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ABSTRACT: A facile one-pot synthesis of tricyclo-1,4-benzoxazines has been 

developed via metal-free intramolecular cyclization of indole derivates. These 

reactions were efficiently achieved at ambient temperature by using visible-light 

photoredox catalysis in continuous flow. This directed intramolecular cyclization 

could be easily handled and scaled up in an open flask, enabling construction of a 

focused compound library for further pharmacological evaluation.  
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Introduction 

1,4-Benzoxazines as one of the common structural scaffolds ubiquitously exist in a 

large number of pharmacological compounds1 which exhibit various fundamental 

biological functions including neuroprotective,
2
 antitumor,

3
 anti-inflammatory,

4
 

antithrombotic,
5-7

 as well as antihypertensive effects.
8
 In particular, some 

benzoxazines have been developed as antibacterial agents,
9,10

 antipsychotic agents,
11

 

and cardiovascular drugs
12

. For example, levofloxacin (Figure 1) with 1,4-

benzoxazine moiety exhibits excellent antibiotic activities against a range of 

bacteria.
13

 Similar fragment is also found in the antiemetic agent azasetron which has 

been recognized as a typical member of 5-HT3 receptor antagonists.14 DIMBOA (2,4-

dihydroxy-7-methoxy-1,4-benzoxazin-3-one) is a naturally-occurring hydroxamic 

acid found in maize, which has the property of modifying the binding affinity of 

auxins to receptor sites.15,16 More recently, our previous work by utilizing scaffold 

repurposing approach
17

 has identified tricyclo-1,4-benzoxazine derivatives as potent 

anticancer agents with promising antiproliferative activities against various cancer 

cell lines.
18

  

 

Figure 1. Representative 1,4-benzoxazine-containing pharmacological compounds. 



  

The extensive utility of 1,4-benzoxazines derives organic chemists to develop a 

range of preparative strategies with easy scalability, improvement in efficiency, as 

well as reduction in cost/waste. Traditional methods to synthesize 1,4-benzoxazines 

involve multistep processes including cyclocondensation
8,14,19

, epoxide opening
20,21

 

and metal catalyzed reaction.
22-24

 In our continuing effort to develop novel diversified 

analogues, we directed our library construction based on the scaffold of tricyclo-1,4-

benzoxazines. Although extensive studies have been carried out for the synthesis of 

benzoxazines, there are few reports on this scaffold. One similar report by Saito 

involved the reaction of 3-substituted indoles with singlet oxygen followed by 

catalytic HCI induced rearrangement of the resulting peroxidic intermediates.25,26 We 

employed the starting material 1a, the photocatalyst rose bengal, and MeOH. The 

mixture was vigorously stirred and irradiated with a tungsten-bromine lamp in the 

present of O2 at -70 oC for 4 h. Treatment of the resulting hydroperoxide with 

catalytic amounts of HCI at room temperature provided 2a in 43% yield.  After many 

trials under this condition, we found that this procedure suffered from several 

disadvantages. Firstly, the reaction is limited in scope by the relatively low 

temperatures (-70 
o
C) and two steps required. Secondly, it is difficult to perform on 

gram scale and the reaction always needs longer reaction time, resulting in low yields. 

Thirdly, the application scope is limited, only few substrates could be performed 

under this condition. Thus, there is a demand for development of a more general and 

environment friendly procedure. Herein, we report our one-pot synthesis of tricyclo-

1,4-benzoxazines via visible-light photoredox catalysis in continuous flow.  

 

Results and discussion 



  

According to our previous work on practical N-demethylation by using our 

upgraded home-made continuous-flow photoreactor27 and Saito’s procedure25, we 

envisioned that mild conditions (one-pot synthesis), satisfactory yields and simple 

operation could be achieved. As rearrangement of the peroxidic intermediates might 

be induced by acid, we first selected 1a as template substrate in the present of 

catalytic methylene blue (MB) and different acids under 34 W white LEDs light 

irradiation in continuous flow for the condition optimization (Table 1). Initial results 

revealed that among the most tested acid (Table 1, entries 2–8), good to excellent 

yields of 2a were obtained, while the replacement of TsOH with AcOH or CH3SO3H 

afforded 2a in low yields (entries 2 and 8). No desired product was detected if the 

acid was omitted (entry 1). Notably, in the absence of O2, it resulted in a loss of 

reactivity (entries 9-10). This indicated that oxygen was crucial for the reaction to 

occur. Encouraged by these promising results, we next surveyed the amount of the 

acid under air atmosphere (entries 9, 11-12). Lowering the amount of TsOH to 0.5 or 

0.1 equiv slightly decreased the yield to 91% or 73%, respectively (entries 11-12). 

Extensive efforts on the investigation of the molar ratios of alcohol used in the 

reaction were conducted. Disappointingly, when using CH3CN as the solvent and 

lowering the amount of alcohol, the reaction requires a long time, resulting in 

unsatisfied yield (entries 13). This reaction also worked smoothly in the presence of 

TsOH·H2O and air (entry 14), indicating that the presence of water has a minor 

influence on the cyclization of indole derivates. Further evaluation of the 

commercially available photoredox catalysts revealed that Ru(bpy)3Cl2•6H2O can also 

provide the good yield (entry 15). The photoredox reaction was conducted in batch 

under the similar condition. As anticipated, complete conversion of the reaction 



  

requires more than 24 h, in contrast to flow chemistry requiring only 1 h (entries 7, 

16). 

Table 1. Optimization of the reaction conditions.a 

  

Entry Acid (equiv.) Atm. Time (h) Yield (%)b 

1 0 O2 5 trace 
2 AcOH (1.0) O2 1 27 

3 HCl (1.0) O2 1 91 

4 H2SO4 (1.0) O2 1 94 

5 HNO3 (1.0) O2 1 87 

6 CF3CO2H (1.0) O2 1 95 

7 TsOH (1.0) O2 1 99 

8 CH3SO3H (1.0) O2 4 60 

9 TsOH (1.0) Air 2 93 

10 TsOH (1.0) N2 24 trace 

11 TsOH (0.5) Air 2 91 

12 TsOH (0.1) Air 2 73 

13c TsOH (1.0) O2 3 60 

14 TsOH·H2O (1.0) O2 1 98 

15
d
 TsOH (1.0) O2 1 89 

16
e
 TsOH (1.0) O2 24 73 

a
Reaction condition: 1a (0.2 mmol), MB (4 mol%) in MeOH (25 mL), ambient 

temperature, irradiated with 34 W LEDs under a specific atmosphere. 
b
Isolated yield 

unless otherwise noted. 
c
Reaction was conducted in CH3CN (25 mL) and MeOH 

(100.0 equiv). dRu(bpy)3Cl2•6H2O as the photocatalyst.  eReaction was conducted in 

batch. 
 

Having identified the optimal reaction conditions, we next set out to examine the 

scopes of photoredox catalysis synthesis of 1,4-benzoxazines. As shown in Table 2, a 

variety of alcohols as solvents were examined. The commonly used alcohols, such as 

methanol, ethanol and propanol, underwent the cyclization smoothly which provided 

the desired tricyclebenzoxazines in good yields (2a-2d). When the reaction was 

conducted in CH3CN solvent and 2-methoxyethan-1-ol was used as the nucleophiles, 

gratifyingly, a moderate yield was observed (2e). In addition, the substrate scope of 



  

N-monosubstituted tryptamines was explored. Typical N-protecting groups (R2 = Ts, 

SO2R, COR) on the side chain of tryptamine were all well tolerated, providing the 

desired tricyclo-1,4-benzoxazines in good yields (2f-2g). Furthermore, reactions of 

tryptophol or other tryptamines with varied alcohols were proceeded smoothly (2l-2p). 

Notably, gram-scale reaction of 1a was also performed to evaluate the practicality of 

this photoredox reaction. As showed in Figure 2, the corresponding product 2a was 

obtained in 78%. The chemical structure of 2a was further confirmed by X-ray 

analysis.
28

 

Table 2. Substrate scope of tricyclo-2,3-dihydro-1,4-benzoxazines.
a 

aUnless otherwise noted, the reaction condition was as followed: indole 1 (0.2 mmol), 



  

MB (1.0 mmol%), TsOH (0.2 mmol), R3OH (25 mL), 34 W LED light source, O2, 1-3 

h. Yield of isolated product. 2a-2e were synthesized from the starting material 1a, 2f 

from 1b, 2g from 1c, 2h from 1d, 2i from 1e, 2j from 1f, 2k from 1g, 2l-2o from 

tryptophol, 2p from 1h. See the Supporting Information for more details. 
b
CH3CN as 

the solvent and 2-methoxyethanol (10 mmol).  

 

  

Figure 2. The gram-scale reaction. 

 

The proposed mechanism was depicted in Figure 3. First, methylene blue (MB) 

is excited under visible light irradiation to produce its excited state species [MB
+
]*, 

which interacts with A to generate cation radical B via the electron transfer.
29

 In this 

process, the excited state [MB
+
]* turns to the semireduced form MB•. The radical 

intermediate B readily undergoes intramolecular cyclization to give tricyclo-indole 

radical C. The radical MB•
 
transfers an electron to oxygen to produce superoxide O2•

−
 

and MB• returns to its ground state.
30

 Subsequently, the generated O2•
−
 reacts with the 

tricyclo-indole radical C to yield hydroperoxide D. In the presence of acid, the 

terminal hydroperoxy oxygen atom is protonated followed by phenyl group migration 

from the benzyl carbon to the adjacent oxygen, producing a resonance stabilized 

tertiary carbocation E. The tricycle-benzoxazine cation can be trapped by the O-

nucleophile, furnishing exclusively the desired product. 

 

Conclusion 

In conclusion, a practical method for the cyclization of indole derivatives via 

visible-light photoredox catalysis in continuous flow has been developed. To the best 

of our knowledge, there is little information available in literature about the 



  

cyclization of tryptamine via visible-light photoredox catalysis in flow. This reaction 

can be run in one-pot fashion, and does not require expensive metal-free catalysts, 

providing a focused compound library in good yields within remarkably short time. 

 

 

Figure 3. Proposed Mechanism.  

 

Experimental section 

General Information. All reactions were performed under a designated atmosphere 

in flame‐dried round bottom flasks, magnetically stirred. Preparative column 

chromatography was performed using silica gel 60, particle size 0.063–0.200 mm 

(70–230 mesh, flash). Analytical TLC was carried out employing silica gel 60 F254 

plates (Merck, Darmstadt). Visualization of the developed chromatograms was 

performed with detection by UV (254 nm and 365 nm). Proton Nuclear Magnetic 

Resonance (
1
H NMR) spectra and carbon nuclear magnetic resonance (

13
C NMR) 

spectra were recorded on a Bruker‐400 (
1
H, 400 MHz; 

13
C, 101 MHz) spectrometer. 

Chemical shifts for protons are reported in parts per million and are references to the 



  

NMR solvent peak (CDCl3: δ 7.26). Chemical shifts for carbons are reported in parts 

per million and are referenced to the carbon resonances of the NMR solvent (CDCl3: 

δ 77.16). Signals are listed in ppm, and multiplicity identified as s = singlet, d = 

doublet, t = triplet, dd = doublet of doublets, m = multiplet. Chemical shifts were 

expressed in ppm, and J values were given in Hz. High resolution mass spectra 

(HRMS) were obtained from Thermo Fisher Scientific Exactive Plus mass 

spectrometer. Melting point was determined using the X‐4A melting point apparatus 

(Shanghai Yidian Co., Ltd.) and uncorrected. Purified compounds were further dried 

under high vacuum (0.01–0.10 Torr). Yields refer to purified and spectroscopically 

pure compounds, unless otherwise noted. All commercially available starting 

materials and solvents were reagent grade, and used without further purification. 

General procedure for the reaction in continuous flow. A 100 mL round 

bottom flask equipped with a magnetic stir bar was charged with 1 (0.2 mmol), TsOH 

(0.2 mmol) and catalytic amount of MB. The corresponding alcohol (25 mL) was 

added. The resulting blue solution was sucked into the Home‐Made Continuous‐Flow 

Photoreactor at one end and returned at the other (rpm = 50, flow rate is ~10 mL/min). 

The flow reaction was conducted under O2 in the home-made capillary photoreactor 

with a LongerPump (Pump model: YZ1515x). Two 20 mL Reaction Towers were in 

series connection, each with a LED corn light bulb (34 W) in the center. Relatively 

mild heating (< 30 °C) of the reaction mixture was observed after a long period of 

time. The flow reaction was completed in 1-3 h. After completion of the reaction by 

TLC analysis, the mixture was collected and concentrated under reduced pressure. 

The residue was purified by silica gel chromatography to give 2 (52-99% yields). 

(3aR,9aS)-3a-methoxy-1-tosyl-1,2,3,3a,9,9a-hexahydrobenzo[b]pyrrolo[2,3-

e][1,4]Oxazine (2a). To a solution of 1a (63 mg, 0.2 mmol) in MeOH (20 mL) was 



  

added TsOH (34 mg, 0.2 mmol) and MB (3 mg, 4 mol%). The resulting solution was 

then irradiated by a LED strip and stirred for 1 h in continuous flow. The reaction 

mixture was removed from the light source and concentrated to give crude product 

under reduced pressure. The residue was purified by silica gel chromatography 

(PE/EtOAc = 2:1) to give the target product as a white solid (71 mg, 99%). Physical 

State: white solid; Melting Point: 181.2-182.7 
o
C; TLC: Rf = 0.36 (PE/EtOAc = 4:1); 

1
H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 6.91 

– 6.79 (m, 2H), 6.76 – 6.69 (m, 1H), 6.65 (d, J = 7.7 Hz, 1H), 5.02 (s, 1H), 4.97 (d, J 

= 3.2 Hz, 1H), 3.50 – 3.40 (m, 2H), 3.36 (s, 3H), 2.40 (s, 3H), 2.36 – 2.30 (m, 1H), 

1.82 – 1.71 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 143.87, 140.48, 135.12, 129.87, 

129.17, 127.41, 122.77, 119.48, 116.89, 115.06, 101.12, 70.41, 51.39, 44.21, 32.02, 

21.58; HRMS (ESI): calcd for C18H20N2O4S [M + H]+ m/z 361.1217, found 361.1221. 
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Highlights 

• A facile continuous-flow method to access tricyclo-1,4-benzoxazines. 

• The reaction was efficiently achieved at ambient temperature. 

• The procedure could be easily handled and scaled up. 

• Enabling construction of a focused compound library. 

 

 

 


