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ABSTRACT
Compounds containing nitrogen and sulfur atoms can be widely used in various fields such as industry,
medicine, biotechnology and chemical technology. Therefore, the reactions of aminomethylation and
alkoxymethylation of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothiazole were developed.
Additionally, the alkoxymethyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized
by a reaction with hemiformals, which are prepared by the reaction of alcohols and formaldehyde. In this
study, the inhibitory effects of these molecules were investigated against acetylcholinesterase (AChE),
butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II isoenzymes (hCA I and II). Both hCA
isoenzymes were significantly inhibited by the recently synthesized molecules, with Ki values in the range
of 58–157 nM for hCA I, and 81–215 nM for hCA II. Additionally, the Ki parameters of these molecules for
BChE and AChE were calculated in the ranges 23–88 and 18–78nM, respectively.
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Introduction

Chemists are interested in derivatives of mercaptobenzothiazole
and mercaptobenzoxazole because a number of biologically and
physiologically active compounds with bactericidal, fungicidal,
tuberculostatic, anti-inflammatory, parasympatholytics and anes-
thetic properties have been synthesized based on them.1

The carbonic anhydrases (CAs, E.C.4.2.1.1) are a superfamily of
metalloenzymes that catalyze a crucial and simple biochemical
reaction, the reversible hydration of carbon dioxide (CO2) and
water (H2O) to bicarbonate (HCO�

3 ) and protons (Hþ).2–5 This reac-
tion, in the absence of CA cannot proceed with a perceptible rate
under physiological positions.6–8

CO2 þ H2O ()CA H2CO3 () HCO�
3 þ Hþ

CAs are widely distributed in all kingdoms of life and are cate-
gorized in seven distinct classes: a-, b-, c-, d-, f-, g- and h-CAs.
Each CA family demonstrates proper specific characteristics in the
primary amino acid sequence.9,10 a-CAs are found in mammals.
a-CAs, which have sixteen isoenzymes are expressed predomin-
antly in vertebrates and are the only class observed in humans.
They are catalytically active and differ in their subcellular localiza-
tion, distribution in organs and tissues, kinetic properties, expres-
sion levels, and inhibitor binding affinities.11–13 Additionally, CAs
play important roles in a multitude of physiological activities in
eukaryotes, such as CO2 transport, respiration, photosynthesis and
electrolyte secretion.14–16

The production of novel CA inhibitors (CAIs) is a growing prior-
ity for pharmaceutical research and discovery. In addition to the
defined role of CAIs as antiglaucoma drugs and diuretics, their
potential as anti-obesity, anti-convulsant, anti-infective and anti-
cancer has been recently described.17,18 hCA II inhibitors has been
widely studied from structural and design points-of-view and in
dynamics simulations.19–21 In addition, it is the most widespread
physiologically relevant CA isoenzyme.

Alzheimer’s disease (AD) is the most prevalent cause of demen-
tia in elderly people.22–24 Recoveries in cognitive capabilities in AD
patients were obtained by disrupting or blocking the acetylcholin-
esterase (AChE) activity with inhibitor compounds.25–27 Alkaloid
compounds are some of the strongest acetylcholinesterase inhibi-
tors (AChEIs); therefore searches for novel alkaloids with inhibitory
compounds have been conducted.28–30 The AChE enzyme by
prompting hydrolyzes of the neurotransmitter acetylcholine (ACh),
concluding an impulse transmissions at the cholinergic synapses
in neurons.31,32 As can be seen in Figure 1, the active site of
AChE’s consists of two parts: (i) the anionic part that accommo-
dates the positively charged section of acetylcholine and (ii) the
catalytic part where the ester bond is hydrolysed.33,34 AChE is the
target of many drugs and neurotoxins that bind particularly to its
active site.35,36 Inhibition of AChE is used for the treatment of
senile dementia, AD, myasthenia gravis, ataxia and Parkinson’s dis-
ease.37–39 AChE can also serve as a probe for biosensors that are
capable of binding to and potentially discovering new AChE
inhibitor compounds; these compounds have applications as
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possible neurotoxins, such as nerve factors, pesticides and thera-
peutic drugs.40,41 X-ray structures have indicated that the although
the butyrylcholinesterase (BChE) and AChE structures are similar,
multiple structural discrepancies in the active-site gorges and the
active sites have been observed.42,43 BChE has of toxicological and
pharmacological importance because it scavenges ChEIs, including
potent organophosphorus nerve factors, before they bind synap-
ses and hydrolyzes ester-containing drugs44. BChE is also import-
ant for drug metabolism such as cocaine.45 Both BChE and AChE,
which have molecular roles beyond normal neurons and differenti-
ated kinetics recorded in the brain, accumulate within tangles and
amyloid plaques.46

The goal of this paper is to design and synthesize some novel
aminomethyl and alkoxymethyl derivatives (1–17) and to generate
more potent BChE and AChE enzymes, CA II and I isoforms.

Experimental

Chemistry

Synthesis of aminomethyl derivatives of benzothiazole and ben-
zoxazolthiones (1–10)
Aminomethylation was carried out at the temperature of 10�C by
adding the corresponding aminal to a solution of mercaptobenzo-
thiazole (or mercaptobenzoxazole) in ethanol. The resulting prod-
uct was recrystallized from methanol. The aminomethyl derivatives
of benzothiazole and benzoxazolthiones 2–8 were reported in the
literature.47–53 However, there is no information about the synthe-
sis of compounds 9 and 10 in the literature.

Initial aminals were obtained by condensing of secondary
amines with formaldehyde. The physico-chemical characteristics of
the obtained products are shown in Table 1.

Formaldehyde was used as a form of paraformaldehyde. The
reaction was carried out in an absolute ethanol solution.
Hemiformals reacted immediately after its preparation without iso-
lation. The resulting reaction water was separated by azeotropic
distillation with benzene. The crystals were obtained after distilling
the solvents, including ethanol and benzene, and recrystallizing.
The melting points and yields are given in Table 2.

Synthesis of the alkoxymethyl derivatives of benzoxazolthione and
2-aminothiazole (11–17)
To do this, hemiformal was obtained from 0.05mol of a formalde-
hyde (used as paraformaldehyde) and 40ml of the corresponding
alkanol (taken in excess as a solvent). Hemiformal reacted immedi-
ately after its preparation without isolation. Then, 0.05mol of

mercaptobenzoxazole (or 2-aminothiazole) dissolved in ethanol
was added to hemiformal at the temperature of 10 �C. The result-
ing reaction water was separated by azeotropic distillation with
benzene. The crystalline substances were obtained after distilling
off the solvent (ethanol, benzene) and recrystallization.

Biological studies

Purification of carbonic anhydrase I and II isoforms and inhibition
studies
To observe of inhibition effects of novel aminomethyl and alkoxy-
methyl derivatives (1–17) on CA I, and II isoforms, which purified
from fresh human erythrocyte using an affinity chromatography
procedure.54,55 CA activity was determined using the previously
described spectrophotometric procedure of Verpoorte et al.56 as
explained previously.21,57,58 In this procedure, changes in activity
were obtained during 3min at 22 �C. p-Nitrophenylacetate (PNA)
compound was used as a substrate, and it was converted by both
isoforms to p-nitrophenolate ions.59,60 The quantity of protein was
measured according to the previously described by Bradford
method.61–64 and bovine serum albumin was used as the stand-
ard.65,66 After the purification method of the CA isoforms, samples
were subjected to SDS polyacrylamide gel electrophoresis (SDS-
PAGE).67–69 The change in activity was spectrophotometrically
obtained at 348 nm.70,71 The IC50 values were calculated from
activity (%) against compounds inhibition.72–74 Three various con-
centrations were used to calculate Ki values.

75–77

AChE/BChE activity determination and inhibition studies
The inhibitory effects of novel aminomethyl and alkoxymethyl
derivatives (1–17) on AChE and BChE activities were measured
according to Ellman et al.78 Acetylthiocholine iodide (AChI) and
butyrylthiocholine iodide (BChI) were used as substrates for the
reaction. 5,50-Dithio-bis(2-nitro-benzoic)acid (DTNB) was used for
the measurement of the AChE/BChE activities. Briefly, 1.0ml of
Tris/HCl buffer (1.0M, pH 8.0), and 10 mL of sample solution were
dissolved in deionized water at different concentrations and 50mL
AChE/BChE solution were mixed and incubated for 10min at
25 �C. Next 50 mL of DTNB (0.5mM) was added. The reaction was
then initiated by the addition of 50 mL of AChI or BChI. The
hydrolysis of these substrates was monitored spectrophotometric-
ally by the formation of the yellow 5-thio-2-nitrobenzoate anion,
as a result of the reaction of DTNB with thiocholine, which
released by enzymatic hydrolysis of AChI or BChI, with absorption
maximum at 412 nm.

Figure 1. The hydrolyze reaction of acetylcholine in the presence of acetylcholinesterase enzyme (AChE).
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Results and discussion

Synthesis

Many physiologically active natural compounds contain >N-CH2-
O->N-CH2-N< structural fragments. This study sought to build a
structure that combines physiologically active benzothiazole or
benzoxazole groups with alkoxymethyl or aminomethyl fragments.
Therefore, the aminomethylation and alkoxymethylation reactions
of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothia-
zole are developed.

The structure of the products was established by NMR spectros-
copy and the composition was confirmed by elemental analysis.
Spectra were measured on a Bruker device in acetone. A singlet at
4.6 ppm corresponding to N-CH2-N was observed in the 1H NMR
spectra of all aminomethyl derivatives. A singlet at 5.2–5.8 ppm
characterized the presence of the fragment N-CH2-O in the 1H
NMR spectra of alkoxymethyl derivatives. Methylene-bis-amines,
which have good alkylation (amino-methylation) properties, were
used as amino-methylation reagents.

The alkoxymethyl derivatives of mercaptobenzoxazole and
2-aminothiazole were synthesized by reacting them with hemifor-
mals, which were prepared by the reaction of alcohols

Table 1. Physico-chemical characteristics of aminomethyl derivatives of benzothiazol- and benzoxazolthiones

Found/calculated (%)

No Compound
The melting
point (�C)

Yield
(%) C H N S Brutto formula NMR spectra d (ppm)

1

N

S S

N OCH2

120–121 45 54.61
54.13

5.76
5.26

10.60
10.52

24.20
24.06

C12H14N2OS2 1.79 (kv. 2H, CH2CH2CH2), 3.29(t., 2H, NCH2), 3.9
(t., 2H, �CH2), 4.567 (t., 2H, NCH2N), 5.3
(s., 2H, NCH2O), 6.8–7.6 (m., 4H, C6H4).

2
N

S S

ONCH2

124–126 40 56.00
57.60

5.90
5.30

10.30
10.50

26.60
24.60

C11H12N2OS2 1.819 (kv. 2H, CH2CH2CH2), 3.119 (t., 2H, NCH2),
3.9 (t., 2H, �CH2), 4.567 (t., 2H, NCH2N),
5.3 s. 2H (NCH2O), 7.1–7.3 m. 4H (C6H4)

3
N

S S

ONCH2
134 40 54.9

54.13
5.55
5.26

11.01
10.52

24.56
24.06

C12H14N2OS2 1.7 (m., 2H, CH2CH2CH2), 1.97 (m., 4H,
CH2CH2CH2), 3.01 (t., 4H, NCH2N), 7.6–8.9
(d., 4H, C5-C7), 8.1 (s., 2H, ArCH2N).

4
N

S S

NCH2
152–152.5 42 57.6

57.0
7.5
5.6

11.3
11.2

28.8
25.6

C13H16N2S2 1.5 (m., 2H, CH2CH2CH2), 1.7 (m., 4H,
CH2CH2CH2), 3.15 (t., 4H, NCH2N), 7.1–7.6
(d., 4H, C5-C7), 8 (s., 2H, ArCH2N).

5 N

S S

CH2N(C2H5)2
128–130 35 54.4

57.14
5.98
6.35

8.2
11.11

27.0
25.4

C12H16N2S2 2.19 (kv, 2H, CH2CH2CH2), 3.12 (t., 2H, NCH2),
3.6 (t., 2H, �CH2), 4.67 (t., 2H, NCH2N), 5.20 s.
2H (NCH2O), 7.1–7.5 m. 4H (C6H4).

6 N

O S

CH2N(C2H5)2
105 65 59.87

61.02
5.98
6.78

10.85
11.86

13.03
13.56

C12H16N2OS 1.28 (m., 2H, CH2CH2CH2), 3.04 (t., 2H, CH2N),
3.69 t., (2H, CH2�), 4.59 (s., 2H, NCH2N),
5.36 (s., 2H, NCH2O), 6.9–7.9 (m., 4H, C6H4).

7
N

O S

NCH2
125 45 63.52

62.9
6.04
6.45

9.39
11.29

11.53
12.9

C13H16N2OS 1.88 (m., 2H, CH2CH2CH2), 3.18 (t., 2H, CH2N),
3.9 (t., 2H, CH2�), 4.39 (s., 2H, NCH2N), 5.56
(s. 2H, NCH2O), 7.4–7.7 (m., 4H, C6H4).

8
N

O S

ONCH2
145–147 48 57.58

57.6
5.7
5.6

11.34
11.2

12.54
12.8

C12H14N2O2S 1.21 (d., 2H, CH2CH2CH2), 3.23 (t., 2H, CH2N),
3.7 (t., 2H, CH2�), 4.39 (s., 2H, NCH2N), 5.86
(s., 2H, NCH2O), 7.14–7.97 (m., 4H, C6H4).

9
N

O S

ONCH2

115–118 60 55.84
55.93

5.25
5.08

11.65
11.86

13.87
13.55

C11H12N2O2S 1.38 (m., 2H, CH2CH2CH2), 2.08 (t. 2H, CH2N),
3.39 (t., 2H, CH2�), 3.59 (s., 2H, NCH2N),
5.16 (s., 2H, NCH2O), 7.1–8.7 (m., 4H, C6H4).

10

N

O S

N OCH2

145–147 67.6 56.0
57.6

5.51
5.6

11.0
11.2

13.3
12.8

C12H14N2O2S 1.8 (m., 2H, CH2CH2CH2), 3.08 (t., 2H, CH2N),
3.9 (t., 2H, CH2�), 4.59 (s., 2H, NCH2N), 5.56
(s.,. 2H, NCH2O), 7.4–7.7 (m., 4H, C6H4).
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with formaldehyde.

ROH þ CH2O ! ROCH2OH

Biological results

Sulfamate and sulfonamide CAIs demonstrated fundamental anti-
glaucoma and anti-tumour activities in vivo and in vitro; therefore
new therapeutic approaches targeting either hCA IX/XII (for

antitumor activity) or hCA II (for antiglaucoma action) have been
developed.79,80 hCA II enhances sodium bicarbonate secretion in
the anterior uvea of the eye causing glaucoma and visual dysfunc-
tion.81 Heterocyclic molecules with primitive sulfonamide com-
pounds are the most extensively evaluated class of CAIs, which
has led to the advancement of diverse classes of clinical drugs like
methazolamide (MZA), acetazolamide (AZA) and others.82 In this
work, both the Ki and IC50 of the aminomethyl and alkoxymethyl
derivatives (1–17) were calculated and they are given in Table 3.

1. Cytosolic hCA I, and II isoenzymes are widely distributed
throughout the human body and interference with these
enzymes may cause side effects. For the cytosolic hCA I
enzyme, aminomethyl and alkoxymethyl derivatives (1–17)
had Ki values in the range of 58 ± 15 to 157 ± 38 nM (Table 3).
Especially, compound 8 (Ki: 58 ± 15 nM); N-morfolinomethyl-
benzoxazoline-2-thion and compound 5 (Ki: 70 ± 15 nM);
N-diethylaminomethylbenzothiazoline-2-thione) inhibited the
hCA I isoform more potently than the standard compound
AZA (Ki: 333 ± 28 nM), which is used to treat glaucoma, cysti-
nuria, periodic paralysis, epileptic seizure, dural estasia and
central sleep apnea. hCA I is involved in retinal edema and
cerebral and the inhibition of hCA I can be a significant factor
for eliminating of these conditions.83

2. The role of hCA II in diseases such as glaucoma has been well
characterized. Indeed, HCO�

3 production serves as a mechan-
ism to transport sodium ions (Naþ) into the eye along with
the influx of water, which leads to an increase in intraocular
pressure.84 Inhibition of CA II decreases HCO�

3 production and

Table 2. Physico-chemical characteristics of the alkoxymethyl derivatives of benzoxazolthione and 2-aminothiazoles.

Found/calculated (%)

No Compounds
Melting
point (�C) Yield (%) C H N S

Brutto
Formula NMR spectra d (ppm)

11 N

O S

CH2OCH3
130 71.72 55.40

55.38
4.58
4.61

7.13
7.18

16.35
16.41

C9H9NO2S 2.06 (s., 3H, OCH3); 5.781 (s., 2H,
NCH2O); 7.373–7.55 (m., 4H, C6H6).

12 N

O S

CH2OC2H5
132–133 77 57.37

57.42
5.15
5.26

6.64
6.70

15.23
15.31

C10H11NO2S 2.06–2.096 (t., 3H, CH3); 3.07 (kv,
2H,CH2CH3); 5.766 (s., 2H, NCH2O);
7.33–7.52 (m., 4H, C6H4).

13

N

O S

CH2 C(CH3)2

H

O

126–127 24 57.33
57.42

5.63
5.83

6.13
6.28

14.18
14.35

C11H13NO2S 2.01–2.16 (d., 6H, (CH3)2; 2.999
(m., 1H, OCH); 5.77 (s., 2H,
NCH2O); 7.34–7.53 m., 4H, C6H4).

14 N

O S

CH2OCH2CH2OCH3
120–121 19 55.17

55.23
5.35
5.44

5.75
5.86

13.28
13.39

C11H13NO3S 1.06-2.01 (t., 3H, CH3), 3.072
(kv, 2H,CH2CH3), 5.62 (s., 2H,
NCH2O), 6.83–7.92 (m., 4H, C6H4).

15

N
S

N
H

CH2OCH2CH2OCH3

120–121 30 43.52
44.68

6.28
6.38

14.78
14.89

17.15
17.02

C7H12N2SO2 2.86 (s., 1H, NH); 5.11
(t., 4H,-OCH2CH2O-);
5.29 s. (3H, -OCH3); 5.20 (s., 2H,
NCH2O); 6.86 (d., 1H, SCH); 7.61
(d., 1H, NCH).

16

N
S

N
H

CH2 C(CH3)2

H

O

118–120 – 47.98
48.84

6.35
6.98

15.97
16.28

17.80
18.6

C7H12N2SO 1.11-2.10 (t., 3H, CH3), 3.10 (kv,
2H,CH2CH3), 5.20 (s., 2H, NCH2O),
6.83–7.792 (m., 4H, C6H4).

17

N
S

N
H

CH2OCH3

126–127 27 40.52
41.67

5.03
5.56

18.37
19.44

23.12
22.22

C5H8N2SO 2.86–2.47 (s., 1H, NH); 5.19 (t., 4H,
-OCH2CH2O-); 5.19 s. (3H, -OCH3);
5.12 (s., 2H, NCH2O); 6.68 (d., 1H,
SCH); 7.71 (d., 1H, NCH).
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subsequently aqueous humor secretion, which leads to
decreased pressure in the eye.85 For the ubiquitous cytosolic
isoform hCA II, novel aminomethyl and alkoxymethyl deriva-
tives (1–17) had Ki values ranging from 81± 19–215 ± 40 nM.
In addition, AZA compound applied as a standard CA inhibi-
tor, which obtained Ki value of 353 ± 60 nM. As can be
observed in hCA II, the most considerable inhibition result
was recorded by N-oxazinomethylbenzothiazoline-2-thione (1)
(81 ± 19) (Table 3).

3. BChE and AChE were very significantly inhibited by novel
aminomethyl and alkoxymethyl derivatives (1–17). It was cal-
culated that Ki values were in the range of 23 ± 3–88± 11 nM
for BChE and 18 ± 2–78 ± 36 nM for AChE, respectively (Table
3). Additionally, tacrine (TAC) was used as clinically BChE and
AChE inhibitor, which had Ki values of 128 ± 16 and
109 ± 5 nM, respectively. The results are shown that entire of
test molecules have perfect inhibition activity against BChE
and AChE compared to TAC.

4. In this work, we calculated AChE/BChE selectivity. The most
promising compound 14 obtained 2.22-fold of inhibitory
activity against AChE/BChE than that of TAC. It can be as a
potential factor for the therapy of AD. Also, as is shown in
Table 3, the compound 14 (N-(methoxyethoxy)methyl-benzox-
azoline-2-thione) showed the highest selectivity for AChE over
BChE (ratio: 0.388) and weakest compound was 6 (N-diethyl-
aminomethylbenzoxazoline-2-thione) (ratio 1:500).

Discussion

The synthesized molecules are shown to inhibit hCA II and I isoen-
zymes by the interplay of aminomethyl and alkoxymethyl deriva-
tives (1–17) with cofactor Zn2þ ions in the structure of the
isoforms. For hCA I isoform (generally defined an important iso-
form when CAIs for anticancer activity or antiglaucoma are
encountered) was good inhibited by entire of the evaluated mole-
cules, the best inhibitors of them were N-diethylaminomethylben-
zothiazoline-2-thione (5), N-morfolinomethylbenzoxazoline-2-thion
(8) and N-oxazolidinomethylbenzoxazoline-2-thione (9)
(Figure 2(a)). The 2-isopropoxymethylaminothiazole (16) and

2-(methoxy)methylaminothiazole (17) compounds are weaker
inhibitors compared to other compounds for this isoenzyme. The
molecule 8 was shown to had the excellent inhibitory efficacy on
hCA I isoenzyme activity while the molecule 1 was shown to had
the excellent inhibitory efficacy on hCA II isoenzyme activity. For
hCA II isoform, the best inhibitors of them were N-oxazinomethyl-
benzothiazoline-2-thione (1) and N-isopropoxymethylbenzoxazo-
line-2-thione (13). The 2-(methoxyethoxy) methylaminothiazole
(15) and 2-methoxymethylaminothiazole (17) molecules are
weaker inhibitors compare with other molecules for this isoform.
As seen in Table 3 and Figure 2(b), IC50 values are in the range of
89–187 nM towards hCA II, while for hCA I is in the range of
79–156 nM. The IC50 values for standard molecule AZA towards
hCA II and I are 520 and 373 nM, respectively. All molecules have
lower IC50 value compare with AZA toward hCA II and hCA I
isoenzymes.

As seen in Table 3 and Figure 2(c), IC50 amounts were in the
range of 36–89 nM towards AChE, while they were in the range of
48–145 nM towards BChE (Figure 2(d)). The IC50 amounts of the
standard compound TAC towards AChE and BChE were 174 and
280 nM, respectively. Entire compounds have lower IC50 amount
than TAC toward AChE and BChE. ChEIs have shown excellent effi-
cacy than placebo in clinical tests and are extensively prescribed
as symptomatic therapy to ameliorate behavior and recognition in
AD patients with moderate dementia27,28. TAC (9-Amino-1,2,3,4-
tetrahydroacridine) compound is a reversible inhibitor of BChE and
AChE and the first drug to be agreed by the Drugs and
Foods Administration of America for the placative therapy of AD.35

For AChE and BChE enzymes were good inhibited by entire of
the evaluated compounds, the best inhibitors of AChE were
N-Piperidinomethylbenzothiazoline-2-thione (4), N-(methoxyethox-
y)methyl-benzoxazoline-2-thione (14) and also for BChE were
N-diethylaminomethylbenzoxazoline-2-thione (6) and N-morfolino-
methylbenzoxazoline-2-thion (8), respectively.

Conclusions

In this paper, nanomolar levels of Ki amounts were obtained for
entire novel aminomethyl and alkoxymethyl derivatives (1–17) and

Table 3. AChE, human carbonic anhydrase I, and II isoforms (hCA I, and II) AChE and BChE enzymes inhibition effects of aminomethyl and alkoxymethyl derivatives
(1–17) and proportion of AChE to BChE enzymes.

IC50 (nM) Ki (nM)

Compounds hCA I r2 hCA II r2 AChE r2 BChE r2 hCA I hCA II AChE BChE AChE/BChE

1 79 0.9639 104 0.9527 51 0.9762 88 0.9964 108 ± 35 81 ± 19 26 ± 5 32 ± 7 0.812
2 79 0.9852 114 0.9839 39 0.9885 89 0.9773 77 ± 15 107 ± 11 33 ± 5 51 ± 4 0.647
3 83 0.9597 89 0.9555 54 0.9670 75 0.9619 106 ± 39 96 ± 22 37 ± 11 45 ± 9 0.822
4 86 0.9588 99 0.9774 36 0.9855 82 0.9630 86 ± 40 105 ± 25 18 ± 2 41 ± 13 0.439
5 82 0.9755 98 0.9670 52 0.9699 83 0.9359 70 ± 15 100 ± 24 34 ± 9 51 ± 9 0.666
6 102 0.9359 118 0.9649 44 0.9857 80 0.9750 123 ± 48 115 ± 28 45 ± 11 30 ± 3 1.500
7 79 0.9597 116 0.9457 65 0.9874 79 0.9520 82 ± 17 132 ± 27 40 ± 8 57 ± 17 0.701
8 94 0.9533 119 0.9619 38 0.9848 48 0.9911 58 ± 15 121 ± 40 32 ± 6 23 ± 3 1.391
9 103 0.9652 121 0.9440 62 0.9769 84 0.9904 76 ± 20 135 ± 33 78 ± 36 80 ± 9 0.975
10 98 0.9550 137 0.9452 50 0.9819 94 0.9710 99 ± 22 135 ± 42 61 ± 9 50 ± 10 1.220
11 112 0.9607 172 0.9711 89 0.9865 133 0.9621 118 ± 40 137 ± 35 45 ± 5 77 ± 17 0.584
12 119 0.9752 141 0.9695 63 0.9908 93 0.9947 95 ± 25 146 ± 46 75 ± 8 88 ± 11 0.852
13 105 0.9664 122 0.9483 63 0.9859 83 0.9807 90 ± 23 94 ± 37 34 ± 5 35 ± 4 0.971
14 112 0.9426 128 0.9556 38 0.9860 68 0.9704 119 ± 53 142 ± 56 23 ± 4 60 ± 13 0.383
15 128 0.9783 158 0.9644 43 0.9888 109 0.9752 118 ± 27 193 ± 79 25 ± 3 45 ± 14 0.555
16 156 0.9757 167 0.9659 76 0.9949 127 0.9590 132 ± 30 162 ± 29 42 ± 4 55 ± 12 0.763
17 142 0.9774 187 0.9562 80 0.9912 144 0.9749 157 ± 38 215 ± 40 54 ± 10 42 ± 20 1.285
AZAa 373 0.9774 520 0.9816 — — — — 333 ± 28 353 ± 60 — — —
TACb — — — — 174 0.9513 280 0.9879 — — 109 ± 5 128 ± 16 0.851

Tacrine (TAC) was used as a standard inhibitor for BChE and AChE enzymes.
aAcetazolamide (AZA) was used as a standard inhibitor for both carbonic anhydrase I, and II isoenzymes (hCA I and II).
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these molecules can be considerable inhibitor of AChE, BChE
enzymes and both hCA isoforms. The molecules 5 and 8 towards
hCA I and molecules 1 and 13 towards hCA II and molecules 4
and 14 towards AChE and molecules 6 and 8 towards BChE
enzymes recorded which can to be the leader molecules of the
parts for subsequent evaluations.
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10. Bayrak Ç, Taslimi P, G€ulçin _I, Menzek A. The first synthesis
of 4-phenylbutenone derivative bromophenols including
natural products and their inhibition profiles for carbonic

0

200

400

600

AZA 2 4 6 8 10 12 14 16

IC
50

 (n
M

)

Compounds

hCA I
hCA II

0

100

200

300

TAC 3 6 9 12 15

IC
50

 (n
M

)

Compounds

AChE
BChE

0

100

200

300

400

AZA 2 4 6 8 10 12 14 16

K
i 

va
lu

es

Compounds

hCA I
hCA II

0

50

100

150

TAC 2 4 6 8 10 12 14 16
K

iv
al

ue
s

Compounds

AChE
BChE

(b)(a)

(d)(c)

Figure 2. (a) IC50 values of aminomethyl and alkoxymethyl derivatives for hCA I, and II isoenzymes. (b) IC50 values of aminomethyl and alkoxymethyl derivatives for
AChE and BChE enzymes. (c) Ki values of aminomethyl and alkoxymethyl derivatives for hCA I, and II isoenzymes. (d) Ki values of aminomethyl and alkoxymethyl deriva-
tives for AChE and BChE enzymes.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1179

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
] 

at
 0

2:
11

 1
2 

Se
pt

em
be

r 
20

17
 



anhydrase, acetylcholinesterase and butyrylcholinesterase
enzymes. Bioorg Chem 2017;72:359–66.

11. Supuran CT, Capasso C. The g-class carbonic anhydrases as
drug targets for antimalarial agents. Expert Opin Ther
Targets 2015;19:551–63.

12. Akocak S, Lolak N, Nocentini A, et al. Synthesis and bio-
logical evaluation of novel aromatic and heterocyclic bis-sul-
fonamide Schiff bases as carbonic anhydrase I, II, VII and IX
inhibitors. Bioorg Med Chem 2017;25:3093–7.
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Carbonic anhydrase inhibitors. Inhibition of mammalian iso-
forms I-XIV with a series of natural product polyphenols and
phenolic acids. Bioorg Med Chem 2010;18:2159–64.
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23. Akıncıo�glu A, Topal M, G€ulçin _I, G€oksu S. Novel sulfamides
and sulfonamides incorporating tetralin scaffold as carbonic
anhydrase and acetylcholine esterase inhibitors. Arch Pharm
2014;347:68–76.
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potent carbonic anhydrase and acetylcholine esterase inhibi-
tors: Novel sulfamoylcarbamates and sulfamides derived
from acetophenones. Bioorg Med Chem 2015;23:3592–602.
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38. Genç H, Kalin R, K€oksal Z, et al. Discovery of potent carbonic
anhydrase and acetylcholinesterase inhibitors: 2-aminoindan
b-lactam derivatives. Int J Mol Sci 2016;17:1736.
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acterization of peroxidase from sweet gourd (Cucurbita
Moschata Lam. Poiret). Int J Food Propert 2012;15:1110–9.
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