The electrochemical fluorination of N-containing carboxylic acids (Part 4*). Fluorination of methyl 3-dialkylamino-isobutyrates and methyl 3-dialkylamino-n-butyrates

Takashi Abe[†], Haruhiko Fukaya, Eiji Hayashi, Yoshio Hayakawa, Masakazu Nishida and Hajime Baba

National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462 (Japan)

Abstract

Several methyl esters of 3-dialkylamino-substituted n- and isobutyric acids have been subjected to electrochemical fluorination to give the corresponding perfluoroacid fluorides. Dimethyl, diethyl, pyrrolidino, morpholino, piperidino and N-methylpiperazino groups were investigated as dialkylamino substituents. The structure/yield relationship was evaluated both in terms of the structure of the acid and the kind of amino group, respectively. Better yields of perfluoroacid fluorides were obtained from methyl esters having isobutyric acid skeletons than those having n-butyric acid groups, and from the acids containing cyclic amino groups than those containing acyclic ones.

Introduction

Although many approaches to the preparation of perfluorocarboxylic acids have been reported, there is still need to develop a convenient method for making these compounds. In view of our interest in the preparation of new nitrogen-containing perfluorocarboxylic acids by the fluorination of methyl esters of the corresponding carboxylic acids [1], we have extended our study to a series of n- and isobutyric acids having cyclic and acyclic substituents.

For the preparation of nitrogen-containing perfluoroacid fluorides, electrochemical fluorination is the most feasible technique [2]. For this to become economically feasible, however, good product yields both at the fluorination stage and in the preparation of the starting material using cheap raw materials are essential. We have found that methyl 3-dialkylamino-isobutyrates and methyl 3-dialkylamino-n-butyrates are very good starting materials for the preparation of the corresponding nitrogen-containing perfluoroacid fluorides.

The following two series of methyl esters of dialkylamino-substituted butyric acid were fluorinated:

Results and discussion

Methyl 3-dialkylamino-isobutyrates (1) and methyl 3-dialkylamino-n-butyrates (2) were good starting materials for the preparation of a series of perfluoro(dialkylamino-substituted butyryl fluorides). Compounds 1 and 2 can be easily prepared in high yield by a one-flask preparation (Michael reaction) from the appropriate secondary amines and methyl methacrylate [3] and/or methyl crotonate [4], respectively.

The results of the fluorination of 1 and 2 are listed in Tables 1 and 2, respectively. As compounds 1 and 2 are isomers, it was possible to compare the results in terms of yield and the kind of products arising from the difference in the skeleton of the carboxylic acid.

Fluorination of methyl-3-dialkylamino-isobutyrates (1)

It was found that good product yields were obtained from the fluorination of 1. The yields of the corre-

^{*}Preceding paper of this series; see ref. 1.

[†]Author to whom correspondence should be addressed.

TABLE 1. Fluorination of methyl 3-dialkylamino-iso-butyrates (1)

Run	Sample g (mol) I 0, 41.1 (0.284)	Current passed [Ahr] 259	Fluorinated products (g) 29.5 ^a (28.6)	Products obtained (Yield %)	
1				$\begin{array}{llllllllllllllllllllllllllllllllllll$	
2	I b , 41.1 (0.238)	266	9.9 (43.0)	5 (6.6), (C ₂ F ₅) ₃ N (8)(2.7), (C ₂ F ₅) ₂ NC ₃ F ₇ (9)(5.4), (C ₂ F ₅) ₂ NCF ₂ CF(CF ₃)C(O)F(3b)(31.2)	
3	IC , 40.4 (0.236)	235	11.8 (50.8)	$\begin{split} & C_4F_{10(IO)(5.6), (5)(1.6), [F]NC_2F_5 (II)(0.7), [F]NC_3F_7 \ (I2)(9.2), \\ & \boxed{F}NC_52CF(CF_3)C(O)F \ (3e)(43.3) \end{split}$	
4	id , 41.3 (0.221)	217	7.4 (70.1)	$C_2F_5OC_2F_5$ (13)(1.7), $OFNCF_3$ (1.6), $OFNC_2F_5$ (14)(1.1), $OFNC_3F_7$ (15)(12.6), $OFNCF_2CF(CF_3)C(O)F$ (3d)(63.7)	
5	ie, 40.9 (0.221)	226	3.9 (55.1)	$C_{5}F_{12} (16)(3.2), \langle F \text{ NCF}_{3} (0.6), \langle F \text{ NC}_{2}F_{5} (17)(0.2), \langle F \text{ NC}_{3}F_{7} (18) \rangle \\ (5.6), (F \text{ NCF}_{2}\text{CF}_{2}\text{C}(0)\text{F} (8.9), \langle F \text{ NCF}_{2}\text{C}\text{F}(\text{C}\text{F}_{3})\text{C}(0)\text{F} (44)(39.7) \\ CF_{3} \rangle \\ \end{cases}$	
6	lf, 40.3 (0.202)	241	13.3 (44.5)	3b (11.9), $CF_3NFNC_3F_7$ (4.4), $CF_3NFNCF_2CF(CF_3)C(O)F$ 4f (22.7),	

^a Products collected in the -78 °C trap, and cell drainings, in (), are shown.

^b Products are arranged in order of elution time by GLC (Col.A).

TABLE 2. Fluorination of methyl 3-dialkylamino-n-butyrates (2)

Run	Sample g (mol)	Current passed [Ahr]	Fluorinated products (g)	Products obtained (Yield %)	
1	2 a ,40.9 (0.282)	263	33.6 ⁸ (18.7)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
2	2c , 40.3 (0.236)	221	13.0 (45.1)	IO (7.9), II (8.2), I2 (9.1), F NCF ₂ CF ₂ CF ₂ OCF ₃ (20)(2.3), F N F O (21)(10.0), F NCF(CF ₃)CF ₂ C(O)F (4c)(21.2)	
3	2d , 40.7 (0.218)	228	10.4 (61.6)	13 (3.9), 14 (10.6), 15 (12.3), $OFNCF_2CF_2CF_2OCF_3$ (22)(2.8), $OFNF_2$ (23)(6.9), $OFNCF(CF_3)CF_2C(0)F$ (44)(43.2)	
4	3 €, 40.3 (0.218)	243	8.6 (50.8)	16 (6.0), 17 (9.1), 18 (7.4), $(F_N / F_O (24)(6.3), (F_N / F_O / F_O))$	

^a Products collected in the -78 ^oC trap, and cell drainings, in (), are shown.

^b Products are arranged in order of elution time by GLC (Col.A).

sponding perfluoroacid fluoride 3 ranged from 23 to 64%, viz.

$$\begin{bmatrix} \mathsf{R} & \mathsf{CH}_{3} & \mathsf{CF}_{3} \\ \mathsf{R} & \mathsf{N} \cdot \mathsf{CH}_{2} \mathsf{CH}_{2} \mathsf{CM}_{0} & \xrightarrow{\mathsf{E},\mathsf{F}} & \mathsf{R}_{1} & \mathsf{N} \cdot \mathsf{CF}_{2} \mathsf{CF}_{2} \mathsf{CF}_{2} \mathsf{F}_{1} \\ (1) & \mathsf{O} & (3) & \mathsf{O} \\ \hline \\ & (\mathbf{R}_{1})_{2} \mathsf{N} \cdot (\mathbf{CF}_{3})_{2} \mathsf{N} \cdot (\mathbf{3d}) (\mathsf{Y} = \mathbf{36\%}), & (\mathsf{C}_{2}\mathsf{F}_{5})_{2} \mathsf{N} \cdot (\mathbf{3b}) (\mathbf{31}), & \boxed{\mathsf{F}} \mathsf{N} \cdot (\mathbf{3c}) (43), \\ & \mathsf{O} & \boxed{\mathsf{F}} \mathsf{N} \cdot (\mathbf{3d}) (\mathbf{64}), & \mathsf{F} \mathsf{N} \cdot (\mathbf{3e}) (40), & \mathsf{CF}_{3} \mathsf{N} & \boxed{\mathsf{F}} \mathsf{N} \cdot (\mathbf{3f}) (\mathbf{23}) \end{bmatrix}$$

However, some differences were observed in the kind of fluorination product generated from 1 in terms of acyclic amino and cyclic amino-substituted reactants. In the case of the former [1a and 1b], γ -scission as well as α -scission of the acid occurred affording perfluoro(isobutyryl fluoride) (5) as the main cleaved product [11% from 1a and 7% from 1b, respectively].

The formation of the main products from 1a, for example, are explained as follows.

From 1a, the perfluoromethyl ester 7 is formed in small yield (yield = 2%) together with the corresponding perfluoro(3-dimethylamino-isobutyryl fluoride) (3a) (yield = 36%). From 1 having cyclic amino-substituents, cleaved products arising from α -scission were the main by-products. A typical example occurs in the fluorination of 1d.

It should be noted that the highest yield of perfluoroacid fluoride 3d (64%) was obtained for 1d in this work.

From 1f, the expected perfluoro[3-(N-methylpiperazino)isobutyryl fluoride] (3f) was obtained in a yield of 23% together with the perfluoro(3-diethylaminoisobutyryl fluoride) (3b) (yield=12%). Compound 3b was formed as a result of C-N bond scission in the piperazino ring during fluorination.

Fluorination of methyl-3-dialkylamino-n-butyrates (2)

In the fluorination of 2, it was observed that the yields of the corresponding perfluoroacid fluoride 4 were more affected by the kind of the alkyl amino group than in the case of 1. Furthermore, cyclization products (19 from 2a, 21 from 2c, 23 from 2d, and 24 from 2e, respectively) were invariably formed from 2, this being the major cause of the decrease in the yield of 4. A similar trend was observed in the yield of 4 from 2 when an acyclic amino-substituted 2 was employed relative to a cyclic amino-substituted 2: higher yields of 4 were obtained in the latter case than in the former. Thus, the fluorination products from 2a may be explained as follows, which indicates α -scission and a considerable incidence of cyclization giving perfluoro(3-dimethylamino-n-butyryl fluoride) (4a) in a low yield.

The fluorination of 2b to give the corresponding perfluoroacid fluoride (4b) was not successful, since many complicated products were formed (the yield of 4b was estimated to be c.5%; see Experimental section). Yields of 4 were improved considerably when 2 having a cyclic amino substituent instead of an acyclic one was fluorinated. Thus, from 2d, the following products were obtained.

Moore *et al.* have widely investigated the fluorination of various dialkylamino-substituted ethers and have obtained interesting information about the structure/ yield relationship for the substrates [5]. It was stated that cyclic amines generally gave better yields than acyclic ones, and that good product yields were obtained when an isopropyl group was incorporated in the ether linkage (A and B) compared with arrangement C where the N and O atoms are separated by three methylenc groups.

Although we have not attempted the fluorination of methyl 4-dialkylamino-n-butyrates which have a linear structure similar to C, our studies have shown that 3dialkylamino-isobutyric acids (A type) give perfluoroacid fluorides in better yield than 3-dialkyl-amino-n-butyric acids (B type).

It is generally difficult to obtain perfluoroacid fluorides having a branched perfluoroalkyl group in good yield by ECF methods because of isomerization (iso- \rightarrow n-) of the alkyl group [6].

This isomerization is considered to be an unavoidable side-reaction due to anodic fluorination. In the cases we have studied (except for 2b), however, the desired perfluoroacid fluorides were obtained in fair to good yield, since no isomerization of the branched group to a linear one occurred. It was considered that the formation of an ammonium salt on the alkyl group of both 1 and 2 in anhydrous hydrogen fluoride (AHF) suppressed the isomerization, which occurs via a car-

bocation-like intermediate [7] at the initial stage of the fluorination.

Perfluorocarboxylic acids have been utilized as versatile starting materials for the synthesis of organofluorine chemicals. Similarly, nitrogen-containing perfluorocarboxylic acids can be used as new raw materials not only for useful organofluorine chemicals such as surface-active agents [8], inert perfluorinated fluids*, perfluoro-olefins [9] etc., but also for chiral derivatizing agents and as starting materials for ferroelectric liquid crystals using the chiral centre adjacent to the carboxy group and taking advantage of the bulky perfluorodialkylamino group at the asymmetric carbon in the case of 3 [10]. Thus, fair to good yields of the nitrogencontaining perfluoroacid fluorides from 1 and 2 have strengthened the ECF process for the preparation of perfluorocarboxylic acids as compared to indirect methods [11], and have opened the door for new applications as the chiral building block using 3.

Experimental

Reagents

All N-containing carboxylic acids were prepared by the reaction of appropriate secondary amines and methyl methacrylate or methyl crotonate as described in the literature.

These starting materials had the following boiling points: methyl 3-dimethyl-amino-isobutyrate, b.p. 87 ~ 88 °C/48 mmHg (lit. value [3]: b.p. 73 °C/40 mmHg), methyl 3-diethylamino-isobutyrate, b.p. 95~96 °C/18 mmHg (lit. value [12]: b.p. 88.5 °C/15 mmHg), methyl 3-pyrrolidino-isobutyrate, b.p. 92~93 °C/14 mmHg (lit. value [13]: b.p. 86°C/13 mmHg), methyl 3-morpholinoisobutyrate, b.p. $106 \sim 107$ °C/9 mmHg (lit. value [12]: b.p. 112 °C/13 mmHg), methyl 3-piperidino-isobutyrate, b.p. 103 °C/15 mmHg (lit. value [12]: b.p. 99.5~100 °C/13 mmHg; lit. value [14]: b.p. 127 ~ 129 °C/30 mmHg), methyl 3-(N-methylpiperazino)isobutyrate, b.p. 125~ 126 °C/15 mmHg, methyl 3-dimethylamino-n-butyrate, b.p. 71~72 °C/12 mmHg (lit. value [3]: b.p. 82~84 °C/ 40 mmHg; lit. value [4]: b.p. 66 °C/17 mmHg), (lit. value [3]: b.p. 88.5 °C/15 mmHg), methyl 3-diethylaminon-butyrate, b.p. 71~72 °C/12 mmHg, methyl 3-pyrrolidino-n-butyrate, b.p. 106~107 °C/19 mmHg (lit. value

[4]: b.p. $100 \sim 102$ °C/23 mmHg), methyl 3-morpholinon-butyrate, b.p. $121 \sim 123$ °C/16 mmHg, methyl 3-piperidino-n-butyrate, b.p. $113 \sim 114$ °C/16 mmHg. Anhydrous hydrogen fluoride (AHF) (Daikin Industries Co.) was better than 99.8% pure.

Apparatus

The electrolytic fluorination apparatus and operating procedures were similar to those described previously [1c].

Analytical GLC work was carried out using a Shimadzu GC-2C gas chromatograph with stainless-steel columns (3 mm diameter) packed with 30% 1,6-bis(1,1,7trihydroperfluoroheptyloxy)hexane on Chromosorb PAW (6.4 m) (column A) or 30% 1,6-bis(1,1,12-trihydroperfluorododecyloxy)hexane on Chromosorb PAW (6.4 m) (column B). For semi-preparative work, a GASUKURO LL-75 modified gas chromatograph was used employing stainless-steel columns (10 mm diameter) packed with 30% 1,6-bis(1,1,12-trihydroperfluorododecyloxy)hexane on Chromosorb PAW (4.9 m) (column C) or 30% Silicone QF-1 on Chromosorb PAW (4.9 m) (column D). The carrier gas was helium in all cases.

Infrared (IR) spectra were measured on a Hitachi EPI-G3 spectrometer, using a 6-cm gas cell with KBr windows. ¹⁹F NMR spectra were measured using CCl₃F as an internal standard either on Hitachi R-20B (56.46 MHz) or Hitachi R-90F (84.68 MHz) spectrometers. Mass spectra were measured on a Shimadzu GC-MS 7000 instrument at 70 eV.

Fluorination of methyl 3-dimethylamino-isobutyrate (1a)

Sample 1a (41.1 g, 0.284 mol) was charged into the cell which contained 450 ml electrically purified AHF, and the solution was subjected to fluorination with an anodic current density of 3.5 A dm⁻², a cell voltage of $6.1 \sim 6.2$ V and a cell temperature of $7 \sim 8$ °C over a period of 595 min (259 A h). At the final stage of the fluorination, the voltage reached 6.3 V.

The effluent gases from the cell were passed over NaF pellets and then condensed in a trap cooled at -78 °C. The gaseous products which did not condense in the -78 °C trap were first bubbled through a fluoropolymer bottle containing water and then through a gas washing bottle containing an aqueous solution of a mixture of K₂CO₃, KOH and KI. All products except new ones were identified by comparison of their IR spectra and GLC retention times with those of authentic samples. New compounds were separated from other products by the use of semi-preparative GLC, and their structures were determined on the basis of their IR ¹⁹F NMR and mass spectra.

The products (29.5 g) condensed in the -78 °C trap consisted of pentafluoropropionyl fluoride (2.0 g), per-

^{*}Fluoroinert liquids, a 3M company.

fluoro(isobutyryl fluoride)(5)(6.8 g), perfluoro(N,N-dimethylpropylamine)(6)(4.0 g), perfluoro[3-(N,N-dimethylamino)isobutyryl fluoride](3a)(12.7 g) and unidentified materials (4.0 g). Cell drainings (28.6 g) consisted of 3a (23.3 g) and perfluoro[methyl 3-(N,N-dimethylamino)isobutyrate] (7) (2.4 g) and unidentified materials (2.4 g). The yield of 3a was 36.4% based on the sample feed.

Perfluoro(3-dimethylamino-isobutyryl fluoride) (3a) (nc): b.p. $60.5 \sim 61.5 \, ^{\circ}$ C, $n_D^{20} < 1.28$, d_4^{20} 1.7120. IR (gas) (cm⁻¹): 1890; 1887 (ms) (C=O); 1360 (vs); 1345 (s); 1248 (vs); 1225 (s); 1150 (ms); 1012 (m); 989 (s); 932 (w); 865 (m); 775 (w); 762 (w); 737 (w). MS *m*/ *z*: 330 [M-F]⁺ (3.0); 264 C₅F₁₁N⁺ (2.8); 202 C₃F₉N⁺ (16.5); 197 C₃F₈⁺ (13.0); 169 C₃F₇⁺ (18.6); 131 C₃F₅⁺ (7.6); 119 C₂F₅⁺ (14.8); 114 C₂F₄N⁺ (27.2); 100 C₂F₄⁺ (9.2); 69 CF₃⁺ (100).

Perfluoro(methyl 3-dimethylamino-isobutyrate) (7) (nc): IR (gas) (cm⁻¹): 1884; 1872 (ms) (C=O); 1337~1356 (vs); 1282 (s); 1220~1259 (s~vs); 1199 (s); 1147 (vs); 1099 (w); 1027 (w); 996 (s); 931 (w); 866 (m); 840 (w); 771 (m); 756 (w); 734 (m); 670 (w). MS m/z: 330 [M-OCF₃]⁺ (6.7); 202 C₃F₈N⁺ (26.0); 197 C₄F₇O⁺ (10.5); 169 C₃F₇⁺ (10.1); 150 C₃F₆⁺ (27.2); 131 C₃F₅⁺ (9.7); 114 C₂F₄N⁺ (22.0); 100 C₂F₄⁺ (9.6); 69 CF₃⁺ (100). ¹⁹F NMR data for **3a** are listed in Table 3.

Fluorination of methyl 3-diethylamino-isobutyrate (1b)

Sample **1b** (41.1 g, 0.238 mol) was fluorinated similarly under the following conditions: 3.5 A dm⁻², 6.0~6.1 V, 7~8 °C, 616 min (266 A h). Work-up was as for the fluorination of **1a**. Products collected in the -78°C trap and cell drainings were subsequently analyzed by GLC methods (columns A and B). The following compounds were obtained. Products in the -78 °C trap (9.9 g), **5** (3.4 g), perfluoro(triethylamine)(**8**)(2.4 g), perfluoro(diethyl-n-propylamine)(**9**)(1.2 g), perfluoro(3-diethylamino-isobutyryl fluoride)(**3b**)(0.7 g) and unidentified materials (2.2 g). Cell drainings (43.0 g): **8** (4.2 g), **3b** (33.8 g) and unidentified materials (5.0 g). The yield of **3b** was 31.2%.

Perfluoro(3-diethylamino-isobutyryl fluoride)(**3b**)-(nc): B.p. 105~106 °C, n_D^{20} 1.2880, d_4^{20} 1.8002. IR (gas) (cm⁻¹): 1894; 1878 (C=O); 1290~1315 (vs~s); 1275 (s, sh); 1245 (vs); 1233 (s, sh); 1160 (m); 1105 (m); 1078 (m); 1090 (w); 985 (w); 878 (m); 838 (m); 758 (w); 743 (m); 712 (w). MS *m/z*: 414 C₈F₁₆N⁺ (1.0); 380 C₇F₁₄NO⁺ (3.8); 352 C₆F₁₄N⁺ (1.7); 302 C₅F₁₂N⁺ (8.0); 264 C₅F₁₀N⁺ (2.4); 197 C₃F₈⁺ (24.3); 169 C₃F₇⁺ (44.3); 164 C₃F₆N⁺ (25.4); 119 C₂F₅⁺ (67.9); 114 C₂F₄N⁺ (100); 100 C₂F₄⁺ (93.0); 69 CF₃⁺ (49.6). ¹⁹F NMR data for **3b** are listed in Table 3.

Fluorination of methyl 3-pyrrolidino-isobutyrate (1c)

Sample 1c (40.4 g, 0.236 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², 6.5~6.7 V, 7~8 °C, 485 min (235 A h). Work-up gave: products in the -178 °C trap (11.8 g): n-C₄F₁₀ (10) (2.5 g), 5 (0.8 g), perfluoro(*N*-ethylpyrrolidine)(11)(0.5 g), perfluoro(*N*-propylpyrrolidine)(12)(1.9), perfluoro(3-pyrrolidino-isobutyryl fluoride)(3c)(0.5 g) and unidentified materials (2.8 g). Cell drainings (50.8 g): 12 (6.5 g), 3c (41.5 g) and unidentified materials (2.8 g). The yield of 3c was 43.3%.

Perfluoro(3-pyrrolidino-isobutyryl fluoride)(3c)(nc): B.p. 105 ~ 106 °C, n_D^{20} 1.2943, d_4^{20} 1.7833. IR (gas) (cm⁻¹): 1890; 1874 (ms) (C=O); 1402 (w); 1346 (vs); 1313 (m); 1244 (vs); 1227 (s, sh); 1180 (ms); 1149 (ms); 1123 (w); 1037 (m); 1009 (w); 971 (s); 876 (w); 796 (m); 657 (w); 614 (w). MS *m/z*: 392 [M-F]⁺ (3.7); 364 C₇F₁₄N⁺ (2.5); 264 C₅F₁₀N⁺ (100); 214 C₄F₁₀N⁺ (19.2); 197 C₃F₈⁺ (29.7); 176 C₄F₆N⁺ (9.9); 169 C₃F₇⁺ (47.2); 164 C₃F₆N⁺ (9.9); 150 C₃F₆⁺ (24.8); 131 C₃F₅⁺ (14.1); 119 C₂F₅⁺ (11.8); 114 C₂F₄N⁺ (25.1); 100 C₂F₄⁺ (44.6); 69 CF₃⁺ (97.0). ¹⁹F NMR data for **3c** are listed in Table 3.

Fluorination of methyl 3-morpholino-isobutyrate (1d)

Sample 1d (41.3 g, 0.221 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², 7.1~7.6 V, 7~8 °C, 452 min (217 A h). Work-up gave: product in the -78 °C trap (7.4 g) perfluoro(diethylether)-(13)(1.0 g), perfluoro(*N*-methylmorpholine) (1.1 g), perfluoro(*N*-ethylmorpholine)(14)(0.8 g), perfluoro(*N*-propylmorpholine)(15)(2.3 g), perfluoro(3-morpholino-isobutyryl fluoride)(3d)(1.6 g) and unidentified materials (0.6 g). Cell drainings (70.1 g): 15 (8.8 g), 3d (58.4 g) and unidentified materials (2.9 g). The yield of 3d was 63.7%.

Perfluoro(3-morpholino-isobutyryl fluoride)(**3d**)(nc): B.p. 113~114 °C, n_D^{20} 1.2967, d_4^{20} 1.8021. IR (gas) (cm⁻¹): 1890; 1875 (ms) (C=O); 1349 (ms); 1309 (vs); 1251 (vs); 1226; 1196 (ms); 1166 (s); 1154 (s); 1103 (m); 1012 (w); 979 (w); 973 (w); 933 (m); 795 (m); 640 (w); 716 (w). MS *m*/*z*: 408 [M-F]⁺ (1.5); 280 C₃F₁₀NO⁺ (68.4); 197 C₄F₇O⁺ (39.0); 169 C₃F₇⁺ (63.4); 164 C₃F₆N⁺ (26.0); 119 C₂F₅⁺ (92.4); 114 C₂F₄N⁺ (68.9); 100 C₂F₄⁺ (100); 69 CF₃⁺ (78.9). ¹⁹F NMR data for **3d** are listed in Table 3.

Fluorination of methyl 3-piperidino-isobutyrate (1e)

Sample 1e (40.9 g, 0.221 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², 6.1~6.3 V, 7~8 °C, 513 min (226 A h). Work-up gave: product in the -78 °C trap (3.9 g): perfluoropentane (16) (2.0 g), perfluoro(*N*-methylpiperidine)(0.4 g), perfluoro(*N*ethylpiperidine)(17)(0.2 g), perfluoro(*N*-propylpiperidine) (18) (0.3 g) and unidentified material (0.1 g).

Comp.	Formula	Chemical shift ^{a, b}		J (Hz) ^b
3a	b d	a	- 52.6	a-b = a-c = 16.1
	a FCF _{3 f}	b	-81.3	a - e = 11.6
		с	-86.6	b-c = 256
		d	- 73.6	
	ς ές FO	e	-173.8	
	~ e	f	32.7	
3b	c ^e	а	- 73.4	d - e = 244
	аь FCF ₃	b	- 88.9	
		с	- 73.2	
		d	- 83.9	
	Γ́ F́ Ö	e	- 73.4	
	d _f	f	-169.3	
	•	g	31.7	
3c	b c d	а	-133.6	
	$f_{F_1} \rightarrow f_2 + F_2 = F_2$	b	-91.2	
		с	- 86.2	
		d	- 73.6	
	F₂∕∕ ĖĖÖ	e	-177.9	
	F ₂ c e	f	32.8	
3d		а	- 88 1	$b_{-}c = b_{-}d = 16.8$
24	a b c e Fa Fa - a-	a h	- 93 1	b = f = 16.9
	$\frac{1}{2}$ F CF _{3 g}	0	- 93.1	0-1-10.9
	Ó N —Ċ-Ċ-CF	c d	- 86.0	
		u	- 73.6	
	F_2 F_2 F F O	ť	- 75.0	
	- u f	l g	-170.8	
2		8	52.7	
3e		a	-134.5	d - e = 244
	2^{2} F CF ₃	b	-132.3	
		C J	- 90.7	
		d	- 84.9	
	$F_2 - F_2 - F_1 = O$	e	- 01.2	
	9	l a	- 75.5	
		g h	-170.5	
••		11	52.6	
3f		а	- 52.5	
	$\frac{1}{2}$ F CF ₃	b	- 93.7	
		с	- 90.5	
	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $	d	- 81.5	
	$F_2 - F_2$ $F_3 - F_4$	e	- 85.9	
	r e g	f	- 73.5	
		g	-176.3	
		h	32.9	
20	р а Е-	а	-133.4	e - f = 9.6
	$F_2 \sim f^2 c d e f$	b	- 90.7	
		с	- 93.0	
		d	-126.7	
		е	- 85.3	
	F2	f	- 55.8	
21	b c _f	а	-134.2	d - e = 136
	$F_2 = F_2 = F_2$	b	-91.3	f - g = 248
	F ₂	с	-137.7	h - i = 132
	│	d	-63.6	
	F_2	e	- 89.6	
		f	-131.0	
	d F	g	-117.0	
	e	ĥ	- 80.4	
		i	- 91.6	

TABLE 3. ¹⁹F NMR spectra of compounds 3a, 3b, 3c, 3d, 3e, 3f, 20, 21, 22, 23, 24, 25, 26, 27 and 28

(continued)

TABLE 3 (continued)

Comp.	Formula	Chemical s		J (Hz) ^b
22	^a _ b	а	- 88.0	b-d = 11.9
	$F_2 = F_2$	b	-92.6	c - e = 9.8
		с	-91.1	e - f = 9.6
		d	-127.4	
	F_2 F_2	e	-85.7	
		t	- 56.1	
23	a b c F F f g	а	- 86.0	d - e = 132
		b	- 90.8	f - g = 249
	O, N ·····}──∕ 、F ^h	2 1	- 135.6	$n_{-1} = 1.30$
	$\mathbf{F}_{\mathbf{r}}$	a	84.1	
		E f	- 127 7	
	dĒ	1 σ	-116.9	
	e	8 h	- 80.2	
		i	-91.7	
24	- dh	a	-134.3	e - f = 1.32
		b	-133.5	g - h = 250
		с	- 92.0	i - j = 130
	F_2 N_{1111} F_1	d	-133.5	•
		e	-83.1	
		f	- 70.2	
	er f	g	-117.0	
	t	h	-126.7	
		i	- 91.7	
		j	-80.2	
25	_bd	а	- 51.5	a-b = 7.6
	a F ₃ C F	ь	- 75.7	a - e = 17.5
	(CF ₃)₂N —Ċ−Ċ−COCH ₃	c	-156.8	
		d	-112.8	
	c''d	e	3.94	
26	b_ c	а	-133.8	b-c = 176
		ь	- 87.9	
	$F_2 \longrightarrow CF_3F_1$	c	-90.7	
		d	- 76.1	
	F_2	e	-102.0	
		l g		
	•	g	5.95	
27	be e ^c d -	а	-82.8	a-b = 147
	[®] F╮Í ╎╱ [┍] ╘╭ ╘ ⁹	b	- 85.0	c - d = 200
	<u>}</u> (⁻ 3¦ [h	с	- 85.3	c-f = d-f = 32.2
	ó N —Ç−Ç−ÇOCH₃	d	- 88.7	
	<u>}</u> →, ⊧, ⊧ ö	e	- 75.1	
	F [´] F F [`] [´] [´]	t	-157.0	
	• •	g h	- 114.1 3.94	
10	h i d i	0	- 133 2	$c_{-}e = 32.2$
20		a h	-130.4	0-0-52.2
	a9	U r	- 87 7	
	F_2 $N - C - C - COCH_3$	d	- 74.1	
	_₽ _₽ ĖĖÖ	e	-153.4	
	' ² ' ² ef	ſ	-112.2	
		ø	3.91	

^{a19}F chemical shifts in ppm relative to internal CCl₃F (negative shifts are upfield) and ¹H chemical shifts in ppm relative to TMS. ^bOnly obvious chemical shifts and coupling constants are given. Cell drainings (55.1 g): perfluoro[N-propyl-(methylpyrrolidine)](0.5 g), **18** (5.1 g), perfluoro[3-(methylpyrrolidino)isobutyryl fluoride](9.1 g) and perfluoro(3-piperidino-isobutyryl fluoride)(**3e**)(40.5 g). The yield of **3e** was 39.7%.

Perfluoro(3-piperidino-isobutyryl fluoride)(**3e**)(nc): B.p. 121~123 °C, n_D^{20} 1.2997, d_4^{20} 1.8270. IR (gas) (cm⁻¹): 1890; 1875 (m) (C=O); 1368 (m); 1333 (vs); 1308 (w); 1275 (s); 1246 (vs); 1208 (s); 1190 (s); 1163 (ms); 1128 (ms); 1068 (w); 1028 (s); 1012 (w); 990 (w); 974 (s); 851 (w); 788 (m); 760 (w); 635 (m). MS *m/z*: 442 [M-F]⁺ (4.5); 414 C₈F₁₆N⁺ (4.9); 314 C₆F₁₂N⁺ (100); 264 C₅F₁₀N⁺ (15.3); 219 C₄F₉⁺ (16.2); 197 C₃F₈⁺ (26.7); 169 C₃F₇⁺ (41.5); 164 C₃F₆N⁺ (9.4); 150 C₃F₆⁺ (9.9); 131 C₃F₅⁺ (31.2); 119 C₂F₅⁺ (20.8); 114 C₂F₄N⁺ (15.0); 100 C₂F₄⁺ (36.1); 69 CF₃⁺ (78.2). ¹⁹F NMR data for **3e** are listed in Table 3.

Fluorination of methyl 3-(N-methylpiperazino)isobutyrate (1f)

Sample **1f** (40.3 g, 0.202 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², 6.5~6.7 V, 7~8 °C, 546 min (241 A h). Work-up gave: product in the -78 °C trap (13.3 g) consisted mainly of aliphatic tertiary amines having low boiling points. Cell drainings (44.5 g): **3b** (11.2 g), perfluoro(N'-methyl-N-propylpiperazine)(4.1 g), perfluoro[3-(N-methylpiperazino)isobutyryl fluoride] (**3f**)(22.7 g) and unidentified materials (6.5 g). The yield of **3f** was 22.7%.

Perfluoro[3-(*N*-methylpiperazino)isobutyryl fluoride]-(**3f**): B.p. 167~170 °C, n_D^{20} 1.3180, d_4^{20} 1.8838. IR (gas) (cm⁻¹): 1887; 1873 (m) (C=O); 1364 (vs); 1332(s); 1305 (vs); 1264 (s); 1217; 1227 (vs); 1167(s); 1094 (m); 1071 (w); 1009 (w); 987 (w); 973 (m); 956 (s); 894 (w); 976 (w). MS *m/z*: 475 [M-F]⁺ (3.1); 347 [M-C₂F₅]⁺ (14.2); 259 C₅F₉N₂⁺ (16.2); 197 C₃F₇N₂⁺ (16.2); 169 C₃F₇⁺ (24.2); 164 C₃F₆N⁺ (17.2); 119 C₂F₅⁺ (15.1); 114 C₂F₄N⁺ (36.1); 100 C₂F₄⁺ (62.5); 69 CF₃⁺ (100). ¹⁹F NMR data for **3f** are listed in Table 3.

Fluorination of methyl 3-dimethylamino-n-butyrate (2a)

Sample 2a (40.9 g, 0.282 mol was fluorinated similarly under the following conditions; 3.5 A dm⁻², 6.1~6.2 V, 7~8 °C, 509 min (263 A h). Product in the -78 °C trap (33.6 g) and cell drainings (18.7 g) were combined. Work-up gave: perfluoro(methyl propyl ether) (1.7 g), perfluoro(N,N-dimethylethylamine)(4.6 g), 6 (4.8 g), perfluoro(3-dimethylaminopropionyl fluoride)-[1a](3.5 g), perfluoro(3-dimethylaminopropylmethyl ether)[1a](3.7 g), perfluoro(3-dimethylamino-n-butyryl fluoride)(4a)(16.6 g), perfluoro(3-dimethylaminooxolane)(19)[1a](2.7 g) and unidentified materials (14.6 g). The yield of 4a was 16.9%. Analysis of perfluoro(3dimethylamino-n-butyryl fluoride)(4a) was undertaken as the methyl ester. Methyl perfluoro(3-dimethylamino-n-butyrate)(25) was prepared by mixing about 2 g of cell drainings with 1 ml of methanol. The reaction was complete within a few minutes. The lower layer of the reaction mixture was then subjected to semi-preparative GLC (column D) to give pure 25.

Methyl perfluoro(3-dimethylamino-n-butyrate)(25)-(nc): B.p. 125~126 °C, n_D^{20} 1.3067, d_4^{20} 1.6843. IR (capillary film) (cm⁻¹): 1788 (C=O). MS *m/z*: 342 [M-F]⁺ (2.3); 252 C₄F₁₀N⁺ (28.8); 214 C₄F₈N⁺ (13.7); 209 C₅F₇O⁺ (9.3); 164 C₃F₆N⁺ (30.4); 150 C₃F₆⁺ (16.0); 145 C₃F₅N⁺ (5.6); 131 C₃F₅⁺ (5.7); 114 C₂F₄N⁺ (9.7); 100 C₂F₄⁺ (10.2); 81 C₂F₃⁺ (9.4); 69 CF₃⁺ (100); 59 CO₂Me⁺ (64.2). ¹⁹F NMR data for **24** are listed in Table 3.

Fluorination of methyl 3-pyrrolidino-n-butyrate (2c)

Sample 2c (40.3 g, 0.236 mol) was fluorinated similarly under the following conditions: 3.5 A dm⁻², 6.4~6.5 V, 7~8 °C, 509 min (221 A h). Work-up gave: products in the -78 °C trap (13.0 g): 10 (3.5 g), 11 (4.4 g), 12 (2.0 g) and unidentified materials (3.0 g). Cell drainings (45.1 g): 11 (2.0 g), 12 (6.2 g), perfluoro(3-pyrrolidinopropylmethyl ether)(20)(2.4 g), perfluoro(3-pyrrolidino-n-butyryl fluoride)(4c)(20.5 g), perfluoro(3-pyrrolidinooxolane)(21)(9.7 g) and unidentified materials (6.7 g). The yield of 4c was 21.2%. Characterization of 4c was as for 4a.

Perfluoro(3-pyrrolidinopropylmethyl ether)(**20**): B.p. 105 ~ 106 °C, n_D^{20} 1.2819, d_4^{20} 1.7916. IR (gas) (cm⁻¹): 1347 (s); 1279 (s); 1227~1247 (vs); 1182 (s); 1157 (s); 1135 (ms); 1042 (m); 980 (s); 895 (w); 873 (w); 795 (w); 776 (ms); 737 (w). MS *m*/*z*: 430 [M-F]⁺ (5.5); 364 C₇F₁₄N⁺ (15.9); 342 C₇F₁₂NO⁺ (5.9); 314 C₆F₁₂N⁺ (9.8); 264 C₅F₁₀N⁺ (9.1); 214 C₄F₈N⁺ (17.5); 169 C₃F₇⁺ (27.7); 131 C₃F₅⁺ (12.4); 119 C₂F₅⁺ (22.1); 114 C₂F₄N⁺ (15.7); 100 C₂F₄⁺ (24.9); 69 CF₃⁺ (100).

Perfluoro(3-pyrrolidinooxolane)(**21**)(nc): B.p. 107 ~ 108 °C, n_D^{20} 1.2997, d_4^{20} 1.8273. IR (gas) (cm⁻¹): 1337~1357 (m~ms); 1307 (ms); 1257; 1272 (vs); 1223 (vs); 1202 (s, sh); 11.86 (s); 1172 (s); 1135 (m); 1112 (s); 1084 (s); 1042 (ms); 985 (ms); 945 (m); 910 (w); 852 (w); 795 (w); 768 (ms); 730 (w). MS *m/z*: 392 [M-F]⁺ (16.2); 364 C₇F₁₄N⁺ (15.2); 345 C₇F₁₃N⁺ (14.6); 95 C₆F₁₁N⁺ (61.7); 245 C₅F₉N⁺ (17.0); 176 C₄F₆N⁺ (27.2); 169 C₃F₇⁺ (22.5); 150 C₃F₆⁺ (38.0); 131 C₃F₅⁺ (29.2); 119 C₂F₅⁺ (14.2); 100 C₂F₄⁺ (100); 69 CF₃⁺ (61.5).

Methyl perfluoro(3-pyrrolidino-n-butyrate)(**26**)(nc): B.p. 151 ~ 153 °C, n_D^{20} 1.3220, d_4^{20} 1.7444. IR (capillary film) (cm⁻¹): 1788 (C=O). MS *m/z*: 404 [M-F]⁺ (2.4); 364 C₇F₁₄N⁺ (4.9); 314 C₆F₁₂N⁺ (19.8); 264 C₅F₁₀N⁺ (5.4); 209 C₅F₇O⁺ (7.6); 176 C₄F₆N⁺ (5.5); 169 C₃F₇⁺ (8.4); 150 C₃F₆⁺ (11.4); 131 C₃F₅⁺ (9.7); 119 C₂F₅⁺ (9.6); 100 C₂F₄⁺ (14.4); 81 C₃F₃⁺ (5.8); 69 CF₃⁺ (37.7); 59 CO_2Me^+ (100). ¹⁹F NMR data for 20, 21 and 26 are listed in Table 3.

Fluorination of methyl 3-morpholino-n-butyrate (2d)

Sample 2d (40.7 g, 0.218 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², 7.2~7.6 V, 7~8 °C, 530 min (228 A h). Work-up gave: product in the -78 °C trap (10.4 g): 13 (2.2 g), 14 (4.1 g), 15 (2.5 g) and unidentified materials (1.7 g). Cell drainings (61.6 g): 14 (4.0 g), 15 (n/iso ratio = 1:10) (8.2 g), perfluoro(3-morpholinopropylmethyl ether)(22)(2.8 g), perfluoro(3-morpholinooxolane)(23)(6.4 g), perfluoro-(3-morpholino-n-butyryl fluoride)(4d)(40.2 g) and unidentified materials (2.8 g). The yield of 4d was 43.2%. Characterization of 4d was as for 4a.

Perfluoro(3-morpholinopropylmethyl ether)(22)(nc): B.p. 115~117 °C, n_D^{20} 1.2827, d_4^{20} 1.8038. IR (gas) (cm^{-1}) : 1349 (ms); 1286~1209 (ms~s); 1227~1247 (vs); 1193 (s); 1167 (s); 1152 (vs); 1125 (m); 1105 (m); 985 (w); 934 (ms); 895 (w); 775 (ms); 667 (w); 623 (w). MS m/z: 446 [M-F]⁺ (0.9); 280 C₅F₁₀NO⁺ (14.1); 169 $C_3F_7^+$ (14.2); 64 $C_3F_6N^+$ (8.7); 119 $C_2F_5^+$ (44.6); 114 $C_2F_4N^+$ (25.2); 100 $C_2F_4^+$ (37.5); 69 CF_3^+ (100). Perfluoro(3-morpholinooxolane)(23)(nc): B.p. 118~ 109 °C, n_D^{20} 1.3033, d_4^{20} 1.8596. IR (gas) (cm⁻¹): 1315 (m); 1300 (m); 1257 (s); 1230 (vs); 1186 (s); 1146 (m); 1132 (m); 1090 (w); 1008 (w); 967 (w); 890~898 (w); 768 (w). MS m/z: 408 [M-F]⁺ (2.8); 361 C₇F₁₃NO⁺ (2.8); $311 C_6F_{11}NO^+$ (11.1); 295 $C_6F_{11}N^+$ (5.8); 245 $C_5F_9N^+$ (5.4); 214 $C_4F_8N^+$ (5.8); 195 $C_4F_7N^+$ (7.2); $176 C_4 F_6 N^+$ (9.5); $145 C_3 F_5 N^+$ (17.2); $131 C_3 F_5^+$ (12.1); 119 $C_2F_5^+$ (88.5); 100 $C_2F_4^+$ (100); 69 CF_3^+ (57.8).

Methyl perfluoro(3-morpholino-n-butyrate)(27)(nc): B.p. 160 ~ 163 °C, $n_{\rm D}^{20}$ 1.3248, d_4^{20} 1.7671. IR (capillary film) (cm⁻¹): 1793 (C=O). MS *m/z*: 420 [M-F]⁺ (2.3); 381 C₈F₁₅⁺ (4.6); 331 C₇F₁₃⁺ (20.9); 214 C₄F₈N⁺ (9.2); 209 C₃F₆CO₂Me⁺ (16.6); 164 C₃F₆N⁺ (22.7); 150 C₃F₆⁺ (22.9); 119 C₂F₅⁺ (72.1); 114 C₂F₄N⁺ (14.2); 100 C₂F₄⁺ (40.0); 69 CF₃⁺ (24.9); 59 CO₂CH₃⁺ (100). ¹⁹F NMR data for **22**, **23** and **27** are listed in Table 3.

Fluorination of methyl 3-piperidino-n-butyrate (2e)

Sample 2e (40.3 g, 0.218 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², 6.1~6.3 V, 7~8 °C, 549 min (243 A h). Work-up gave: product in the -78 °C trap (8.6 g); 16 (3.8 g), 17 (2.1 g) and unidentified materials (2.7 g). Cell drainings (50.8 g): 17 (5.5 g), 18 (n/iso ratio=1:2) (7.0 g), perfluoro-[3-(methylpyrrolidino)-n-butyryl fluoride] (6.5 g), perfluoro(3-piperidinooxolane)(27)(6.3 g), perfluoro(3-piperidino-n-butyryl fluoride)(4e)(21.1 g) and unidentified materials (4.8 g). The yield of 4e was 21.0%. Characterization of 4e was as for 4a.

Perfluoro(3-piperidinooxolane)(24)(nc): B.p. $129 \sim 132 \text{ °C}, n_{\text{D}}^{20} 1.3062, d_4^{20} 1.8748. \text{ MS } m/z: 442 [M-F]^+$

(6.5); 414 $C_8F_{16}N^+$ (4.0); 395 $C_6F_{12}N^+$ (4.1); 376 $C_8F_{10}N^+$ (3.5); 345 $C_5F_{10}N^+$ (17.5); 276 $C_6F_8N^+$ (13.0); 226 $C_5F_8N^+$ (8.0); 176 $C_4F_6N^+$ (21.0); 169 $C_3F_7^+$ (10.5); 131 $C_3F_5^+$ (78.1); 119 $C_2F_5^+$ (17.7); 100 $C_2F_4^+$ (96.0); 69 CF_3^+ (100).

Methyl perfluoro(3-piperidino-n-butyrate)(**28**)(nc): B.p. 167 ~ 168 °C, n_D^{20} 1.3271, d_4^{20} 1.7958. IR (capillary film) (cm⁻¹): 1788 (C=O). MS *m*/*z*: 454 [M-F]⁺ (1.1); 414 C₈F₁₆N⁺ (10.6); 364 C₇F₁₄N⁺ (42.9); 314 C₆F₁₂N⁺ (5.3); 226 C₅F₁₀N⁺ (5.0); 209 C₃F₆CO₂Me⁺ (16.4); 169 C₃F₇⁺ (9.5); 164 C₃F₆N⁺ (6.3); 150 C₃F₆⁺ (22.0); 131 C₃F₅⁺ (23.0); 119 C₂F₅⁺ (17.8); 114 C₂F₄N⁺ (17.8); 100 C₂F₄⁺ (100); 69 CF₃⁺ (37.0); 59 CO₂Me⁺ (100). ¹⁹F NMR data for **24** and **28** are listed in Table 3.

Fluorination of methyl 3-diethylamino-n-butyrate (2b)

Sample 2b (40.6 g, 0.234 mol) was fluorinated similarly under the following conditions; 3.5 A dm⁻², $6.6 \sim 6.7$ V, 7~8 °C, 577 min (249 A h). Work-up was as for the fluorination of 1a. Products collected in the -78°C trap (24.8 g) consisted mainly of 5 (14.3 g), perfluoro(N,N-diethylmethylamine)(4.6 g) and 9 (3.7 g). Pcrfluoro(N, N-diethylpropylamine)(1.8 g) and perfluoro(3-diethylaminopropionyl fluoride) [1c] (2.6 g) were found in the cell drainings (23.6 g), and most of the products remained unidentified. Among them, two perfluoroacid fluorides were found as a mixture, 5.4 g and 5.2 g, respectively. Determination of the structure in the form of their methyl esters was unsuccessful due to the complex ¹⁹F NMR data obtained. However, we have assigned them as perfluoro[3-(N-methyl-N-ethylamino)-n-propionyl fluoride] for the former and perfluoro[3-(N,N-diethylamino)-n-propionyl fluoride] (4b) for the latter from their GC data. The yields of the former and the latter (4b) corresponded to 5.5% and 4.7%, respectively.

References

- (a) T. Abe, E. Hayashi, H. Baba and H. Fukaya, J. Fluorine Chem., 48 (1990) 257; (b) T. Abe, E. Hayashi, H. Fukaya and H. Baba, *ibid.*, 50 (1990) 173; (c) T. Abe, E. Hayashi, H. Fukaya, Y. Hayakawa, H. Baba, S. Ishikawa and K. Asahino, *ibid.*, 57 (1992) 101.
- 2 For preceding paper in this series, see ref. 1c.
- 3 T.J. Perine, J. Org. Chem., 18 (1933) 899.
- 4 D.W. Adamson, J. Chem. Soc., (1950) 885.
- 5 G.G.I. Moore, J.C. Hansen, T.M. Barrett, J.E. Waddell, K.M. Jewell, T.A. Kestner and R.M. Payfer, *J. Fluorine Chem.*, 32 (1986) 41.
- 6 G.P. Gambaretto, M. Napoli, L. Conte, A. Scipioni and R. Armelli, J. Fluorine Chem., 27 (1984) 149.
- 7 W.V. Childs, L. Christensen, F.W. Klink and C.F. Kolpin, in H. Lund and M.M. Baizer (eds.), Organic Electrochemistry, Marcel Dekker, New York, 1991, p. 1103.

- 8 H.C. Fielding, in R.E. Banks (ed.), Organofluorine Chemicals and Their Industrial Applications, Ellis Horwood, Chichester, 1979, p. 220.
- ⁹ T. Abe, E. Hayashi, H. Fukaya, Y. Hayakawa and T. Shimizu, 13th Int. Symp. Fluorine Chem., Bochum, Germany, Sept. 1991, Abs. B26; J. Fluorine Chem., 45 (1991) 88.
- 10 E. Hayashi, H. Fukaya, T. Abe and K. Omori, *Chem. Lett.*, (1990) 737; E. Hayashi, H. Fukaya, T. Abe and K. Omori, *J. Fluorine Chem.*, 52 (1991) 133; E. Hayashi, H. Fukaya, Y. Hayakawa, T. Abe and K. Omori, *ibid.*, 53 (1991) 199.
- See, for example, M. Hauptshein and C.L. Parris, US Pat. 3 351 644(1967)[Chem. Abs., 68 (1968) 12 495g]; W. Paulus, O. Pauli and H. Genth, US Pat. 3 328 240(1966)[Chem. Abs., 67 (1967) 63 295d]; K. Von Werner and A. Giesser, Eur. Pat. 52 285(1982); US Pat. 4 400 325(1983)[Chem. Abs., 97 (1982) 162 372c]; C.M. Hu, F.L. Qing and H.G. Zhang, J. Fluorine Chem., 49 (1990) 275, and references therein.
- 12 A. Vystrcil and S. Hudecek, Chem. Listy, 44 (1950) 262 [Chem. Abs., 45 (1951) 5625b].
- 13 R.B. Moffett, J. Org. Chem., 14 (1949) 862.
- 14 C.A. Weisel, R.B. Taylor, H.S. Mosher and F.C. Whitmore, J. Am. Chem. Soc., 67 (1945) 1071.