mullen, K. Angew. Chem., Int. Ed. 2007, 46, 3033-3036; (f) Wegner, H. A.; Reisch, H.; Rauch, K.; Demeter, A.; Zachariasse, K. A.; de Meijere, A.; Scott, L. T. J. Org. Chem. 2006, 71, 9080-9087; (g) Desai, D.; Sharma, A. K.; Lin, J.; Krzeminski, J.; Pementel, M.; El-Bayoumy, K.; Nesnow, S.; Amin, S. Chem. Res. Toxicol. 2002, 15, 964-971; (h) Zhang, F.; Cortez, C.; Harvey, R. G. J. Org. Chem. 2000, 65, 3952-3960; (i) Kumar, S. Tetrahedron Lett. 1996, 37, 6271-6274.
32. Chaumeil, H.; Le Drian, C.; Defois, A. Synthesis 2002, 757-760; Tovar, J. D.; Swager, T. M. J. Organomet. Chem. 2002, 653, 215-222.
33. Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-Interscience: New York, NY, 1997.
34. Harvey, R. Curr. Org. Chem. 2004, 8, 303-323.
35. Diel, B. N.; Han, M.; Kole, P. I.; Boaz, D. B. J. Labelled Compd. Radiopharm. 2007, 50, 551-553.

[^0]: Abbreviations: AKR1A1, aldo-keto reductase 1A1 enzyme; BaP, benzo[a]pyrene; BaP 7,8-diol, trans-7,8-dihydro-7,8-dihydroxy-BaP; BaP 1,6-dione, benzo[a]pyren-1,6-dione; BaP 3,6-dione, benzo[a]pyren-3,6-dione; BaP 7,8-dione, benzo[a]pyren-7,8-dione; BTI, bis-(trifluoroacetoxy)iodobenzene; IBX, o-iodoxybenzoic acid; antiBPDE, trans-7,8-dihydroxy-7,8-dihydro-anti-9,10-epoxy-BaP; syn-BPDE, trans-7,8-dihydroxy-7,8-dihydro-syn-9,10-epoxy-BaP; 8'-HO-2'-dGua, 8'-hydroxy-2'-deoxyguanosine; 1-HO-BaP, benzo[a]pyren-1-ol; 2-HO-BaP, benzo[a]pyren-2-ol; 3-HOBaP, benzo[a]pyren-3-ol; 9-HO-BaP, benzo[a]pyren-9-ol; 12-HO-BaP, benzo[a]py-ren-12-ol; ${ }^{13} \mathrm{C}_{4}$-BaP, ${ }^{13} \mathrm{C}_{4}$-labelled-BaP $\left({ }^{13} \mathrm{C}\right.$ at $\mathrm{C}-4,-5,-5 \mathrm{a}$, and -6 or at $\mathrm{C}-4,-5,-11$, and -12 , as specified); ${ }^{13} \mathrm{C}_{4}-1$-HO-BaP, ${ }^{13} \mathrm{C}_{4}$-labelled- $1-\mathrm{HO}-\mathrm{BaP}\left({ }^{13} \mathrm{C}\right.$ at $\mathrm{C}-4,-5,-5 \mathrm{a}$, and -6); ${ }^{13} \mathrm{C}_{4}-2$-HO-BaP, ${ }^{13} \mathrm{C}_{4}$-labelled-2-HO-BaP (${ }^{13} \mathrm{C}$ at $\mathrm{C}-4,-5,-5 \mathrm{a}$, and -6); ${ }^{13} \mathrm{C}_{4}-3-\mathrm{HO}-\mathrm{BaP}$, ${ }^{13} \mathrm{C}_{4}$-labelled-3-HO-BaP (${ }^{13} \mathrm{C}$ at C-4,-5,-5a, and -6); ${ }^{13} \mathrm{C}_{4}-9-\mathrm{HO}-\mathrm{BaP},{ }^{13} \mathrm{C}_{4}$-labelled-9-HO-BaP (${ }^{13} \mathrm{C}$ at C-4,-5,-5a, and -6); ${ }^{13} \mathrm{C}_{4}$-12-HO-BaP, ${ }^{13} \mathrm{C}_{4}$-labelled-12-HO-BaP $\left({ }^{13} \mathrm{C}\right.$ at $C-4,-5,-5 \mathrm{a}$, and -6); PAH, polycyclic aromatic hydrocarbon; ROS, reactive oxygen species; TMSA, (trimethylsilyl)acetylene.

 * Corresponding author. Tel.: +1 773702 6998; e-mail address: rharvey@uchicago.edu (R.G. Harvey).
 ${ }^{\dagger}$ Dr. Wu and Dr. Xu were primarily responsible for development of the synthetic methods. Their contributions were of essentially equal importance.

