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*S Supporting Information

ABSTRACT: An efficient and general protocol for the
synthesis of α,β-unsaturated aldehydes, esters, and amides
via carbonylation of vinyl triflates including derivatives of
camphor, ketoisophorone, verbenone, and pulegone was
developed. Crucial for these transformations is the use of a
specific palladium catalyst containing a pyridyl-substituted
dtbpx-type ligand. This procedure also allows for an easy
access of dicarbonylated products from the corresponding ketones.

Continuing to attract the interests of researchers from
academia and industry, α,β-unsaturated carbonyl com-

pounds, especially aldehydes, constitute versatile building
blocks for organic synthesis.1 In recent years, they have been
used more specifically for the synthesis of biologically2 and
optically3 active compounds, agrochemicals,4 pharmaceuticals,5

fullerene-based materials,6 flavors,7 natural compounds,8

polymers,9 fragrances,10 and many more. Traditionally, α,β-
unsaturated aldehydes were produced by oxidation of the
corresponding allylic alcohols,11 Horner−Wadsworth−Em-
mons12 and Peterson13 olefinations, aldol condensations,14

and Mannich reactions.15 Furthermore, dehydrogenation of
corresponding saturated aldehydes,16 hydroformylation of
alkynes17 or vinyl bromides,18 and other methods19 have also
been described. Nevertheless, there is a need for improved and
generally applicable synthetic routes to these important
building blocks starting from easily available substrates. In
this respect, ketones are “ideal” candidates, which can be
readily transformed into more reactive vinyl triflates20 and
related compounds. In the 1990s, the transformation of vinyl
triflates to α,β-unsaturated aldehydes was first described as a
three step reaction.21 Later on, a more straightforward and
atom-economical approachthe reductive carbonylation of
vinyl triflateswas disclosed using silyl hydrides.22 Obviously,
the use of synthesis gas (CO/H2), which is the simplest and
most environmentally benign formyl source, is more appealing.
In this respect, we described the first palladium-catalyzed
formylations of vinyl triflates.23 However, a comparably high
temperature (80−120 °C), pressure (20 bar), and catalyst
loading (1.5 mol % Pd) were necessary for successful
transformations, and the procedure was limited to cyclic
substrates. To improve this versatile methodology, the applied
ligand is of crucial importance. In recent years, we introduced a
series of pyridyl-substituted phosphine ligands for various types
of carbonylation reactions.24 Here, the pyridyl nitrogen atom
actively participates in the activation of the cosubstrate such as
alcohols, amines, etc. Thus, we had the idea that such ligands
might also improve the heterolytic activation of hydrogen in

synthesis gas. On the basis of this assumption, herein, we
present a general palladium-catalyzed carbonylation of vinyl
triflates to afford not only α,β-unsaturated aldehydes but also
esters and amides under very mild conditions.
At the start of this project, we studied the reductive

carbonylation of cyclohexenyl triflate (1) as the benchmark
reaction. Compared to previous carbonylations of aryl and
vinyl triflates, various phosphine ligands were compared under
significantly milder conditions [0.5 mol % Pd(OAc)2, 0.75
equiv of tetramethylethylenediamine (TMEDA), 5 bar CO/
H2, 60 °C]. As shown in Scheme 1, previously known ligands
for this transformation such as dppf L1, dtbpf L2, dtbpx L4,
and dadpx L5 gave only low yields of the desired α,β-
unsaturated aldehyde 2, while decomposition of the substrate
was mainly observed.
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Scheme 1. Pd-Catalyzed Synthesis of Cyclohex-1-
enecarbaldehyde in the Presence of Different Ligandsa

aReaction conditions: 0.5 mmol of 1, Ar. Yields and conversions were
determined by GC with n-hexadecane as standard; the values given
refer to the yields of 2.
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However, following the proposal of vide supra replacement
of the phenyl or t-butyl group on both ligand scaffolds by 2-
pyridyl (L3 and L6), the desired transformation took place,
and 2 was obtained in good to very good yields (60% and 82%,
respectively). Testing other standard mono- and bidentate
phosphines as well as specifically available ones from our
laboratory gave no positive results at all (see the SI, Scheme
S1). Notably, in some cases (L1 and L4), high conversion was
observed, and cyclohex-1-ene-1-carboxylic anhydride was
detected as a major side-product.
Further optimization of the Pd(OAc)2/L6 system revealed a

strong influence of base, ligand concentration, and temperature
(Table 1). As expected, a control experiment without any

catalyst revealed basically no conversion (3%) of 1 and no
product formation (Table 1, entry 1), while under optimal
conditions full conversion was observed, and 88% of the
product could be obtained (Table 1, entry 9). Apart from
toluene, the reaction also proceeded smoothly in tetrahy-
drofuran (THF) and dimethylformamide (DMF) (Table 1,
entries 8 and 9).
With the optimized reaction conditions in hand, the

formylation of structurally diverse vinyl triflates with synthesis
gas was tested (Scheme 2). In addition to cyclohexenyl triflate,
13 other substrates were converted to the corresponding
products in good to excellent yields. Vinyl triflates of a six- and
seven-membered ring were formylated successfully under
optimized conditions (4a and 4b). For the eight-membered
ring triflate, a higher temperature (80 °C) and catalyst loading
were necessary to give 4c in 85% isolated yield. Furthermore,
derivatives of cyclohexenyl triflate with substituents at various
positions underwent formylation smoothly to give the
corresponding aldehydes in 60−81% isolated yields (4d−
4h). With regard to the functionalization of naturally occurring
terpenes, it is interesting that derivatives of camphor,
ketoisophorone, verbenone, and pulegone can be easily
converted to the corresponding aldehydes at 60 or 80 °C in
high yields (4i−4l). Notably, this protocol is also applicable to

the formylation of linear vinyl triflates (4m and 4n), which are
described here to the best of our knowledge for the first time.
To further demonstrate the superiority of the 2-pyridyl-
substituted ligand, control experiments were made in the
presence of the previous state-of-the-art ligand L5. However,
4k and 4m were detected in <3% yield by GC.
To understand the improved performance of this specific

palladium catalyst system and to get further insights, in situ 31P
NMR spectroscopic measurements were performed. After
mixing cyclopentadienyl allyl palladium with L6 and 3a in d8-
toluene at 60 °C, the parent ligand (δ = 8.8 ppm) immediately
disappeared, and three other phosphorus species were mainly
detected (δ = 19.73, 34.56, and 52.28 ppm, ratio of 1:2.8:1.1)
(see the SI). On the basis of a similar characterized reference
complex [L6Pd-η3-allyl]OTf,24d we assign the largest signal at
34.56 ppm to the oxidative addition product [L6Pd-η3-
cyclohexenyl]OTf. In contrast, stirring cyclopentadienyl allyl
palladium with L4 instead of L6 in the presence of 3a in d8-
toluene resulted only in the formation of one main phosphorus
species at lower field δ = 58.28 ppm, which indicates no
formation of the oxidative addition product under these
conditions.
To demonstrate the generality of our catalyst systems for

other carbonylations as well, reactions of vinyl triflates in the
presence of other nucleophiles (alcohols, phenol, and amines)

Table 1. Pd-Catalyzed Synthesis of Cyclohex-1-
enecarbaldehyde under Various Conditionsa

entry
Pd(OAc)2
(L6)/mol % baseb solvent

conversion
(yield)/%

1 0 (0) TMEDA toluene 3 (0)
2 0.5 (0.75) TMEDA toluene 38 (5)
3 0.5 (1.5) TMEDA toluene 100 (82)
4c 0.5 (1.5) TMEDA toluene 54 (44)
5 0.5 (1.5) NaOtBu toluene 52 (0)
6 0.5 (1.5) Na2CO3 toluene 20 (2)
7 0.5 (1.5) none toluene 9 (1)
8 0.5 (1.5) TMEDA THF 100 (76)
9 0.5 (1.5) TMEDA DMF 100 (88)
10 0.5 (1.5) TMEDA DMSO 100 (24)

aReaction conditions: 0.5 mmol of 1, Ar. Yields and conversions were
determined by GC with n-hexadecane as standard. b0.75 equiv for
TMEDA; 1.5 equiv for other bases. cReaction performed at 40 °C.

Scheme 2. Substrate Scope of the Pd-Catalyzed Synthesis of
α,β-Unsaturated Aldehydesa

aReaction conditions: 0.5 mmol of 3, Ar. Yields of isolated products.
bGC yield. c1.5 mol % Pd(OAc)2, 4.5 mol % L6. dL5 was used instead
of L6.
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were performed. As shown in Scheme 3, alcohols including
methanol, n-butanol, and benzyl alcohol led to the

corresponding esters 5a−5d with six- or seven-membered
rings in up to 94% yield. Even less basic phenol reacted
smoothly with cyclohexenyl triflate to give the corresponding
product in 84% isolated yield (5e). With respect to amines,
both primary and secondary amines, including anilines and
aliphatic ones as well as L-proline methyl ester hydrochloride,
were converted successfully to the desired products (5f−5j).
Due to the excellent performance of this catalyst in various

carbonylation reactions, the here-reported procedure can be
easily combined with a subsequent olefin carbonylation step.
Hence, it is possible to access a variety of dicarbonylated
products in only two steps from the corresponding ketone
using the same catalyst system (Scheme 4). To demonstrate
this principle 3n was synthesized in the first step, and after
simply adding 16 mol % PTSA·H2O, the dicarbonylated

compound 6k was isolated in 78% overall yield (see the SI,
Scheme S2).
In conclusion, we have developed an efficient and general

protocol for the synthesis of α,β-unsaturated aldehydes, esters,
and amides under mild conditions using the specific
palladium/L6 catalyst system. For the first time, we
demonstrate that the incorporation of basic pyridyl-substitu-
tents significantly improves the performance of the catalyst in
palladium-catalyzed coupling processes. The synthetic utility of
the protocol is demonstrated in the carbonylation of vinyl
triflates including derivatives of camphor, ketoisophorone,
verbenone, and pulegone. Furthermore, this catalyst system
allows for an easy access of dicarbonylated products.
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