Natural Products

Total Synthesis of $(R, R, R)-\gamma$-Tocopherol through Cu-Catalyzed Asymmetric 1,2-Addition

Zhongtao Wu, Syuzanna R. Harutyunyan, and Adriaan J. Minnaard*[a]

Abstract

Based on the asymmetric copper-catalyzed 1,2addition of Grignard reagents to ketones, (R, R, R) - γ-tocopherol has been synthesized in 36% yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73% ee by the 1,2 -addition of a phytol-derived Grignard reagent to an α-bromo enone prepared from 2,3-dimethylquinone.

Vitamins are essential food ingredients for humans and in feed for animal husbandry. The most important fat-soluble antioxidant, vitamin E, was first reported about one century ago, ${ }^{[1]}$ and is of particular industrial interest as a food and feed additive. ${ }^{[2]}$ Although formally vitamin E comprises a family of tocopherols and tocotrienols with a chroman core (Figure 1), in

Tocopherols 1-4

R^{1}	R^{2}	Tocopherol
-Me	-Me	$\alpha-(\mathbf{1})$
-Me	-H	$\beta-(\mathbf{2})$
-H	-Me	$\gamma-(\mathbf{3})$
-H	-H	$\delta-(\mathbf{4})$
R^{1}	R^{2}	Tocotrienol
-Me	-Me	$\alpha-(\mathbf{5})$
-Me	-H	$\beta-(6)$
-H	-Me	$\gamma-(\mathbf{7})$
-H	-H	$\delta-(\mathbf{8})$

Figure 1. Vitamin E .
is important. ${ }^{[7]}$ Consequently, the asymmetric synthesis of 1 , and especially the stereoselective synthesis of the chroman core, ${ }^{[8]}$ has been the topic of intense research, which has been discussed in several reviews. ${ }^{[9]}$ A selection of the more recent approaches in asymmetric catalysis is depicted in Scheme 2. ${ }^{[10]}$ A very recent shoot of this tree is the application of the Ni-catalyzed conjugate addition of methyl organometallics to a 2-alkyl-4-chromenone core. Although providing racemic product, given the rapid developments in asymmetric conjugate addition, enantioselectivity seems to be a matter of time and effort. ${ }^{[11]}$
γ-Tocopherol is another major member of the vitamin E family and the main vitamin E in US diet. Although α-tocopherol has the highest vitamin E activity, ${ }^{[7]} \gamma$-tocopherol has an unsubstituted aromatic position and therefore can trap electrophilic mutagens, such as nitronium ions, ${ }^{[12]}$ more efficiently. ${ }^{[13]}$ This has elicited further research focused on γ-tocopherol. ${ }^{[14]}$

Compared to α-tocopherol, synthesis efforts on (R, R, R)- γ-tocopherol 3 have been particularly scarce, and the first total synthesis of γ-tocopherol was reported in 1994 with a copper-mediated coupling methodology. ${ }^{[9, \mathrm{~d}, 16]}$ In 1997, Habicher et al. prepared γ-tocopherol by photodecarboxylation of γ-tocopher-ol-5-carboxylic acid, in turn derived from α-tocopherol. ${ }^{[17]}$ Based on this aryl demethylation approach of α-tocopherol, Salvadori et al. reported the preparation of labeled and unlabeled $(R, R, R)-\gamma$-tocopherol 3. ${ }^{[18]}$ No catalytic asymmetric synthesis of 3 has been reported.

In 2012, we reported the enantioselective 1,2-addition of Grignard reagents to α, β-unsaturated ketones
practice the term is synonymous with α-tocopherol or its acetate as it is by far the most dominant member. ${ }^{[2,3]}$ All-rac- α-tocopherol is produced on a scale of more than 30000 ton per year. ${ }^{[4]}$ To meet this huge demand for vitamin E , the industrial synthesis is accomplished by the condensation of trimethylhydroquinone (9) and chemically produced isophytol 10 (Scheme 1). ${ }^{[5]}$

The naturally occurring (R, R, R)-tocopherols are biologically the most active, ${ }^{[3,6]}$ and in particular the stereochemistry at C2

[^0]applying a copper/Josiphos-type catalyst (Scheme 3). ${ }^{[19]}$ This leads to chiral enantioenriched tertiary allylic alcohols, and in a subsequent study we established their absolute configuration. ${ }^{[20]}$

We realized that this catalytic asymmetric 1,2-addition could function as a cornerstone for a novel, relatively straightforward approach to tocopherols and tocotrienols (Scheme 4) provided the subsequent ring closure to the chroman nucleus would be racemization-free. This requires either a strictly $S_{N} 2$-type nucleophilic substitution of the tertiary alcohol by the aromatic hydroxyl group, or an aromatic alkoxylation reaction. The latter, proceeding via an oxidation-reduction pathway of the hydroquinone, had been discovered and studied in depth already by Cohen et al. and does not lead to erosion of ee, ${ }^{[21]}$ as confirmed by subsequent studies. ${ }^{[10 c, 22]}$ Based on these two key steps,

Scheme 1. Synthesis of all-rac- α-tocopherol.

Woggon et al, 2010

Scheme 2. Recently reported strategies on the stereoselective construction of the $2 R$-chroman core in the synthesis of 1. ${ }^{[15]}$

Scheme 3. An example of the asymmetric Cu-catalyzed 1,2-addition of Grignard reagents.
a retrosynthesis was designed allowing full freedom both in the substitution pattern ($\alpha, \beta, \gamma, \delta$)- of the aromatic ring and in the chain leading to tocopherols and tocotrienols.
Aiming at γ-tocopherol, in the synthesis direction ketone 13 should be accessible from commercially available 2,3-dimethyl hydroquinone 15. As the copper-catalyzed asymmetric Grignard addition requires both an unsaturation and an α-substituent flanking the carbonyl group, subsequent steps should lead to 12. (Scheme 4) We showed already that after the 1,2addition, the auxiliary Br is readily removed via Li-halogen exchange followed by protonation. Also reduction of the alkene was not expected to be complicated provided hydrogenolysis of the hydroxyl group could be suppressed. For the actual copper-catalyzed asymmetric 1,2-addition, the current method would have to be advanced. Substrates containing heavily substituted phenyl groups had not been studied in this reaction and therefore the influence of these substitutions on the chemo-, regio-, and enantioselectivity was not known. Moreover, the required Grignard reagent 14 is a long chain with the

11

Scheme 4. Retrosynthesis of $(R, R, R)-\gamma$-tocopherol 3.
nearest branch at the δ-position, whereas in the current catalyst system high ee values were obtained solely with β branched Grignard reagents such as isobutylmagnesium bro-
mide (see Scheme 3). Although efficient catalytic strategies have been developed both by Pfaltz et al. ${ }^{[23]}$ and by us, ${ }^{[24]}$ for the asymmetric synthesis of so-called saturated polyisoprenoids, readily available (R, R)-phytol was chosen in this case as the precursor of the chain. ${ }^{[25]}$
The synthesis of 13 is summarized in Scheme 5. An attempted formylation of 15 according to Skattebøl et al. (with paraf-

Scheme 5. Synthesis of 13: a) Mel, $\mathrm{NaH}, \mathrm{DMF}, \mathrm{O}^{\circ} \mathrm{C}$ to r.t., 3 h ; b) $\mathrm{NBS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, overnight, 93% over two steps; c) nBuLi, DMF, THF, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, 92% d) acetone, $\mathrm{NaOH}, \mathrm{EtOH}$, r.t., $10 \mathrm{~min}, 96 \%$; e) NaBr , oxone, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}$ to r.t., overnight; f) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, reflux, overnight, 80% over two steps. NBS $=N$-bromosuccinimide.
ormaldehyde, MgCl_{2} and triethylamine $)^{[26]}$ did not provide aldehyde 18, not unexpected as this reaction has not been reported with hydroquinones as substrate. Therefore, 16 was prepared in quantitative yield. ${ }^{[27]}$ A direct formylation of 16 turned out to be very difficult as well. Duff reaction (hexamine and TFA) with 16 has been reported ${ }^{[28]}$ to afford 18 in 44% yield, a result that was reproduced but not improved. VilsmeierHaack reaction (phosphoryl chloride and DMF), ${ }^{[29]}$ Rieche formylation (titanium tetrachloride and dichloromethyl methyl ether), ${ }^{[30]}$ and also ortholithiation with nBuLi/TMEDA followed by reaction with $\mathrm{DMF}^{[31]}$ did not provide significant amounts of 18. In an alternative approach, using the conditions reported by Fukuyama et al., 16 was first brominated, ${ }^{[32]}$ followed by bromo-lithium exchange and reaction with DMF. ${ }^{[33]}$ This led after optimization to 18 in an excellent yield from 16. Then, 18 was transformed into enone 19 by aldol condensation with acetone in 96% yield. ${ }^{[34]}$ Subsequent dibromination/ HBr elimination furnished α-enone 13 in 80% yield over two steps. ${ }^{[20,35]}$
The preparation of Grignard reagent 14 started from phytol 21 which already contains two chiral centers with the desired absolute configuration (Scheme 6). Ozonolysis of phytol led to ketone $22{ }^{[36]}$ which was followed by Baeyer-Villiger oxidation according to the procedure of Pratt and Porter et al. to give 23. ${ }^{[37]}$ After hydrolysis of the acetate, 24 was isolated in 92% yield over three steps. Bromination gave the desired 25 in 76% yield from 24. ${ }^{[38]}$ This bromide was convert-
ed into its corresponding Grignard reagent 14 as an $\approx 1.5 \mathrm{~m}$ solution in diethyl ether.
With both 13 and 14 in hand, the copper-catalyzed asymmetric 1,2 -addition was studied. Applying the established conditions (Scheme 3) and Grignard reagent 14, tertiary alcohol 26 was obtained in very good yield. The diastereoselectivity, however, was only 42% (Table 1, entry 1). Screening various solvents, for example, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, and cyclopentyl methyl ether, as well as applying a prolonged addition time, or portion-wise addition of 13 and 14 did not improve this result. To benchmark the obtained 42% de, the asymmetric addition of isobutylmagnesium bromide to 13 was carried out as well, which provided 27 in a re-

Table 1. Investigations on the Cu-catalyzed 1,2-addition.							
(3,5-(C)	$\left.{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{P}-$ $\mathrm{Cy}_{2} \mathrm{~F}$				${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-$ $\mathrm{Ph}_{2} \mathrm{P}$		$\sum_{\mathrm{Le}}^{\mathrm{Fe}_{\mathrm{Fe}}}$
				$\mathrm{R}^{3} \mathrm{MgBr}$ $5 \mathrm{~mol} \% \mathrm{CuBr}{ }^{-S N}$ $6 \mathrm{~mol} \%$ ligand TBME $-78^{\circ} \mathrm{C}$, overnigh	\longrightarrow		
Entry	Ketone	R^{1}	R^{2}	R^{3}	Ligands	1,2-Adduct	$d e / e e^{[\text {[a] }}$
1	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{\text {ch] }}$	L1	26	42
2	13	Me	H	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}$	L1	27	87
3	28	TBS	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L1	-	-
4	29	Me	Me	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L1	30	7
5	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L2	26	36
6	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L3	26	7
7	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L4	26	12
8	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L5	26	racemic
9	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L6	26	racemic
10	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L7	26	26
11	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L8	26	43
12	13	Me	H	$\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}$	L9	26	73

[a] de/ee is not related to the absolute configuration of the 1,2-addition products. [b] $\mathrm{C}_{16} \mathrm{H}_{33}{ }^{*}=$

warding 87% ee (entry 2). This strongly suggested that the moderate de in the case of $\mathbf{2 6}$ is not due to the substitution pattern of the phenyl ring but due to the structure of the Grignard reagent 14. That there are boundaries at the substitution pattern on the aromatic ring became clear in a parallel study. When the methyl protecting groups in 13 were replaced by tert-butyldimethylsilyl groups leading to enone 28, this substrate did not react under standard 1,2-addition conditions (entry 3). Also 29 was prepared as the precursor for (R, R, R)- $\alpha-$ tocopherol 1 , but the product of the addition of $\mathbf{1 4}, \mathbf{3 0}$, was almost racemic (entry 4).

These studies forced a re-evaluation of the applied chiral ligand, rev-Josiphos L1. In the development of the catalytic asymmetric 1,2-addition of Grignard reagents we had already experienced that $\mathbf{L 1}$ was unique in its chiral induction. Both closely related ligands such as the parent Josiphos, and unrelated ligands such as BINAP, and phosphoramidites performed badly. These studies were carried out with isobutylmagnesium bromide as the nucleophile.
We therefore studied various chiral ligands, including the commercial ligands L2-L4 and L8 and L9 and the ligands L5L7 prepared for this purpose, ${ }^{[39,40]}$ in combination with Grignard reagent 14. Most ligands performed less well compared to rev-Josiphos L1 (entries 5-10). Josiphos-type ligand L8, being an exception, afforded a virtually identical de as L1 (entry 11). Ligand $\mathbf{L 8}$ bears a sterically demanding di-tert-butyl phosphine group in combination with the Josiphos-like arrangement of a dialkyl phosphine on the ethyl branch and a diaryl phosphine on the ferrocene ring. In our experience, the enantioselectivity of the copper-catalyzed 1,2-addition profits from rev-Josiphos type ligands, that is, a dialkyl phosphine on the ferrocene and a diaryl phosphine ethyl branch. Following this idea, we studied commercial ligand L9. To our delight, a significant improvement of the diastereoselectivity to 73% was observed in the 1,2 -addition of Grignard reagent 14 to 13 (entry 12). So, the three rev-Josiphos-type ligands L7, $\mathbf{L 1}$, and L8, gave us a clear hint to increase the $d e$ in the $1,2-$ addition of 14 to 13 , by increasing the steric bulk at the ferrocene phosphorus substituent of rev-Josiphos type ligands. This lured us into an attempt to prepare several new rev-Josiphos type ligands with sterically very hindered phosphorus substituents on position 2 of the ferrocenyl ring (Figure 2). A consider-

$R=$ substituents bigger than a tert-butyl group

Figure 2. Designed rev-Josiphos type Ligands.
able effort was invested in the preparation of L1-type ligands with $\mathrm{R}=\mathrm{EtMe}_{2} \mathrm{C}, \mathrm{Et}_{3} \mathrm{C}, i \mathrm{PrMe}_{2} \mathrm{C}$, and adamantyl according to literature procedures for related ligands. ${ }^{[41]}$ However, the coupling of the $\mathrm{R}_{2} \mathrm{PCl}$ reagent with the ortho-lithiated ferrocene invariably failed, probably due to this (desired) steric hindrance. Ligand L7 was accessible by this method but afforded a low
de in the subsequent 1,2-addition, probably because the steric bulk was not directly positioned at the phosphorus center. Therefore we had to conclude that 73% de was the maximum achievable stereoselectivity at present.
With the most optimal ligand L9, we produced the key chiral tertiary alcohol 26 in 73% de and 93% yield. Straightforward debromination of 26 with $t B u L i$ at $-78^{\circ} \mathrm{C}$ for 0.5 h afforded 31 in 91% yield (Scheme 7). ${ }^{[42]}$ Reduction of the double

Scheme 7. Synthesis of (R, R, R)- γ-tocopherol. a) 14, CuBr-SMe ${ }_{2}$, L9, TBME, $-78^{\circ} \mathrm{C}$, overnight, 93%; b) $t \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 91 \%$; c) flavin catalyst, $\mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH, r.t., overnight; 90%; d) i. $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, 0.5 h ; ii. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, acetone/ $\mathrm{H}_{2} \mathrm{O}$, r.t., 0.5 h ; iii. p-TSA, toluene $60^{\circ} \mathrm{C}, 5 \mathrm{~min}$, 72% over three steps. p-TSA $=p$-toluenesulfonic acid.
bond in 31 turned out to be a showcase for flavine-catalyzed diimide reduction. ${ }^{[43]}$ Heterogeneous transition metal catalysts, for example, $\mathrm{Pd} / \mathrm{C}_{1}^{[44]} \mathrm{Pt} / \mathrm{C}, \mathrm{PtO}_{2}{ }^{[45]}$ and $\mathrm{Pd} / \mathrm{C} / \mathrm{NaOAc}{ }^{[10 \mathrm{cc]}}$ in combination with H_{2} invariably provided the hydrogenolysis product and also the recently disclosed diimide reduction with FeCl_{3} as the catalyst suffered from hydrogenolysis. ${ }^{[46]}$ Flavinecatalyzed double bond reduction of $\mathbf{3 1}$ afforded $\mathbf{3 2}$ as the only product in 90% yield. ${ }^{[47]}$ To prepare for the ring-closing step, 32 was oxidized to the corresponding quinone by treatment with cerium(IV) ammonium nitrate, followed by subsequent reduction to afford hydroquinone 11. Finally, acid-catalyzed and oxygen-induced cyclization of $\mathbf{1 1}$ provided the desired (R, R, R)-γ-tocopherol 3 in 72% yield over three steps. ${ }^{[22 b, c]}$ The synthetic material was identical in all aspects (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, mass analysis) with the reported data. ${ }^{[48]}$
In summary, we developed an efficient synthesis of $(R, R, R)-\gamma^{-}$ tocopherol based on copper-catalyzed asymmetric 1,2 -addition. Starting from commercially available 2,3-dimethyl hydroquinone and phytol, (R, R, R) - γ-tocopherol was prepared in 12 steps (longest linear sequence), 36% overall yield and 73% de at the C2 chiral center. The synthesis is not misplaced in the current collection of catalytic asymmetric approaches to the tocopherols, as the route is straightforward, in particular in its introduction of chirality at C2, and its use of readily available
building blocks. An important finding is that the catalyst system used for the asymmetric addition of a complex Grignard reagent could be considerably optimized in terms of stereoselectivity. This means that the scope of Grignard reagents suitable for this reaction has been enlarged and offers further opportunities for study. Inherently the method is very versatile as Grignard reagents are readily prepared from alkyl bromides.

Acknowledgements

Support by the NRSC-Catalysis program is kindly acknowledged.

Keywords: $(R, R, R)-\gamma$-tocopherol • 1,2-addition • asymmetric catalysis • natural product synthesis • vitamin E
[1] H. M. Evans, K. S. Bishop, Science 1922, 56, 650-651.
[2] a) T. Rosenau, E. Kloser, L. Gille, F. Mazzini, T. Netscher, J. Org. Chem. 2007, 72, 3268-3281; b) W. Bonrath, C. Dittel, L. Giraudi, T. Netscher, T. Pabst, Catal. Today 2007, 121, 65-70.
[3] T. Netscher, G. Malaise, W. Bonrath, M. Breuninger, Catal. Today 2007, 121, 71-75.
[4] W. Bonrath, M. Eggersdorfer, T. Netscher, Catal. Today 2007, 121, 45-57.
[5] a) J. L. Finnan, Eropean Patent, EP0100471 (A1), 1984; b) W. Bonrath, A. Haas, E. Hoppmann, H. Pauling, Eropean patent, EP1180517 (A1), 2002; c) W. Bonrath, A. Haas, E. Hoppmann, T. Netscher, H. Pauling, F. Schager, A. Wildermann, Adv. Synth. Catal. 2002, 344, 37-39.
[6] a) H. Weiser, M. Vecchi, Int. J. Vitam. Nutr. Res. 1982, 52, 351-370; b) B. J. Weimann, H. Weiser, Am. J. Clin. Nutr. 1991, 53, S1056-S1060.
[7] A. Kamal-Eldin, L. A. Appelqvist, Lipids 1996, 31, 671-701.
[8] M. Uyanik, H. Hayashi, K. Ishihara, Science 2014, 345, 291-294.
[9] a) T. Netscher, Vitam. Horm. 2007, 76, 155-202; b) A. Chougnet, K. G. Liu, W. D. Woggon, Chimia 2010, 64, 303-308; c) M. Eggersdorfer, D. Laudert, U. Letinois, T. McClymont, J. Medlock, T. Netscher, W. Bonrath, Angew. Chem. Int. Ed. 2012, 51, 12960-12990; Angew. Chem. 2012, 124, 13134-13165; d) T. Netscher, Chimia 1996, 50, 563-567.
[10] a) J. Hübscher, R. Barrier, Helv. Chim. Acta 1990, 73, 1068-1086; b) L. F. Tietze, T. Kinzel, Pure Appl. Chem. 2007, 79, 629-650; c) C. Rein, P. Demel, R. A. Outten, T. Netscher, B. Breit, Angew. Chem. Int. Ed. 2007, 46, 8670-8673; Angew. Chem. 2007, 119, 8824-8827; d) J. Chapelat, A. Buss, A. Chougnet, W. D. Woggon, Org. Lett. 2008, 10, 5123-5126; e) K. G. Liu, A. Chougnet, W. D. Woggon, Angew. Chem. Int. Ed. 2008, 47, 5827-5829; Angew. Chem. 2008, 120, 5911-5913; f) U. Hengartner, A. Chougnet, K. G. Liu, W. D. Woggon, Chem. Eur. J. 2010, 16, 1306-1311.
[11] A. O. Termath, J. Velder, R. T. Stemmler, T. Netscher, W. Bonrath, H.-G. Schmalz, Eur. J. Org. Chem. 2014, 2014, 3337-3340.
[12] a) N. C. Hoglen, S. C. Waller, I. G. Sipes, D. C. Liebler, Chem. Res. Toxicol. 1997, 10, 401-407; b) R. V. Cooney, A. A. Franke, P. J. Harwood, V. Hatchpigott, L. J. Custer, L. J. Mordan, Proc. Natl. Acad. Sci. USA 1993, 90, 1771-1775.
[13] A. Patel, F. Liebner, K. Mereiter, T. Netscher, T. Rosenau, Tetrahedron 2007, 63, 4067-4073.
[14] a) R. V. Cooney, P. J. Harwood, A. A. Franke, I. Narala, A. K. Sundstrom, P. O. Berggren, L. J. Mordan, Free Radical Biol. Med. 1995, 19, 259-269; b) S. Christen, A. A. Woodall, M. K. Shigenaga, P. T. SouthwellKeely, M. W. Duncan, B. N. Ames, Proc. Natl. Acad. Sci. USA 1997, 94, 3217-3222; c) R. J. Singh, S. P. A. Goss, J. Joseph, B. Kalyanaraman, Proc. Natl. Acad. Sci. USA 1998, 95, 12912-12917; d) S. Yenes, A. Messeguer, Tetrahedron 1999, 55, 14111-14122.
[15] For more details, see: Ref. [9].
[16] T. Netscher, P. Bohrer, R. A. Outten, H. Schneider, R. K. Müller, E. Glinz, W. Walther, U. B. Ranalder, Ischia Advanced School of Organic Chemistry VI session, Ischia porto, Napoli, Italy, Sept. 25-30, 1994, (poster).
[17] T. Rosenau, W. D. Habicher, Synlett 1997, 1997, 208-210.
[18] F. Mazzini, T. Netscher, P. Salvadori, Tetrahedron 2005, 61, 813-817.
[19] a) A. V. R. Madduri, S. R. Harutyunyan, A. J. Minnaard, Angew. Chem. Int. Ed. 2012, 51, 3164-3167; Angew. Chem. 2012, 124, 3218-3221; b) A. V. R. Madduri, A. J. Minnaard, S. R. Harutyunyan, Chem. Commun. 2012, 48, 1478-1480; c) A. V. R. Madduri, A. J. Minnaard, S. R. Harutyunyan, Org. Biomol. Chem. 2012, 10, 2878-2884.
[20] Z. Wu, A. V. R. Madduri, S. R. Harutyunyan, A. J. Minnaard, Eur. J. Org. Chem. 2014, 575-582.
[21] N. Cohen, R. J. Lopresti, C. Neukom, J. Org. Chem. 1981, 46, 2445-2450.
[22] a) M. E. Jung, J. M. MacDougall, Tetrahedron Lett. 1999, 40, 6339-6342; b) D. J. Maloney, S. M. Hecht, Org. Lett. 2005, 7, 4297-4300; c) M. Fuchs, Y. Simeo, B. T. Ueberbacher, B. Mautner, T. Netscher, K. Faber, Eur. J. Org. Chem. 2009, 833-840.
[23] a) S. Bell, B. Wüstenberg, S. Kaiser, F. Menges, T. Netscher, A. Pfaltz, Science 2006, 311, 642-644; b) S. J. Roseblade, A. Pfaltz, Acc.Chem. Res. 2007, 40, 1402-1411; c) A. Wang, B. Wüstenberg, A. Pfaltz, Angew. Chem. Int. Ed. 2008, 47, 2298-2300; Angew. Chem. 2008, 120, 2330 2332.
[24] a) C. Ferrer, P. Fodran, S. Barroso, R. Gibson, E. C. Hopmans, J. Sinninghe Damste, S. Schouten, A. J. Minnaard, Org. Biomol. Chem. 2013, 11, 2482-2492; b) R. P. van Summeren, S. J. W. Reijmer, B. L. Feringa, A. J. Minnaard, Chem. Commun. 2005, 1387-1389.
[25] M. Schröder, N. Lutz, W. Vetter, Chromatographia 2014, 77, 379-385.
[26] a) N. U. Hofsløkken, L. Skattebøl, Acta Chem. Scand. 1999, 53, 258-262; b) T. V. Hansen, L. Skattebøl, Org. Synth. 2005, 82, 64-68; addendum: T. V. Hansen, L. Skattebøl, Org. Synth. 2012, 89, 220-229.
[27] J. Kang, G. Hilmersson, J. Santamaría, J. Rebek, J. Am. Chem. Soc. 1998, 120, 3650-3656.
[28] A. V. Zaytsev, R. J. Anderson, A. Bedernjak, P. W. Groundwater, Y. Huang, J. D. Perry, S. Orenga, C. Roger-Dalbert, A. James, Org. Biomol. Chem. 2008, 6, 682-692.
[29] D. Maes, M. E. Riveiro, C. Shayo, C. Davio, S. Debenedetti, N. De Kimpe, Tetrahedron 2008, 64, 4438-4443.
[30] A. Rieche, H. Gross, E. Höft, Org. Synth. 1967, 47, 1-3.
[31] B. M. Trost, H. C. Shen, L. Dong, J.-P. Surivet, C. Sylvain, J. Am. Chem. Soc. 2004, 126, 11966-11983.
[32] M. M. Johnson, J. M. Naidoo, M. A. Fernandes, E. M. Mmutlane, W. A. L. van Otterlo, C. B. de Koning, J. Org. Chem. 2010, 75, 8701-8704.
[33] A. Endo, A. Yanagisawa, M. Abe, S. Tohma, T. Kan, T. Fukuyama, J. Am. Chem. Soc. 2002, 124, 6552-6554.
[34] P.-C. Kuo, C.-Y. Cherng, J.-F. Jeng, A. Damu, C.-M. Teng, E. J. Lee, T.-S. Wu, Arch. Pharmacal Res. 2005, 28, 518-528.
[35] a) J. C. Banks, D. V. Mele, C. G. Frost, Tetrahedron Lett. 2006, 47, 2863 2866; b) K. P. Park, H. J. Ha, P. G. Williard, J. Org. Chem. 1991, 56, $6725-$ 6727.
[36] L. Zhao, C. Jin, Z. Mao, M. B. Gopinathan, K. Rehder, R. D. Brinton, J. Med. Chem. 2007, 50, 4471-4481.
[37] T.-g. Nam, C. L. Rector, H.-y. Kim, A. F. P. Sonnen, R. Meyer, W. M. Nau, J. Atkinson, J. Rintoul, D. A. Pratt, N. A. Porter, J. Am. Chem. Soc. 2007, 129, 10211-10219.
[38] J. Chapelat, U. Hengartner, A. Chougnet, K. Liu, P. Huebbe, G. Rimbach, W.-D. Woggon, ChemBioChem 2011, 12, 118-124.
[39] R. Oost, J. Rong, A. J. Minnaard, S. R. Harutyunyan, Catal. Sci. Technol. 2014, 4, 1997-2005.
[40] For the synthesis of ligand L6, see the Supporting Information.
[41] a) R. B. King, J. C. Cloyd, R. H. Reimann, J. Org. Chem. 1976, 41, 972977; b) T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto, M. Kumada, Bull. Chem. Soc. Jpn. 1980, 53, 1138-1151; c) A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert, A. Tijani, J. Am. Chem. Soc. 1994, 116, 4062-4066.
[42] V. G. Nenajdenko, K. I. Smolko, E. S. Balenkova, Tetrahedron: Asymmetry 2001, 12, 1259-1266.
[43] a) C. Smit, M. W. Fraaije, A. J. Minnaard, J. Org. Chem. 2008, 73, 9482 9485 ; b) J. F. Teichert, T. den Hartog, M. Hanstein, C. Smit, B. ter Horst, V. Hernandez-Olmos, B. L. Feringa, A. J. Minnaard, ACS Catal. 2011, 1, 309315.
[44] a) N. Majumdar, K. A. Korthals, W. D. Wulff, J. Am. Chem. Soc. 2011, 133, 1357-1362; b) E. J. Tisdale, B. G. Vong, H. M. Li, S. H. Kim, C. Chowdhury, E. A. Theodorakis, Tetrahedron 2003, 59, 6873-6887.
[45] S. Takano, T. Sugihara, K. Ogasawara, Synlett 1990, 451-452.
[46] M. Lamani, G. S. Ravikumara, K. R. Prabhu, Adv. Synth. Catal. 2012, 354, 1437-1442.
[47] For an alternative solution for this reduction, see: Q. Zhao, D. P. Curran, M. Malacria, L. Fensterbank, J.-P. Goddard, E. Lacôte, Chem. Eur. J. 2011, 17, 9911-9914.
[48] T.-J. Ling, W.-W. Ling, Y.-J. Chen, X.-C. Wan, T. Xia, X.-F. Du, Z.-Z. Zhang, Molecules 2010, 15, 8469-8477.

Received: July 17, 2014
Published online on September 9, 2014

[^0]: [a] Z. Wu, Prof. Dr. S. R. Harutyunyan, Prof. Dr. A. J. Minnaard Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7, 9747 AG, Groningen (The Netherlands) E-mail: a.j.minnaard@rug.nlSupporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201404458.

