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Abstract—The folded structures of peptidomimetics containing dimers of oxanipecotic acid (Oxa) in loop segments were
characterized and compared with those of the corresponding nipecotic acid (Nip)-based ones. According to structural studies using
FT-IR and NMR spectroscopies, di-oxanipecotic acid adopted more stable turn conformations than di-nipecotic acid, and for
tetramers, L,(S)-Oxa,(S)-Oxa,L and L,(S)-Oxa,(R)-Oxa,L formed hairpin-like structures but only L,(R)-Nip,(S)-Nip,L promoted

the stable folded conformations. © 2003 Elsevier Science Ltd. All rights reserved.

Recently, a-aminooxy peptides have spurred consider-
able interests as novel pseudopeptides.!> Although
monomers of a-aminooxy peptides are slightly different
from those of B-peptides in that methylene groups in
the B positions of the latter are replaced by oxygen
atoms, their folded structures are remarkably altered.
The o-aminooxy peptides composed of acyclic o-
aminooxy acids adopt only y-turnlike conformations
(N-O turns) irrespective of the nature of monomers.'*
In contrast, B-peptides can form diverse seconadry
structures depending on monomeric residues.?

It was reported by Gellman and co-workers that di-
nipecotic acids (Nip-dimers; dimers of six-membered
B-amino acids) were able to form reverse turn struc-
tures.* Previously we prepared oxanipecotic acid (six-
membered o-aminooxy acid) as a nipecotic acid
analogue for structural studies.’*"¢ Although oxa-
nipecotic acid (Oxa) has structural similarity to
nipecotic acid (Nip), we postulated that peptidomimet-
ics containing two types of cyclic monomers might
adopt different folded structures because o-aminooxy
peptides formed quite different conformations from
B-peptides. Therefore, we characterized secondary
structures of peptidomimetics containing di-oxa-
nipecotic acids (Oxa-dimers) in loop segments and com-
pared with those of the corresponding Nip-based ones.
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For structural comparison, we synthesized Oxa-based
dimers (1a, 2a) and tetramers (3-6) as well as Nip-based
dimers (1b, 2b) and tetramer 4b.>¢ Oxa-based pepti-
domimetics (1-6) were synthesized from BocOxa-OH
(7) as shown in Scheme 1.2* Monomer 7 was converted
to dimers la and 2a by coupling of 7 to methylamine
and subsequent condensation of Oxa-NHMe after Boc
deprotection and 7 in the presence of BOP (benzot-
riazole-1-yl-oxy-tris(dimethylamino)phosphonium hex-
afluorophosphate)-HOBt (N-hydroxybenzotriazole)-
DIEA. To prepare Oxa-based tetramers (3-6),
monomer 7 was converted to 8 by esterification, Boc
deprotection and condensation of the resulting Oxa-
OMe and 7. After hydrolysis of methyl ester of 8, the
resulting acid was coupled to (L)-Phe-NHMe to pro-
duce trimers 9. Finally, tetramers 3-6 were obtained by
coupling of Boc-deprotected 9 to (L)-BocVal-OH. The
Nip-based compounds (1b, 2b, 4b) were synthesized by
modified known procedure.*

First, we characterized the folded structures of dimers 1
and 2 in chloroform by FT-IR and NMR spectro-
scopies at 1 mM concentrations, where aggregation was
found to be negligible.” According to FT-IR spectra of
1 and 2 in Figure 1, two of hydrogen-bonded and
non-hydrogen-bonded NH stretching bands, whose
ratio reflects the position of the conformational equi-
librium, were observed.?™* The hydrogen-bonded and
non-hydrogen-bonded amide NH bands for 1 and 2
appeared at 3350-3370 and 3450-3460 cm™', respec-
tively. Since the IR spectra for homochiral Oxa-S,S
(1a) exclusively displayed a hydrogen-bonded NH
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Scheme 1. Synthesis of dimers and tetramers.
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Figure 1. NH region of FT-IR spectra for dimers in CHCl; at
room temperature (1 mM concentrations): (1a) maximum at
3370 cm™!; (2a) maxima at 3455 and 3354 cm™!; (1b) maxima
at 3462 and 3354 cm™!; (2b) maxima at 3462 and 3369 cm™'.

band, it was deduced that la predominantly adopted
the folded conformation. Given the higher ratio of
hydrogen-bonded to non-hydrogen-bonded NH bands,
the homochiral Oxa-S,S (1a) formed more stable B-
turnlike structure than heterochiral Oxa-S,R (2a). Inter-
estingly, these structural features are quite different
from Nip-dimers whose preference is reversed as shown
in Figure 1. For Nip-dimers, heterochiral dimer
adopted the more stable folded conformation.*

The '"H NMR chemical shift of amide NH has been
used to ascertain which amide NH forms an internal
hydrogen bond. We determined chemical shifts for
major conformers of dimers 1 and 2 in CDCI; at | mM

concentrations. The amide NH signal for Oxa-S,S (1a)
exhibited significantly downfield shift (7.79 ppm), sug-
gesting that the NH group was exclusively involved in
an internal hydrogen bond.* Heterochiral dimers 2a
and 2b showed downfield shifts of amide NHs (7.11 and
7.13 ppm, respectively). This indicated that both NH
groups formed internal hydrogen bonds to a large
extent. However, the NH resonance for Nip-R,R (1b)
appeared relatively upfield (6.27 ppm), suggesting the
formation of a moderate internal hydrogen bond.
Taken together with IR and 'H NMR analyses, Oxa-
dimers favored the folded conformations, however,
only heterochiral Nip-R,S (2b) promoted the stable
turn structure.* Overall, Oxa-S,S formed the most
stable folded structure among the four dimers tested.

Next, we carried out structural studies of Oxa-based
tetramers (3-6) composed of di-oxanipecotic acids in
loop segments and a-peptide strands, and compared
their structures with Nip-based tetramer 4b. Figure 2
shows FT-IR data of 3-6 in CHCI,; at 1 mM concentra-
tions. For 3 and 4a, two NH stretching bands were
observed at 3448 and 3309 cm™'; the former band with
weaker absorption is assigned to a non-hydrogen
bonded NH and the latter with stronger absorption to
an internal hydrogen-bonded NH. The tetramers 3 and
4a exhibited high ratio of hydrogen-bonded to non-
hydrogen-bonded NH bands, indicating that both tetra-
mers adopted the folded conformations. However, the
IR absorption bands of hydrogen-bonded NHs for 5
and 6 at 3307 and 3312 cm™!, respectively, appeared to
be very weak. In both cases, the shoulder peaks at 3424
and 3418 cm™! for 5 and 6, respectively, were observed
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Figure 2. NH region of FT-IR spectra for tetramers in CHCl,
at room temperature (I mM concentrations): (3) maxima at
3448 and 3309 cm™!; (4a) maxima at 3448 and 3309 cm™; (5)
maxima at 3447, 3424 (shoulder) and 3307 cm™!; (6) maxima
at 3450, 3418 (shoulder) and 3312 cm™'; (4b) maxima at 3449
and 3318 cm™!.
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and assigned to Cs interactions.*® The IR data also
revealed that NHs of 3 and 4a formed the comparable
hydrogen-bonding interactions to Nip-based tetramer
4b.

We assigned the chemical shifts of amide NHs for
tetramers 3-6 that participated in an internal hydrogen
bond(s). Table 1 summarizes chemical shifts for major
conformers of 3-6. The downfield resonance of Phe NH
(> 80 ppm) for 3, 4a and 4b relative to
AcNHPheNHMe (6.09 ppm) as a reference implied that
Phe NH predominantly formed a strong internal hydro-
gen bond. However, the upfield signal of Phe NH
(~6.6 ppm) for 5 and 6 suggested that both tetramers
had large population of non-hydrogen-bonded Phe
NH. The N-terminal Val NH for 3 and 4a was involved
in an internal hydrogen bond based on significant
downfield shift (6.93 and 6.81 ppm, respectively) rela-
tive to 5.29 ppm of BocNHValNMe, as a reference. In
contrast, Val NH resonance for 5 and 6 exhibited
remarkably upfield shift (5.24 and 5.01 ppm, respec-
tively), demonstrating that Val NH groups were not
involved in internal hydrogen bonds. For Nip-based
tetramer 4b, Val NH signal appeared at 6.15 ppm,
indicating that the amide NH group equilibrates
between hydrogen-bonded and non-hydrogen-bonded
states. The C-terminal amide NH signals for all the
tetramers appeared upfield in the narrow range (5.6-6.1

ppm).°

The 2D ROESY NMR spectra of tetramers further
supported the formation of hairpin-like conformations.
As anticipated, tetramers 3, 4a and 4b exhibited strong
ROEs between tBu and NH-CH; as well as Val Cz-H
and Phe Cy-H on a-peptide strands (Fig. 3).” However,
tetramers 5 and 6, which were found to lack the stable
folded conformations, did not show the corresponding
ROEs between a-strand residues. Taken together with
IR and NMR analyses, it was concluded that 3 and 4a
adopted the stable hairpin-like conformations, whereas
only L,(R)-Nip,(S)-Nip,L (4b) formed the folded
structure.

Finally, we investigated the molecular basis of confor-
mational differences between Oxa- and Nip-based pep-
tidomimetics by  comparing the ab  initio
energy-minimized structures of dimers 1 and 2 gener-
ated at RHF/6-31G(d,p) level.'® According to the
energy-minimized structures, the Oxa-dimers (la, 2a)
and Nip-R,S (2b) predominantly adopted the folded
conformations, albeit the hydrogen bond distance of

Table 1. Chemical shifts of amide protons for the major
conformers of 3-6 in CDCl; at 1 mM concentrations

3 4a 4b 5 6
Phe NH 8.59 8.33 8.01 6.68 6.64
Val NH 6.93 6.81 6.15 5.24 5.01
Me NH 6.12 5.81 5.96 5.79 5.64

Percent major conformer of 3, 4a, 4b, 5 and 6 is 87, 83, 82, 61 and
90%, respectively.

(a) Oxa-tetramers 3 and 4a (b) Nip-tetramer 4b
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Figure 3. Summary of partial ROEs observed for tetramers 3
and 4 in CDCl, at room temperature (I mM concentrations).

Nip-R,S was somewhat longer (Fig. 4). However, Nip-
R,R (1b) exhibited hydrogen-bonded and non-hydro-
gen-bonded conformers with similar energies. As a
consequence, the Nip-R,R equilibrated between hydro-
gen-bonded and non-hydrogen-bonded conformers and
thus might adopt poorly folded structures. The distinct
structural feature between two types of dimers is that
the oxyamide group connecting the two rings of Oxa-
dimers shows pyramidal conformation at the amide
nitrogen atom, in contrast, the Nip-dimers exhibit
nearly planar conformation at the corresponding amide
group (Fig. 4). Another structural difference is the
presence of steric hindrance between two B-CH, in the
rings of Nip-dimers. Overall, these structural differ-
ences might dictate the tendency of the examined Oxa-
and Nip-based peptidomimetics to form the folded
structures.

In conclusion, we demonstrated that Oxa-dimers
adopted more stable turn conformations than the corre-
sponding Nip-dimers. In addition, we also revealed that
for tetramers, L,(S)-Oxa,(S)-Oxa,L and L,(S)-Oxa,(R)-

(b) Oxa-S,R (2a)

(a) Oxg-S,S (1a)

(d) Nip-R, S (2b)

[

Figure 4. Energy-minimized structures of dimers generated at
RHF/6-31G(d,p) level. Distances are shown in angstroms
(black: C, gray: N, patterned: O, white: H).
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Oxa,L formed folded structures, however, only L,(R)-

Nip

,(S)-Nip,L promoted the stable folded conforma-

tions.
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