Stereoselective Palladium-Catalyzed α-Arylation of 3-Aryl-1-Indanones: An Asymmetric Synthesis of (+)-Pauciflorol F

Bong Hyang Lee,,$^{+, \mp}$ Young Lok Choi, ${ }^{+, \S}$ Seunghoon Shin, ${ }^{\dagger}$ and Jung-Nyoung Heo ${ }^{*,+}$
${ }^{\dagger}$ Medicinal Chemistry Research Center, Korea Research Institute of Chemical Technology, 100 Jang-dong, Daejeon 305-600, Korea
${ }^{\ddagger}$ Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seoul 133-791, Korea
${ }^{5}$ Department of Chemistry, Korea University, Anam-dong, Seoul 105-600 Korea

(S) Supporting Information

Abstract

Highly stereoselective, palladium-catalyzed α-arylation reactions of 3-aryl-1-indanones with aryl bromides are described. The use of sodium tert-butoxide as a base in this process is required to elevate the efficiencies and stereoselectivities of these reactions. The new methodology was successfully applied to a highly efficient route for the asymmetric synthesis of (+)-pauciflorol F.

■ INTRODUCTION

Transition-metal-catalyzed transformations and, in particular, those promoted by Pd catalysts serve as powerful methods for $\mathrm{C}-\mathrm{C}$ bond formation. ${ }^{1}$ Recently, catalytic α-arylation reactions of carbonyl compounds have begun to attract great attention in the areas of organic and medicinal chemistry owing to their use in the installation of aryl/heteroaryl groups α to carbonyl moieties. ${ }^{2}$ In continuing efforts aimed at the development of catalytic processes that can be employed in concise routes for the synthesis of biologically active natural products and pharmaceuticals, ${ }^{3}$ we have explored palladium-catalyzed α-arylation reactions of 3 -aryl-1-indanones. ${ }^{4}$

Indanones, including a polyphenol family derived from resveratrol (1), ${ }^{5}$ are frequently found in nature (Figure 1). Among members of this group, pauciflorol F (2), ${ }^{6}$ quadranglularin A (3a), ${ }^{7}$ and parthenocissin A ($\left.\mathbf{3 b}\right)^{8}$ hold great interest as a consequence of their potential biological utility. Additionally, donepezil (Aricept, 4) ${ }^{9}$ and indacrinone (5), ${ }^{10}$ both of which contain the 1 -indanone core structure, have been developed as antiAlzheimer and antihypertensive drugs, respectively. Compound 6, bearing a 1 -indenone scaffold, also was discovered to be a peroxisome proliferator-activated receptor $\gamma(\operatorname{PPAR} \gamma)$ agonist for the treatment of type 2 diabetes. ${ }^{11}$

Total syntheses of pauciflorol F have been described by the Bo, ${ }^{12}$ Snyder, ${ }^{13}$ and Sarpong ${ }^{14}$ groups. However, a selective asymmetric synthesis of $(+)$-pauciflorol F has not been reported to date. While this manuscript was being prepared, Yang and coworkers reported a concise synthesis of racemic pauciflorol F using an α-arylation approach. ${ }^{15}$ In the key arylation process employed in their route, 2.2 equiv of a strong base, such as KHMDS, was required, and it resulted in the formation of significant amounts of an unwanted indenone product. Here, we describe the results of studies that have led to a new, mild, and efficient Pd-catalyzed α-arylation reaction of 1 -indanones that

Resveratrol (1)

Pauciflorol F (2)

(+)-Indacrinone (5)

Quadrangularin $A(Z)$ (3a) Parthenocissin A (E) (3b)

6

Figure 1. Indanones in nature and in pharmaceuticals.
takes place with high levels of stereoselectivity and have resulted in the first asymmetric synthesis of (+)-pauciflorol F.

- RESULTS AND DISCUSSION

Stereoselective Pd-Catalyzed α-Arylation of 3-Aryl-1-indanone. For preparation of the requisite 3-aryl-1-indanones 10a and $\mathbf{1 0 b}$, routes involving aldol condensations of the acetophenone derivative 7 with benzaldehydes $\mathbf{8 a}$ and $\mathbf{8 b}$ followed by acid-mediated cyclization were utilized (Scheme 1). ${ }^{16}$

With 3-aryl-1-indanone 10a in hand, its α-arylation reaction with 4-bromoanisole was explored (Table 1). Initially, the Pdcatalyzed α-arylation reaction was attempted following the procedure and conditions developed by Buchwald. ${ }^{17}$ When a combination of $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{~mol} \%)$, X-Phos $(8 \mathrm{~mol} \%)$, and

[^0]Scheme 1. Synthesis of 3-Aryl-1-indanones 10a,b

8a, $R^{1}=R^{3}=O M e, R^{2}=H$
$8 b, R^{1}=R^{3}=H, R^{2}=O M e$

Table 1. Optimization of Pd-Catalyzed α-Arylation Reactions of 3-Aryl-1-indanone 10a with 4-Bromoanisole ${ }^{a}$

				 -11				$-\mathrm{OMe}$
					Yield (\%) ${ }^{\text {b }}$			
Entry	Pd	Ligand	Base (equiv)	Solvent	trans-11	cis-11	12	13
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.5)	toluene	56	20	18	6
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.2)	toluene	$79(78){ }^{\text {d }}$	12	5	4
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	toluene	87	6	2	5
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.05)	toluene	$85(81)^{d}$	4	0	3
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	$91(89)^{d}$	4	2	3
6	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{\text {c }}$	X-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	$90(87)^{d}$	5	3	2
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0)$	THF	88	4	3	4
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-Phos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0)$	$\mathrm{CH}_{3} \mathrm{CN}$	77	10	6	3
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	S-Phos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	87	10	0	3
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DavePhos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	75	4	0	2
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$t-\mathrm{Bu}_{3} \mathrm{PHBF}_{4}$	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	64	6	0	4
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	BINAP	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	36	7	4	0
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DPEphos	$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1)	THF	31	6	5	0

${ }^{a}$ Conditions: 10a (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{~mol} \%)$, ligand $(8 \mathrm{~mol} \%)$, base, solvent $(1.5 \mathrm{~mL}), 80^{\circ} \mathrm{C}, 3 \mathrm{~h} .{ }^{b 1} \mathrm{H}$ NMR yields. ${ }^{c} 2 \mathrm{~mol} \% \mathrm{mf}_{2}(\mathrm{dba})_{3}$ was used. ${ }^{d}$ Yields in parentheses.
$\mathrm{NaO}^{t} \mathrm{Bu}$ (1.5 equiv) in toluene was used in this process, carried out at $80^{\circ} \mathrm{C}$ for 3 h , a mixture of coupling products was produced (Table 1, entry 1). Careful column chromatographic separation led to the isolation of all characterizable products. These included the trans and cis coupling products 11, which were present in a ca. 3:1 ratio as determined by ${ }^{1} \mathrm{H}$ NMR analysis. Surprisingly, the α-hydroxy compound 12 , whose structure had been unambiguously elucidated by Sarpong, ${ }^{14}$ along with traces of 1 -indenone 13 were also produced in this reaction. We believed that the use of excess base was responsible for the formation of α-hydroxy 12, a proposal that was supported by the observation that trans-11 could be readily converted to α-hydroxy 12 in 80% yield under basic conditions (Scheme 2)..18 When the amount of $\mathrm{NaO}^{t} \mathrm{Bu}$ employed in this process was decreased to 1.2 equiv, the yield of α-hydroxy 12 was lowered to 5% and concurrently an improved (ca. 6.6:1 ratio) level of trans/cis diastereoselectivity was observed (Table 1, entry 2). With the use of 1.1 equiv of $\mathrm{NaO}^{t} \mathrm{Bu}$, the coupling reaction proceeded in 87% yield with a dr of ca. 14:1
(entry 3). However, a further decrease in the amount of this base to 1.05 equiv led to incomplete conversion of the starting materials (entry 4). Changing the reaction solvent to THF while maintaining the other conditions led to the generation of trans11 in an excellent 89% isolated yield and $>20: 1 \mathrm{dr}$ (entry 5). $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ also proved to be an effective catalyst for this α-arylation reaction, which yielded trans-11 in a 87% and $>20: 1 \mathrm{dr}$ (entry 6). The use of mild bases such as $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in either THF or $\mathrm{CH}_{3} \mathrm{CN}$ solvent is less effective for this process (entries 7 and 8). Interestingly, when $\mathrm{KO}^{t} \mathrm{Bu}$ was employed as the base, reaction of 14^{19} with 4-bromoanisole provided α-hydroxy 15 and indenone 16 in respective yields of 63% and 20% instead of the desired α-arylated product (Scheme 2).

The results of a study in which a broad range of ligands (S-Phos, DavePhos, BINAP, DPEphos, and t - $\mathrm{Bu}_{3} \mathrm{PHBF}_{4}$) were employed (entries 9-13) demonstrated that all were inferior to X-Phos and, except for S-Phos, did not promote reactions that proceeded to completion.

Scheme 2. Formation of α-Hydroxy 1-Indanones

14
 toluene
$80^{\circ} \mathrm{C}, 3 \mathrm{~h}$

15 (63\%)

16 (20\%)

Scheme 3. Asymmetric Synthesis of (+)-Pauciflorol F

Scope of Pd-Catalyzed α-Arylation. As illustrated in Table 2, the optimized conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{~mol} \%)\right.$, X-Phos $(8 \mathrm{~mol} \%)$, and $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1 equiv) in THF at $80^{\circ} \mathrm{C}$ for 3 h) were applied in promoting coupling reactions of a wide range of aryl and heteroaryl bromides that yielded various trans-2,3-diaryl-1-indanones.

In the case of the tetramethoxy substituted 1 -indanone 10a, α-arylation with bromobenzene and p-bromotoluene provided the corresponding α-arylated products 17 and 18 in 91% and 76% yield with high degrees of diastereoselectivity (entries 1 and 2). However, aryl bromides bearing electron-withdrawing groups, such as chloro, cyano, and trifluoromethyl, participated in less efficient reactions that afforded coupling products 19-21 in $60-74 \%$ yields with $4-10: 1$ diastereoselectivities (entries $3-5$). At this point, we thought that the low diastereoselectivity was caused by the increased acidity of α-proton on coupling products due to inductive effects of electron-withdrawing substituents. In the reaction of trimethoxy substituted 1 -indanone $\mathbf{1 0 b}$ with 1-bromo-3,5-dimethoxybenzene, the coupling product 22 , a potential precursor of quadranglularin A, was generated in 74% yield with an excellent (>20:1) diastereomeric ratio (entry 6).
α-Arylation reactions of indanone 14 also took place with aryl bromides that contain a range of substituents with different electronic and steric properties (entries 7-12). For example, reaction of 14 with o-bromotoluene afforded 28 in 66% yield and

17:1 dr (entry 12). The results of this investigation showed that reactions of indenone $\mathbf{1 4}$ take place with higher diastereoselectivities than those of the electron-rich tetramethoxy substituted analog 10a. In addition, 2 -naphthyl bromide as well as 3-pyridinyl bromide reacts with 14 to afford the corresponding products 29 and 30 in 86% and 30% yields, respectively (entries $13-14$). Finally, observations made in this effort showed that reactions of electron-donating group appended aryl bromides take place more rapidly than those of aryl bromides with electron-withdrawing groups, probably due to the faster reductive elimination from electron-rich arylpalladium complexes. ${ }^{20}$

Asymmetric Total Synthesis of (+)-Pauciflorol F. With a highly efficient method for carrying out α-arylation reactions in hand, our attention turned to the asymmetric synthesis of (+)pauciflorol F by using a strategy that employs an enantioselective, baker's-yeast-promoted conjugate reduction of 3-aryl-1-indenone 33 (Scheme 3). The key chalcone intermediate 32 was readily prepared by using aldol condensation of the acetophenone 31^{21} with the benzaldehyde $8 \mathbf{a}$ under basic conditions. Intramolecular Heck reaction of chalcone 32 in highly dilute DMF afforded 1 -indenone 33 in 92% yield. An attempt at enantioselective conjugate reduction of 3-aryl-1-indenone 33 following the procedure described by Clark and co-workers ${ }^{22}$ was unsuccessful owing to the poor solubility of 33 in aqueous EtOH. However, when the

Table 2. Scope of Pd-Catalyzed α-Arylation Reaction ${ }^{a}$
Entry
${ }^{a}$ Reaction conditions: indanone (0.5 mmol), ArBr (1.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($4 \mathrm{~mol} \%$), X-Phos ($8 \mathrm{~mol} \%$), $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1 equiv), THF (1.5 mL), $80^{\circ} \mathrm{C}, 3 \mathrm{~h} .{ }^{b}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c} \mathrm{Pd}_{2}(\mathrm{bda})_{3}$ ($2 \mathrm{~mol} \%$) was the catalyst. Reaction time was 8 h . ${ }^{d} 3$-Bromopyridine (2.0 equiv) and $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.2 equiv) were used. Reaction time was 24 h .
cosolvent was changed to DMSO the reduction process generating indanone 34^{23} proceeded smoothly (94% yield and $>99 \%$ ee),

Table 3. Asymmetric Synthesis of Pauciflorol F Derivatives

Entry	ArBr	Product	Yield (\%)	ee (\%) ${ }^{a}$
1	$\mathrm{X}=\mathrm{H}, \mathbf{3 6}$	92	>99	
2	$\mathrm{X}=\mathrm{CH}_{3}, 37$	85	99	
3	$\mathrm{X}=\mathrm{Cl}, 38$	78	$>99^{b}$	
4	$\mathrm{X}=\mathrm{CF}_{3}, 39$	66	$97^{b, c}$	
5^{d}	Br	$\mathrm{CN}, 40$	60	>99

${ }^{a}$ Enantiomeric excess values were measured by HPLC analysis using a Chiralcel OD-H column (8:2 hexane/IPA, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=$ $230 \mathrm{~nm}) .{ }^{b} 9: 1$ hexane/IPA was used. ${ }^{c}$ HPLC flow rate was $0.25 \mathrm{~mL} /$ min. ${ }^{d}$ Reaction was performed by using $\mathrm{Pd}_{2}(\mathrm{bda})_{3}(2 \mathrm{~mol} \%)$ for 8 h .
although a prolonged time (2 d) was required for complete consumption of 33 . Indanone 34 was then subjected to palladiumcatalyzed α-arylation under the optimized reaction conditions described above to provide trans-indanone 35 with an excellent level of stereoselectivity (trans:cis $=>20: 1$) and a 89% yield. Finally, global demethylation of 35 using BBr_{3} provided (+)pauciflorol F that has an $[\alpha]^{20}{ }_{\mathrm{D}}$ of $+86(c 0.5, \mathrm{MeOH}),{ }^{24}$ which is in good agreement with the reported $[\alpha]^{25}$ of the enantiomer data of $-80(c 0.1, \mathrm{MeOH}) .{ }^{6}$

Next, an investigation into the scope of the α-arylation established the asymmetric transformation of indanone 34 to be general for a range of aryl bromides (Table 3). Similar to the previous racemic results in Table 2, aryl bromides with electron-rich substituents proved to be excellent coupling partners in the reaction, affording good yields of permethylated pauciflorol F derivatives 36 and 37 with $>99 \%$ enantiopurities (entries 1 and 2). In cases of electron-deficient substituents, the α-arylations were also effective to provide coupling products $38-40$ with excellent enantiopurities, albeit in moderate to good yields (entries 3-5).

■ CONCLUSION

In summary, we have developed conditions for promoting highly efficient Pd-catalyzed α-arylation reactions of 3-aryl-1indanones. Reactions employing the optimal catalytic system, involving $\mathrm{Pd}(\mathrm{OAc})_{2}$, X -Phos, and $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.1 equiv), are attended by decreased levels of formation of undesired products and take place with high degrees of stereoselectivity. Additionally, this study has led to the first asymmetric synthesis of (+)-pauciflorol F in 5 steps, starting from the known acetophenone 31, in an overall 51% yield. The results of further studies aimed at elucidating the biological activities of the compounds prepared in this work will be discussed in following reports.

■ EXPERIMENTAL SECTION

Typical Procedure for the Synthesis of (E)-1,3-Bis(3,5-dimethoxyphenyl)prop-2-en-1-one (9a). To a solution of acetophenone $7(7.21 \mathrm{~g}, 40.0 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added benzaldehyde $8 \mathrm{a}(6.65 \mathrm{~g}, 40.0 \mathrm{mmol})$ and an aqueous solution of sodium hydroxide $(1.92 \mathrm{~g}, 48.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After being stirred at room temperature for 12 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over MgSO_{4}, and concentrated by rotary evaporation. The resulting residue was purified by recrystallization from $\mathrm{EtOAc} /$ hexanes to give 9 a ($12.5 \mathrm{~g}, 95 \%$ yield) as a yellow solid, $\mathrm{mp} 113-115{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.7 \mathrm{~Hz}), 7.14(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.67(\mathrm{t}, 1 \mathrm{H}$, $J=2.2 \mathrm{~Hz}), 6.53(\mathrm{t}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.0,161.1,160.9,144.9,140.1,136.7,122.5$, 106.4, 160.4, 105.0, 102.8, 55.6, 55.5; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$ [$\left.\mathrm{M}^{+}\right]$328.1311, found 328.1310.
(E)-1-(3,5-Dimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (9b). Yield 90%, white solid, mp $79-80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.35(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.14(\mathrm{~d}, 2 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 6.67(\mathrm{t}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 3.87(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 190.2,161.8,161.0,144.9,140.6,130.4,127.7,119.8,114.6,106.4$, 104.9, 55.7, 55.5; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$298.1205, found 298.1202.

Typical Procedure for the Synthesis of 3-(3,5-Dimethoxy-phenyl)-4,6-dimethoxy-2,3-dihydro-1H-inden-1-one (10a). Chalcone 9a ($6.57 \mathrm{~g}, 20.0 \mathrm{mmol}$) was dissolved in TFA (400 mmol , 30 mL). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . The solution was cooled to room temperature and diluted with toluene (30 mL). TFA was removed by fractional distillation. The solution was poured into $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography ($1: 9 \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{1 0 a}(6.23 \mathrm{~g}, 95 \%$ yield $)$ as a white solid, $\mathrm{mp} 105-107{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84$ $(\mathrm{d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.29(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.19$ $(\mathrm{d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=7.9,2.1 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, $6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, 1 \mathrm{H}, J=19.2,7.9 \mathrm{~Hz}), 2.59(\mathrm{dd}, 1 \mathrm{H}, J=19.2$, 2.2 Hz); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.2,161.9,160.9,158.0$, 146.7, 139.3, 139.1, 106.2, 105.4, 98.2, 96.4, 55.9, 55.7, 55.4, 47.6, 41.6; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right] 328.1311$, found 328.1309.

4,6-Dimethoxy-3-(4-methoxyphenyl)-2,3-dihydro-1H-in-den-1-one (10b). Yield 92%, white solid, $\mathrm{mp} 125-126^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz})$, $6.78(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.53(\mathrm{dd}, 1 \mathrm{H}, J=7.9$, 2.1 Hz), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=19.2$, $7.9 \mathrm{~Hz}), 2.58(\mathrm{dd}, 1 \mathrm{H}, J=19.2,2.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 206.6, 161.8, 158.2, 158.0, 139.9, 139.1, 136.2, 128.3, 128.1, 113.9, 106.3, 95.9, 55.9, 55.7, 55.3, 47.9, 40.6; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$ 298.1205, found 298.1202.

Representative Procedure for $\boldsymbol{\alpha}$-Arylation. To a vial (3 mL) was added 1 -indanone 10a ($150 \mathrm{mg}, 0.457 \mathrm{mmol}$), 4-bromoanisole $(128 \mathrm{mg}, 0.6685 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{X}-\mathrm{Phos}(17.6 \mathrm{mg}$, $0.037 \mathrm{mmol})$, and $\mathrm{NaO}^{t} \mathrm{Bu}(48.3 \mathrm{mg}, 0.502 \mathrm{mmol})$ in a glovebox. THF $(1.5 \mathrm{~mL})$ was added, and then the vial was sealed with a screw cap. The reaction was heated at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature and filtered through a short pad of silica gel while rinsing with EtOAc (10 mL). The solution was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ZEOprep $15-25 \mu \mathrm{~m}, 1: 4: 16 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $)$ to afford trans- $11(178 \mathrm{mg}$, 89% yield) and cis-11, along with 12 and 13.
trans-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(4-meth-oxyphenyl)-2,3-dihydro- 1 H -inden-1-one (trans-11) ${ }^{14}$. Yield 89%, white solid, $\mathrm{mp} 137-138{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.32(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.15(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz})$, $4.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.8$, 162.1, 160.9, 158.8, 157.9, 146.0, 138.8, 137.7, 131.6, 128.9, 114.4, 106.5, 105.3, 98.3, 96.6, 64.2, 55.8 55.7, 55.3, 52.0 ; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$434.1729, found 434.1733.
cis-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(4-methoxy-phenyl)-2,3-dihydro-1H-inden-1-one (cis-11) ${ }^{14}$. White solid, mp $134-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.7 \mathrm{~Hz}), 6.73(\mathrm{~d}, 3 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.63(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.08(\mathrm{t}, 1 \mathrm{H}, J=$ $2.1 \mathrm{~Hz}), 5.67(\mathrm{~d}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.32(\mathrm{~d}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.7,161.9,160.2,158.4,157.9,143.1,139.4,136.2$, 131.3, 128.5, 113.5, 107.3, 106.3, 98.4, 96.4, 61.2, 56.0, 55.9, 55.3, 55.3, 48.4; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}$ [$\left.\mathrm{M}^{+}\right]$434.1729, found 434.1741.

3-(3,5-Dimethoxyphenyl)-2-hydroxy-4,6-dimethoxy-2-(4-methoxyphenyl)-2,3-dihydro-1 H -inden-1-one (12) ${ }^{14}$. White solid, mp 78-79 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.1 \mathrm{~Hz}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.58(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 6.07(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.6,162.1,160.0,158.8,158.4,141.8,137.4,135.6$, 132.5, 128.2, 112.9, 107.5, 107.4, 98.7, 97.0, 85.6, 56.7, 56.0, 55.8, 55.3; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right] 450.1679$, found 450.1671.
3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(4-methoxy-phenyl)-1 H -inden-1-one (13) ${ }^{14}$. Dark purple solid, $\mathrm{mp} 163-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.49(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.43(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,162.5,160.2,158.7,156.6,154.7,137.0$, 134.1, 131.0, 130.6, 123.6, 122.7, 113.4, 106.6, 104.1, 102.8, 101.0, 77.4, 77.0, 76.6, 55.9, 55.8, 55.3, 55.2; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$ 432.1573, found 432.1561.

2-Hydroxy-2-(4-methoxyphenyl)-3-phenyl-2,3-dihydro1 H -inden-1-one (15). To a vial (3 mL) were added 1 -indanone 14^{19} ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-bromoanisole ($140 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{X}$-Phos ($19 \mathrm{mg}, 0.04 \mathrm{mmol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(62 \mathrm{mg}$, $0.55 \mathrm{mmol})$ in a glovebox. THF $(1.7 \mathrm{~mL})$ was added, and then the vial was sealed with a screw cap. The reaction was heated at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature and filtered through a short pad of silica gel while rinsing with EtOAc (10 mL). The solution was concentrated in vacuo, and the residue was purified by silica gel column chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) to afford 15 ($104 \mathrm{mg}, 63 \%$ yield) as a light yellow solid, along with $\mathbf{1 6}(32 \mathrm{mg}, 20 \%$ yield) as a red solid. Data for 15: mp $145-146^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.68(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.54(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.33(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.09(\mathrm{~d}, 3 \mathrm{H}, J=5.1 \mathrm{~Hz}), 6.82(\mathrm{~d}, 2 \mathrm{H}, J=4.6 \mathrm{~Hz}), 6.75(\mathrm{~d}$, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.50(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.13$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.5,158.9,153.9,137.9,136.2$, 135.8, 133.0, 129.8, 128.0, 127.9, 127.3, 127.0, 124.1, 113.0, 86.6, 59.3, 55.2; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] 330.1256$, found 330.1236.

2-(4-Methoxyphenyl)-3-phenyl-1H-inden-1-one (16) ${ }^{25}$. Red solid, mp $114-116^{\circ} \mathrm{C}$ (lit. ${ }^{2} \mathrm{mp} 118-119.5^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.41(\mathrm{~d}, 4 \mathrm{H}, J=2.1 \mathrm{~Hz}), 7.38$ $(\mathrm{d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0,159.2,153.8,145.6$, 133.4, 133.1, 131.9, 131.3, 130.7, 129.1, 128.8, 128.6, 128.5, 123.1, 122.9, 120.9, 113.7, 55.2; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$312.1150, found 312.1144.

3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-phenyl-2,3-di-hydro-1H-inden-1-one (17). Yield 91%, white solid, $\mathrm{mp} 107-109^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.32(\mathrm{t}, 1 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 6.16(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.71$ (s, 6H), 3.71-3.69 (m, 1H), $3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.6, 162.2, 160.9, 157.9, 146.0, 139.5, 138.9, 137.8, 128.9, 127.9, 127.2, 106.6, 105.3, 98.3, $96.6,65.0,55.9,55.7,55.3,51.9$; HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$404.1624, found 404.1618.

3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(p-tolyl)-2,3-di-hydro- 1 H -inden-1-one (18). Yield 76%, white solid, $\mathrm{mp} 70-75^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.31(\mathrm{t}, 1 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 6.15(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.71$ $(\mathrm{s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.7, 162.0, 160.8, 157.8, 146.0, 138.8, 137.7, 136.7, 136.4, 129.6, 127.7, 106.5, 105.2, 98.2, 96.5, 64.6, 55.8, 55.7, 55.2, 51.8, 21.1; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right] 418.1780$, found 418.1783.
2-(4-Chlorophenyl)-3-(3,5-dimethoxyphenyl)-4,6-dimeth-oxy-2,3-dihydro-1H-inden-1-one (19). Yield 74%, white solid, mp 66-69 ${ }^{\circ}$ C; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.32(\mathrm{t}, 1 \mathrm{H}$, $J=2.2 \mathrm{~Hz}), 6.14(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.0,162.3(\mathrm{~s}), 161.0,157.9,145.7,138.6,137.9,137.5$, 133.1, 129.4, 129.1, 106.8, 105.3, 98.6, 96.3, 64.3, 55.7, 55.8, 55.3, 51.8; HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClO}_{5}\left[\mathrm{M}^{+}\right]$438.1234, found 438.1230.
3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(4-(trifluoro-methyl)phenyl)-2,3-dihydro-1H-inden-1-one (20). Yield 63%, white solid, $\mathrm{mp} 46-48^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}$, $J=2.0 \mathrm{~Hz}), 6.33(\mathrm{t}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.14(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}$, $J=2.9 \mathrm{~Hz}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,162.3,160.9,157.8$, 145.4, 143.2, 138.5, 137.4, 128.3, 125.9, 125.8, 125.8, 125.7, 106.8, 105.2, 98.3, 96.5, 64.5, 55.8, 55.7, 55.3, 51.6; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{5}$ [M^{+}] 472.1498, found 472.1495.
4-(3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-1-oxo-2,3-di-hydro-1 H -inden-2-yl)benzonitrile (21). Yield 60%, light yellow solid, mp $65-68^{\circ}{ }^{\circ}$; ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $6.33(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.13(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1,162.5,161.1,158.0,145.3,144.7,138.4,137.5$, 132.8, 128.9, 118.8, 111.2, 107.0, 105.3, 98.4, 96.7, 64.8, 55.9, 55.8, 55.4, 51.6; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{5}\left[\mathrm{M}^{+}\right]$429.1576, found 429.1582.
trans-2-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-3-(4-meth-oxyphenyl)-2,3-dihydro-1 H -inden-1-one (22). Yield 74%, white solid, mp 163-164 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94(\mathrm{~d}, 2 \mathrm{H}$, $J=8.6 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}$, $J=1.9 \mathrm{~Hz}), 6.36(\mathrm{t}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.24(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.60$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.6, 162.1, 161.1, 158.3, 157.9, 141.7, 138.7, 138.6, 135.6, 128.1, 114.0, 106.7, 106.2, 99.1, 96.6, 65.5, 56.0, 55.8, 55.4, 55.3, 51.0; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}$ [M^{+}] 434.1729, found 434.1734.

2,3-Diphenyl-2,3-dihydro-1H-inden-1-one (23) ${ }^{26}$. Yield 76\%, light red-orange oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.63(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.49(\mathrm{dd}, 1 \mathrm{H}, J=11.0,3.9 \mathrm{~Hz}), 7.35-7.27$ $(\mathrm{m}, 6 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=4.6,0.6 \mathrm{~Hz}), 7.11-7.07(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~d}, 1 \mathrm{H}$, $J=4.7 \mathrm{~Hz}), 3.81(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3$, $156.2,142.6,138.6,136.3,135.5,129.0,128.9,128.5,128.4,128.0,127.3$, 126.8, 124.1, 64.7, 55.0; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}^{+}\right]$284.1201, found 284.1201.

2-(4-Methoxyphenyl)-3-phenyl-1H-inden-1-one (24). Yield 83%, light red-orange oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 7.64(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.30(\mathrm{~d}, 4 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,158.9,156.1,142.7,136.3,135.5,130.6$, 129.5, 129.0, 128.4, 128.0, 127.3, 126.8, 124.1, 114.4, 64.1, 55.4, 55.1; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$314.1307, found 314.1310.

3-Phenyl-2-(p-tolyl)-2,3-dihydro-1H-inden-1-one (25). Yield 76%, light red-orange oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 7.64(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.1 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.35-7.27$ $(\mathrm{m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.09(\mathrm{dd}, 2 \mathrm{H}, J=7.7,1.7 \mathrm{~Hz}), 7.00$ $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 2.33$ ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.6,156.3,142.7,137.0,136.4$, 135.6, 135.5, 129.7, 129.0, 128.4, 128.0, 127.3 126.8, 124.1, 64.5, 55.0, 21.2; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$298.1358, found 298.1360.

2-(4-Chlorophenyl)-3-phenyl-2,3-dihydro-1 H-inden-1-one (26). Yield 61%, yellow solid, mp $79-81{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.65(\mathrm{td}, 1 \mathrm{H}, J=7.6,0.9 \mathrm{~Hz}), 7.50(\mathrm{t}$, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{dd}, 2 \mathrm{H}, J=7.7,1.7 \mathrm{~Hz}), 7.04$ $(\mathrm{d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.6,155.8,142.1,136.8,136.0,135.6,133.1$, 129.8, 129.0, 128.4, 127.9, 127.4, 126.7, 124.1, 64.0, 54.8; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}\left[\mathrm{M}^{+}\right]$318.0811, found 318.0801.

2-(3-Methoxyphenyl)-3-phenyl-2,3-dihydro-1H-inden-1one (27). Yield 74%, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.64(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.1 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{dd}, 1 \mathrm{H}, J=8.2,5.5 \mathrm{~Hz}), 7.09(\mathrm{dd}, 2 \mathrm{H}, J=7.7$, $1.6 \mathrm{~Hz}), 6.82(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.2 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.65(\mathrm{t}$, $1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.58(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.75(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.0, 159.9, 156.2, 142.6, 140.0, 136.2, 135.5, 129.9, 128.9, 128.3, 127.9, 127.2, 126.7, 124.1, 120.6, 114.3, 112.6, 64.6, 55.2, 54.8; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$314.1307, found 314.1306 .

3-Phenyl-2-(o-tolyl)-2,3-dihydro-1H-inden-1-one (28). Yield 66%, light red-orange solid, $\mathrm{mp} 121-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.64(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.1 \mathrm{~Hz}), 7.50$ $(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.29(\mathrm{t}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.09$ $(\mathrm{dd}, 2 \mathrm{H}, J=7.4,1.8 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz})$, $4.03(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.8, 156.1, 142.6, 142.6, 137.4, 136.9, 136.4, 135.3, 130.7, 128.9, 128.3, 127.9, 127.2, 126.6, 126.4, 123.9, 55.0, 20.0; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$298.1358, found 298.1355.

2-(Naphthalen-2-yl)-3-phenyl-2,3-dihydro-1H-inden-1-one (29). Yield 86%, light red-orange solid, $\mathrm{mp} 55-57{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.85-7.79 (m, 2H), $7.75(\mathrm{dd}, 1 \mathrm{H}, J=6.0,3.5 \mathrm{~Hz}), 7.67(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.52$ $(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.45(\mathrm{dq}, 2 \mathrm{H}, J=6.7,3.5 \mathrm{~Hz}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.4 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.97(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,156.2,142.5,136.3,135.9,135.5$, 133.6, 132.6, 129.0, 128.8, 128.4, 128.0, 127.8, 127.7, 127.2, 126.8, 126.2, 126.0, 125.8, 124.1, 64.9, 54.9; HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$ 334.1358, found 334.1358 .

3-Phenyl-2-(pyridin-3-yl)-2,3-dihydro-1H-inden-1-one (30). The reaction was performed by following the typical procedure except for 3-bromopyridine (2.0 equiv) and $\mathrm{NaO}^{t} \mathrm{Bu}$ (1.2 equiv) for 24 h to provide 30 in 30% yield as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ $(\mathrm{d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.67(\mathrm{t}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.56-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{dd}, 2 \mathrm{H}, J=7.4$, $1.6 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 3.84(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1,155.8,150.0,148.8,141.8,135.97,135.91$, 135.85, 129.3, 128.7, 128.0, 127.7, 126.8, 124.2, 123.9, 62.3, 54.6; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}\left[\mathrm{M}^{+}\right]$285.1154, found 285.1144.
(E)-1-(2-Bromo-3,5-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl) prop-2-en-1-one (32). To a solution of acetophenone 31^{21} ($3.2 \mathrm{~g}, 12 \mathrm{mmol}$) and benzaldehyde $8 \mathrm{a}(2.3 \mathrm{~g} 14 \mathrm{mmol})$ in ethanol (40 mL) was added 20% aq NaOH solution ($10 \mathrm{~mL}, 15 \mathrm{mmol}$) dropwise. The mixture was stirred at room temperature for 24 h . The mixture was extracted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography (10% $\mathrm{EtOAc} /$ hexanes) to afford chalcone 32 ($4.8 \mathrm{~g}, 95 \%$ yield) as a white solid, mp 101-103 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.1 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}$, $J=2.7 \mathrm{~Hz}), 6.51(\mathrm{t}, 2 \mathrm{H}, J=2.7 \mathrm{~Hz}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.2,161.2,160.2,157.0,146.9$, 143.2, 136.4, 126.8, 106.5, 104.6, 103.5, 101.2, 100.0, 56.6, 55.9, 55.6; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{5}\left[\mathrm{M}^{+}\right]$406.0416, found 406.0402 .

3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-1H-inden-1-one (33). To a vial (3 mL) was added chalcone 32 ($204 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(4.4 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(173 \mathrm{mg}, 2.5 \mathrm{mmol})$, and triphenylphosphine ($6.7 \mathrm{mg}, 15 \mathrm{~mol} \%$) sequentially. The mixture was suspended in DMF (5.0 mL). Then, the reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 1 h . The mixture was purified by silica gel column chromatography (10% EtOAc/hexanes) to provide 1 -indenone $33(150 \mathrm{mg}, 92 \%$ yield) as a red solid, mp 149-154 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.1 \mathrm{~Hz}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.54(\mathrm{t}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.1 \mathrm{~Hz}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7,166.4,163.3,160.2,154.7,136.9,136.2$, 122.5, 121.1, 106.1, 103.3, 102.8, 102.3, 56.0, 55.7, 55.6; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$326.1154, found 326.1149.
(S)-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2,3-dihydro1 H -inden-1-one (34). A 500 mL , two neck, round-bottomed flask is fitted with a mechanistic stirrer and a digital pH meter. The flask was charged with baker's yeast $(1.9 \mathrm{~g})$ and α-D-glucose $(1.5 \mathrm{~g})$ in an aqueous phosphate pH 7.2 buffer solution $(300 \mathrm{~mL})$. To the reaction mixture at $40^{\circ} \mathrm{C}$ was added a solution of 1 -indenone $33(50 \mathrm{mg})$ in hot DMSO $(3.0 \mathrm{~mL})$. The reaction was stirred for 4 h , and a range of neutral pH (6.7-7.0) was maintained through the addition of 1 mL aliquots of 1 M NaOH (total ca. $10-15 \mathrm{~mL}$). After 1 day, additional baker's yeast (1.9 g) and α-D-glucose (1.5 g) were added to the mixture, and a neutral pH was also kept by addition of 1 mL aliquots of 1 M NaOH (total ca. $10-$ 15 mL). After an additional 1 day, the reaction mixture cooled to room temperature and quenched with $\mathrm{EtOH}(100 \mathrm{~mL})$. The resulting mixture was filtered through a Celite pad to remove the yeast, and then the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford 1 -indenone $34(47 \mathrm{mg}, 94 \%$ yield, $>99 \%$ ee $)$ as a white solid, $\mathrm{mp} 95-97^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+8.9(c 0.5, \mathrm{MeOH})$. The enantiomeric excess was determined by HPLC using Chiralcel OD-H column ($9: 1$ hexane $/$ IPA, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), $t_{\mathrm{R}}=12.4 \mathrm{~min}(S), 19.8 \mathrm{~min}(R) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are identical with those of the racemic compound 10a.
(2S,3S)-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(4-meth-oxyphenyl)-2,3-dihydro-1 H -inden-1-one (35). The reaction followed the typical procedure for α-arylation to provide 35 (89% yield, $>99 \%$ ee $)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=+137(c 0.4, \mathrm{MeOH})$; Chiralcel OD-H column ($8: 2$ hexane $/$ IPA, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), $t_{\mathrm{R}}=23.3 \mathrm{~min}(2 R, 3 R), 39.1 \mathrm{~min}(2 S, 3 S) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 6.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $2.2 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.8, 162.1, 160.9, 158.8, 157.9, 146.0, 138.8, 137.7, 131.6, 128.9, 114.4, 106.5, 105.3, 98.3, 96.6, 64.2, 55.8, 55.7, 55.3, 52.0; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right] 434.1729$, found 434.1733.
(+)-Pauciflorol F (2). To a solution of $35(0.39 \mathrm{mmol}, 170 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BBr}_{3}(3.9 \mathrm{~mL}, 3.9 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) over 10 min . The reaction was allowed to warm to room temperature and then stirred for 24 h . The reaction was quenched with methanol $(5 \mathrm{~mL})$ and poured into water $(5 \mathrm{~mL})$. The aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with the $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL) and dried over MgSO_{4}. After concentration, the crude product was purified by silica gel column chromatography ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide (+)-pauciflorol F (99 mg , 70% yield) as a yellow amorphous powder. $[\alpha]^{20}{ }_{\mathrm{D}}=+86(c 0.5, \mathrm{MeOH})$ (lit. ${ }^{6}$ enantiomer $[\alpha]^{25}{ }_{\mathrm{D}}=-80(c 0.1, \mathrm{MeOH})$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 2 \mathrm{H}), 6.96$ $(\mathrm{d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 6.02(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta 205.6,160.3,159.5,157.2$, 156.7, 147.4, 140.1, 134.8, 131.9, 129.6, 116.3, 110.3, 106.4, 101.7, 100.6, 65.4, 52.1; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right] 364.0946$, found 364.0935.
(2S,3S)-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-phe-nyl-2,3-dihydro-1H-inden-1-one (36). The reaction was followed the typical procedure for α-arylation to provide 36 (92% yield, 99% ee) as a white solid. $[\alpha]^{20}{ }_{D}=+135(c 0.5, \mathrm{MeOH})$; Chiralpak OD-H column (8:2 hexane $/$ IPA, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), $t_{\mathrm{R}}=7.0 \mathrm{~min}$ $(2 R, 3 R), 13.5 \mathrm{~min}(2 S, 3 S)$.
(2S,3S)-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(p-tolyl)-2,3-dihydro-1H-inden-1-one (37). The reaction was followed the typical procedure for α-arylation to provide $37(85 \%$ yield, 99% ee) as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=+150(c 0.5, \mathrm{MeOH})$; Chiralpak OD-H column $(8: 2$ hexane $/ \mathrm{IPA}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}), t_{\mathrm{R}}=6.7 \mathrm{~min}$ $(2 R, 3 R), 11.0 \mathrm{~min}(2 S, 3 S)$.
(2S,3S)-2-(4-Chlorophenyl)-3-(3,5-dimethoxyphenyl)-4,6-dimethoxy-2,3-dihydro-1H-inden-1-one (38). The reaction was followed the typical procedure for α-arylation to provide 38 (78% yield, $>99 \%$ ee $)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=+154(c 0.5, \mathrm{MeOH})$; Chiralpak ODH column ($9: 1$ hexane $/ \mathrm{IPA}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), $t_{\mathrm{R}}=$ $10.3 \mathrm{~min}(2 R, 3 R), 11.7 \mathrm{~min}(2 S, 3 S)$.
(2S,3S)-3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-2-(4-(tri-fluoromethyl)-phenyl)-2,3-dihydro-1H-inden-1-one (39). The reaction was followed the typical procedure for α-arylation to provide $\mathbf{4 1}$ $(66 \%$ yield, 98% ee $)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=+118(c 0.5, \mathrm{MeOH})$; Chiralpak OD-H column (9:1 hexane/IPA, flow rate $=0.25 \mathrm{~mL} / \mathrm{min}$, $\lambda=230 \mathrm{~nm}), t_{\mathrm{R}}=38.5 \mathrm{~min}(2 R, 3 R), 41.4 \mathrm{~min}(2 S, 3 S)$.
(2S,3S)-4-(3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-1-oxo-2,3-dihydro-1H-inden-2-yl)benzonitrile (40). The reaction was followed the typical procedure for α-arylation to provide 42 (67% yield, $>99 \%$ ee $)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=+177(c 0.5, \mathrm{MeOH})$; Chiralpak ODH column ($8: 2$ hexane $/ \mathrm{IPA}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$), $t_{\mathrm{R}}=$ $14.5 \min (2 R, 3 R), 20.8 \mathrm{~min}(2 S, 3 S)$.

■ ASSOCIATED CONTENT

©
Supporting Information. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

- AUTHOR INFORMATION

Corresponding Author

*E-mail: heojn@krict.re.kr.

\square ACKNOWLEDGMENT

Financial support provided by the KRICT and Ministry of Knowledge Economy, Korea is gratefully acknowledged.

- REFERENCES

(1) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley: New York, 2002; Vols. 1 and 2.
(2) For recent reviews, see: (a) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082-1146. (b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676-707.
(3) (a) Heo, J.-N.; Song, Y. S.; Kim, B. T. Tetrahedron Lett. 2005, 46, 4621-4625. (b) Song, Y. S.; Lee, Y.-J.; Kim, B. T.; Heo, J.-N. Tetrahedron Lett. 2006, 47, 7427-7430. (c) Kim, Y. H.; Lee, H.; Kim, Y. J.; Kim, B. T.; Heo, J.-N. J. Org. Chem. 2008, 73, 495-501. (d) Kim, J. K.; Kim, Y. H.; Nam, H. T.; Kim, B. T.; Heo, J.-N. Org. Lett. 2008, 10, 3543-3546. (e) Choi, Y. L.; Yu, C.-M.; Kim, B. T.; Heo, J.-N. J. Org. Chem. 2009, 74, 3948-3951. (f) Goh, Y.-H.; Kim, G.; Kim, B. T.; Heo, J.-N. Heterocycles 2010, 80, 669-677. (g) Choi, Y. L.; Lee, H.; Kim, B. T.; Choi, K.; Heo, J.-N. Adv. Synth. Catal. 2010, 352, 2041-2049.
(4) For selective examples of α-arylation, see: (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108-11109. (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382-12383. (c) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740-1742. (d) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 1360-1370. (e) Liao, X.; Weng, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 195-200. (f) Chan, G.; Kwong, F. Y.; Chan, H. O.; Yu, W.-Y.; Chan, A. S. C. Chem. Commun. 2006, 1413-1415. (g) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640-11641.
(5) Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W. W.; Fong, H. H. S.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Science 1997, 275, 218-220.
(6) Ito, T.; Tanaka, T.; Iinuma, M.; Nakaya, K.-i.; Takahashi, Y.; Sawa, R.; Murata, J.; Darnaedi, D. J. Nat. Prod. 2004, 67, 932-937.
(7) (a) Adesanya, S. A.; Nia, R.; Martin, M.-T.; Boukamcha, N.; Montagnac, A.; Pais, M. J. Nat. Prod. 1999, 62, 1694-1695. (b) Li, W.; Li, H.; Li, Y.; Hou, Z. Angew. Chem., Int. Ed. 2006, 45, 7609-7611.
(8) (a) Tanaka, T.; Iinuma, M.; Murata, H. Phytochemistry 1998, 48, 1045-1049. (b) Kim, H. J.; Saleem, M.; Seo, S. H.; Jin, C.; Lee, Y. S. Planta Med. 2005, 71, 973-976.
(9) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. J. Med. Chem. 1995, 38, 4821-4829.
(10) (a) Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am. Chem. Soc. 1984, 106, 446-447. (b) deSolms, S. J.; Woltersdorf, O. W., Jr.; Cragoe, E. J., Jr. J. Med. Chem. 1978, 21, 437-443.
(11) Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. J. Med. Chem. 2006, 49, 4781-4784.
(12) Bo, C.; Lu, J.-P.; Xie, X.-G.; She, X.-G.; Pan, X.-F. Chin. J. Org. Chem. 2006, 26, 1300-1302.
(13) (a) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. J. Am. Chem. Soc. 2009, 131, 1753-1765. (b) Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem., Int. Ed. 2007, 46, 8186-8191.
(14) Jeffrey, J. L.; Sarpong, R. Org. Lett. 2009, 11, 5450-5453.
(15) Yang, Y.; Philips, D.; Pan, S. J. Org. Chem. 2011, 76, 1902-1905.
(16) Seery, M. K.; Draper, S. M.; Kelly, J. M.; McCabe, T.; McMurry, T. B. H. Synthesis 2005, 470-474.
(17) (a) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 1360-1370. (b) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818-11819.
(18) We believe that oxygen would be one of the possible oxidants for α-hydroxylation. See: (a) Alesso, E. N.; Finkielsztein, L. M.; Lantaño, B.; Bianchi, D. E.; Moltrasio Iglesias, G. Y.; Aguirre, J. M. Aust. J. Chem. 1997, 50, 149-152. (b) Marco, J. L. Synth. Commun. 1996, 26, 4225-4231.
(19) Verbel, J.; Carrie, R. Bull. Soc. Chim. Fr. 1982, 2, 116-124.
(20) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234-245.
(21) Srebnik, M.; Mechoulam, R.; Yona, I. J. Chem. Soc., Perkin Trans. I 1987, 1423-1427.
(22) (a) Clark, W. M.; Kassick, A. J.; Plotkin, M. A.; Eldridge, A. M.; Lantos, I. Org. Lett. 1999, 1, 1839-1842. (b) Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.; Pridgen, L. N.; Olsen, M. A.;

Mills, R. J.; Lantos, I.; Baine, N. H. J. Am. Chem. Soc. 1998, 120, 4550-4551.
(23) The enantiopurity of 34 and 35 was determined on a Chiralcel OD-H column, 9:1 or 8:2 hexane/IPA, $1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$.
(24) The absolute stereochemistry of (+)-pauciflorol F can be concluded by the analogical interpretation of Clark's asymmetric conjugate reduction (see ref 22).
(25) Manning, C.; McClory, M. R.; McCullough, J. J. J. Org. Chem. 1981, 46, 919-930.
(26) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett. 2008, 10, 1783-1785.

[^0]: Received: May 8, 2011
 Published: July 11, 2011

