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Fourteen N,N0-diaryl unsymmetrically substituted thioureas were synthesised
and their cytotoxic (in vitro), phytotoxic (in vitro), acetylcholinesterase and
butrylcholinesterase activities were determined. Thiourea 16 exhibited high, and 1

and 3 showed significant phytotoxic activity. Thioureas 1, 3, 4, 6 and 10 showed
significant activity and 2, 6 and 7 indicated moderate cytotoxic activities.
Compound 12 exhibited butrylcholinesterase activity higher than a standard
reference.

Keywords: N,N0-diaryl unsymmetrically substituted thiourea derivatives; phyto-
toxicity; cytotoxicity; acetylcholinesterase activity; butrylcholinesterase activity

1. Introduction

N,N0-Diarylsubstituted thioureas (symmetrical or unsymmetrical) have received a
considerable amount of attention as a drug candidate against a variety of diseases, due
to their broad spectrum of pharmacological activities. During the past few years, N-aryl-
N0-phenyl thioureas, where aryls were o-anisyl, m-anisyl, p-tolyl, m-tolyl, 2-napthyl,
p-chlorophenyl, 2-chlorophenyl, p-bromophenyl, etc. exhibited numerous biological
activities, including fungicidal (Krause, Franke, & Vasilev, 1979; Ramadas, Suresh,
Janarthanan, & Masilamani, 1998; Vasilev & Tomaleva, 1973), herbicidal (Vasilev &
Davarski, 1986; Vasilev, Iliev, & Vasileva, 1969; Vasilev & Ionova, 1984), cytokinin (Bruce
& Zwar, 1966; Bruce, Zwar, & Kefford, 1965; Izvorska, Vasilev, Lilov, & Belcheva, 1986;
Mashev & Vasilev, 1974a, 1974b; Vasilev & Ionova, 1978; Vasilev & Mashev, 1974;
G. Vassilev & N. Vassilev, 2002), antipolioviral (Galabov, Shindarov, Vasilev, & Vasileva,
1972), antiphytoviral (Vasilev & Schuster, 1986; Vasilev, Vasileva, Galabov, & Shindarov,
1972), and insecticidal (Kondo & Maekawa, 1976; Mathur, 1976) activities. They are also
active against bacterial and microbial infections, in particular are potential anti-tubercular
agents against mycobacterium tuberculosis (Sarkis & Faisal, 1985; Schroeder, 1951;
Walpole et al., 1998). Some of them are found to be phenoloxidase enzyme inhibitors
(Makhsumov, Safaev, & Abidova, 1968) and are also used as biomimic models (Smith,
Liras, Schneider, & Anslyn, 1996; Tobe, Sasaki, Hirose, & Naemura, 1997). N,N0-diaryl
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thioureas are highly potent and selective human A2B adenosine receptor antagonists

(Baraldi et al., 2004) and cyclin-dependent kinase 2 (CDK2) inhibitors (Honma et al.,

2001). They also find use as the building blocks for the synthesis of many valuable

heterocyclic compounds (Griffin, Woods, & Klayman, 1975). Some thioureas are

commercially used as accelerators in rubber vulcanisation (Alder, 1989; Debroy,

Mazumdar, Barua, & Mahajan, 1984; Makhsumov et al., 1968).
These potential biological findings led us to synthesise 14 unsymmetrically substituted

N-phenyl-N0-aryl thioureas to explore their cytotoxicity, phytotoxicity, acetylcholinester-

ase and butrylcholinesterase activities.

2. Results and discussion

Fourteen unsymmetrically substituted N,N0-diaryl thioureas, 1–14, were prepared by

thermal treatment of anilines in the solid phase with phenylisothiocynate at room

temperature (Scheme 1). The reaction was completed within 1–2min for all the thioureas,

except 6, 8 and 10, where heating at 100�C was required for 10–15min. The synthesised

compounds were recrystallised from hot ethanol and were characterised by recording

their spectral data.
The IR spectra of all the synthesised thiourea derivatives exhibited N–H stretching

vibrations in the region between 3470–3160 cm�1. The vibrations in the region 1265–1225

and 1180–1120 cm�1 were assigned to C¼S stretching. The N–H amide absorption bands

were observed at 1380–1308 cm�1. These IR bands were common to all the synthesised

thiourea derivatives and are in agreement with the absorptions reported in the literature

for thioureas (Alder, 1989; Sarkis & Faisal, 1985). Thiol-thione tautomerism was indicated

by the signals between 1.5–2.4 ppm in the 1H-NMR of all synthesised compounds, and

were in accordance with the signals reported in the literature (Sarkis & Faisal, 1985). The

molecular ion peak of all the synthesised compounds was observed in EIMS and

HREIMS, except for compounds 6, 11 and 14. The calculated molecular masses were

in good agreement with the values obtained. The fragments due to cleavage of ArNH

(or Ar0NH), ArNHCS (or Ar0NHCS) and Ar (or Ar0) were prominent in the EIMS of all

the synthesised thioureas.
All the synthesised thiourea derivatives were screened for their brine shrimp lethality

(cytotoxicity), Lemna minor L. (phytotoxicity), acetylcholinesterase and butrylcholinester-

ase inhibition activities.

2.1. Phytotoxic bioassays against L. minor L.

Lemna minor L. (duckweed) is a miniature aquatic monocot. L. minor bioassays have been

used to screen synthesised thioureas for their effect on plant growth (McLaughlin, Chang,

& Smith, 1991). The results of the phytotoxicity of the synthesised thioureas are presented

in Table 1.
The experiments were performed at 1000, 100 and 10 mgmL�1 and all the compounds

1–14 were found to be active at higher concentration levels. N-(p-nitrophenyl)-

N0-phenylthiourea (6) was found to exhibit significant activity, with 100% inhibition

of plant growth at 1000mgmL�1. The high activity of 6 may be attributed to the presence

of the p-nitro group at the aromatic ring. N-(m-methoxyphenyl)-N0-phenylthiourea (1) and

1720 S. Begum et al.
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N-(o-methoxyphenyl)-N0-phenylthiourea (3), both carrying methoxy groups, showed
significant activities of 75.0 and 85.7, respectively, at 1000 mgmL�1.
N-(p-methylphenyl)-N0-phenylthiourea (4) exhibited a good activity of 64.28 mgmL�1

at 1000 mgmL�1 and moderate activity of 57.14 mgmL�1 at 100 mgmL�1 concentrations.
N-(p-methoxyphenyl)-N0-phenylthiourea (2), N-(o-chlorophenyl)-N0-phenylthiourea (8),
N-(p-bromophenyl)-N0-phenylthiourea (9), N-phenyl-N0-(2-pyridinyl)thiourea (10)
and N-(1-naphthyl)-N0-phenylthiourea (12) exhibited moderate L. minor growth inhibition
at higher concentrations. Other thiourea derivatives showed low or insignificant activities
at all (1000, 100, and 10 mgmL�1) concentration levels.

Ar–NH 2 Ph–N=C=S
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Scheme 1. Synthetic route for N,N0-diaryl unsymmetrically substituted thioureas 1–14.
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2.2. Cytotoxic brine shrimp lethality bioassays

Brine shrimp bioassays are rapid and inexpensive for screening the physiologically

active chemical substances for their cytotoxic effects (Finney, 1971; Meyer et al., 1982).

Tiny crustacean, brine shrimp, Artemia salina Leach eggs are utilised in bioassays and

pharmacological activity is manifested as the toxicity towards newly hatched nauplii.
All the synthesised compounds were subjected to brine shrimp bioassays against

A. salina Leach, the results are collected in Table 2.
Thioureas N-(m-methoxyphenyl)-N0-phenylthiourea (1), N-(p-methoxyphenyl)-N0-phe-

nylthiourea (2), N-(o-methoxyphenyl)-N0-phenylthiourea (3), N-(p-methylphenyl)-

N0-phenylthiourea (4), N-(m-methylphenyl)-N0-phenylthiourea (5), N-(p-nitrophenyl)-

N0-phenylthiourea (6), N-(p-chlorophenyl)-N0-phenylthiourea (7), N-phenyl-N0-(2-pyridi-

nyl)thiourea (10) and 2-phenyl-N-phenyl-1-hydrazinecarbothioamide (13) were found

Table 2. Results of brine shrimp (A. salina)
bioassay.

Compound no. LD50 mgmL�1

1 48.029
2 86.10
3 34.70
4 22.96
5 2.54
6 122.00
7 120.53
8 Inactive
9 Inactive
10 35.61
11 Inactive
12 Inactive
13 51.69
14 Inactive

Table 1. Results of L. minor phytotoxic bioassay (growth inhibition).

Compound no. 1000mgmL�1 100mgmL�1 10mgmL�1

1 75.00 53.57 39.28
2 53.57 50.00 42.42
3 85.71 46.42 42.85
4 64.28 57.14 25.00
5 28.20 19.0 23.25
6 100 6.70 39.28
7 42.85 35.71 28.57
8 50.00 32.14 28.57
9 53.57 46.57 39.28
10 53.57 10.71 7.14
11 32.14 28.57 21.42
12 57.14 35.71 28.57
13 26.00 10.00 Inactive
14 30.00 16.00 6.00
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to be active. The LD50 values were found to be highest for compound 5, with an LD50

value¼ 2.54 mgmL�1. Compound 4 was also found to be significantly active, with an

LD50¼ 22.96mgmL�1. Compounds 1, 3 and 10 exhibited significant activities, with LD50

values of 48.02, 34.69 and 35.61 mgmL�1, respectively. Thioureas 2, 6, 7 and 13 were found

to be less active. Compounds 8, 9, 11, 12 and 14 were inactive to brine shrimp bioassay.

The structure activity relationships of the aforesaid compounds revealed that the activity

of these compounds may be attributed to the presence of methoxy, methyl, chlorine and

pyridyl groups, respectively, at the phenyl ring, especially 4 and 5 (with methyl groups),

exhibited excellent activities against A. salina.

2.3. Acetylcholinesterase and butrylcholinesterase bioassays

Acetylcholinesterase is the key component of cholinergic brain synapses and neuromus-

cular junctions (Tougu, 2001). According to the cholinergic hypothesis, memory

impairments in patients with senile dementia are due to a selective and irreversible

deficiency in the cholinergic functions in the brain. This serves as a rationale for the use of

acetylcholinesterase inhibitors for the symptomatic treatment of Alzheimer’s disease in its

early stages. The role of butrylcholinesterase in normal ageing and brain diseases is still

elusive. It has been found that butrylcholinesterase is found in significantly higher

quantities in Alzheimer’s plaques than in plaques of normal age related non-demented

brains (Yu, Holloway, Utsuki, Brossi, & Grieg, 1999).
All the synthesised compounds were also screened against acetylcholinesterase and

butrylcholinesterase activities at 0.2mM, and results are depicted in Table 3.
All thiourea derivatives 1–14 were found to be inactive against acetylcholinesterase,

whereas 2-(2,4-dinitrophenyl)-N-phenyl-1-hydrazinecarbothioamide (14) exhibited butry-

chlolinesrease activity (IC50¼ 17.1mM), which is slightly lower than the standard

Table 3. Results of acetylcholinesterase and butrylcholinesterase bioassays of compounds 1–14.

Acetylcholinesterase Butrylcholinesterase

Compound no.
Percentage
inhibition

IC50� SEM
(mM)

Percentage
inhibition

IC50� SEM
(mM)

1 �128.5 – 5.5 –
2 �28.1 – 34.29 –
3 �56.3 – 28.79 –
4 �37.8 – 18.20 –
5 �73.9 – 25.69 –
6 0.88 – 0.74 –
7 4.70 – 9.58 –
8 �11.27 – 33.67 –
9 �5.4 – 31.45 –
10 �10.8 – 12.30 –
11 �6.74 – 31.42 –
12 1.72 – 27.28 –
13 �14.65 – 18.12 –
14 34.58 – 94.05 17.1� 1.32
Standard (galanthamine) – 0.5� 0.01 – 8.5� 0.5
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galathamine, having an IC50 value of 8.5 mM. Compound 13, which contains an
unsbstituted aromatic ring, was found to be completely inactive. This comparison clearly
indicates that nitro groups present on an aromatic moiety dramatically enhanced the
butrychlolinesrease inhibitory activity. This interesting finding invites us to synthesise
compounds that are structurally closer to compound 14, which may contain one more
nitro group or some other electron withdrawing groups. Conclusively, hydrazinecar-
bothioamide compound 14 may serve as a lead molecule for further research on this class
of compounds as butrychlolinesrease inhibitors.

3. Experimental

Melting points were recorded using Gallenkamp melting point apparatus and are
uncorrected. IR spectra were measured as KBr discs on a JASCO spectrophotometer.
Electron impact mass spectra (EIMS) were performed on MAT-312 spectrophotometer.
1H-NMR were recorded in CDCl3 or DMSO-d6 with a Bruker AM 400 spectrometer
operating at 400MHz. The purity of the compounds were checked on TLC plates coated
with silica gel GF254 (Merck, Darmstadt, Germany) and the spots were visualised under
ultraviolet light at 254 nm.

3.1. General procedure for the preparation

Different N-phenyl-N0-aryl thioureas were prepared by mixing the corresponding anilines
in solid phase with phenyl isothiocynate at room temperature, whereupon anilines were
first dissolved and then solidified within 1–2min on swirling the reaction flask.
The reaction was exothermic in all cases except VI, VIII and X, where heating to 100�C
for 10–15min was required. The cold mass was disintegrated and washed thrice with
hexane and then thrice with 1 : 1 aqueous ethanol to wash out unreacted anilines and
phenylisothiocyante. The crude thioureas were purified by recrystallisation from hot
ethanol. All the compounds were characterised by recording their spectral data.

N-(m-Methoxyphenyl)-N0-phenylthiourea (1). C14H14N2OS (Calcd: 258.0828; found:
258.0810), yield 88.7%; white crystals; m.p. 94–96�C (lit. not available) (El-Din, 1986);
IR �max (cm

�1): 3450 and 3211.3 (N–H stretching), 3011.6, 2960.5, 2806.2, 1602.7, 1546.8,
1492.8, 1450.4, 1340 (N–H amide stretching), 1234.0 and 1166.9 (C¼S disubstituted
stretching), 1068.5, 1024 and 929.6; EIMS m/z (rel. int.%): 257.8 (1.83) [Mþ], 227.8 (25.6)
[Mþ�OCH2], 135.9 (10.64), 92.9 (100), 76.9(43.26); 1H-NMR (400MHz, CDCl3) � 8.0
(2H, broad s, NH), 7.35 (1H, d, J¼ 7.85Hz, H-6), 7.312 (1H, d, J¼ 5.5Hz, H-4), 7.30
(1H, s, J¼ 5.5Hz, H-2), 7.27 (1H, dd, J¼ 10.30, 6.54Hz, H-5), 7.20 (5H, m, C6H5), 7.24
(1H, s, H-2), 3.7 (3H, s, OCH3), 1.7, (1H, broad s, SH).

N-(p-Methoxyphenyl)-N0-phenylthiourea (2). C14H14N2OS (Calcd: 258.0828; found:
258.0812), yield 75.5%; white crystalline solid; m.p. 140–143�C (lit. 144�C) (Furniss,
Hannaford, Rogers, Smith, & Tatchel, 1986); IR, �max (cm�1): 3450 and 3211.3 (N–H
stretching), 3012.6, 2960.5, 2806.2, 1602.7, 1546.8, 1456.2, 1336.0 (N–H amide stretching),
1244.0 and 1176.5 (C¼S disubstituted), 1101, 1031.8 and 927.7; EIMS m/z (rel. int.%):
257.9 (22.66) [Mþ], 164.8 (16.9), 122.9 (63.72), 108 (100), 93 (40.33), 76.9 (53.9); 1H-NMR
(400MHz, CDCl3); � 8.0 (2H, broad s, NH), 7.36 (5H, m, C6H5), 7.26 (2H, d, J¼ 8.94Hz,
H-2,6), 6.915 (2H, d, J¼ 6.18Hz, H-3,5), 3.7 (3H, s, OCH3), 2.14 (1H, broad s, SH).

1724 S. Begum et al.
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N-(o-Methoxyphenyl)-N0-phenylthiourea (3). C14H14N2OS (Calcd: 258.0828; found:
258.0810), yield 87.1%, white crystalline solid, m.p. 125�C (lit. 136�C) (Furniss et al.,
1986); IR (KBr), IR, �max (cm�1): 3334 and 3128 (N–H stretching), 2931.6, 289, 1593,
1517, 1456.2, 1350 (N–H amide stretching), 1261 and 1163 (C¼S disubstituted); EIMS m/z
(rel. int.%): 258 (5.6) [Mþ], 226.8 (42.0), 107.8 (100), 92.9 (46.2); 1H-NMR (400MHz,
CDCl3); � 8.12 (2H, s, 2 NH), 7.91 (2H, d, J¼ 7.47Hz, H-20,H-60), 7.41 (1H, m, H-40), 7.37
(2H, m, H-30,50), 7.24 (1H, m, H-4), 7.166 (1H, d, J¼ 7.62Hz, H-3), 6.98 (1H, m, H-5),
6.915 (1H, d, J¼ 8.304Hz, H-6), 3.7 (3H, s, OCH3), 1.8 (1H, broad s, SH).

N-(p-Methylphenyl)-N0-phenylthiourea (4). C14H14N2S (Calcd: 242.0897; found: 242.0575),
yield 74.28%, m.p, 141�C (sharp), (lit. 141�C) (Furniss et al., 1986) white crystalline solid;
IR (KBr), �max (cm�1): 3500 and 3155.3 (N–H stretching), 2950.9, 1591, 1552, 1442.7,
1311.5 (N–H amide), 1245.9 and 1139.9 (C¼S), 1074.3; EIMS m/z (rel. int.%): 241.9
(19.04) [Mþ], 208 (4.95), 149.9 (9.37), 107.0 (100), 93.0 (47.7) 76.8 (40.78). 1H-NMR
(400MHz, DMSO-d6); � 9.66 (2H, s, 2 NH), 7.45 (2H, d, J¼ 7.74Hz, H-2,6), 7.316 (5H, m,
C6H5), 7.176 (2H, d, J¼ 8.26Hz, H-3, 5), 2.26 (3H, s, CH3), 2.49 (1H, broad s, SH).

N-(m-Methylphenyl)-N0-phenylthiourea (5). C14H14N2S (Calcd: 242.0897; found: 242.
0889), yield 54.42%, m.p. 104�C (sharp) (lit. 104�C) (Furniss et al., 1986) white crystalline
solid; IR (KBr), �max (cm

�1): 3454.3 and 3203.5 (N–H stretching), 3010.7, 2925.8, 2856.4,
1595.0, 1546.8, 1494.7, 1448.4, 1448.4 and 1342.4, (N–H amide), 1236.3 and 1139.9 (C¼S),
1074.3, 1024.1; EIMS m/z (rel. int.%): 241.8 [Mþ] (2.1), 227.8 (19.7), 92.9 (100), 76.9 (44.1)
1H-NMR (400MHz, CDCl3); � 7.99 (2H, s broad, N–H), 7.39 (5H, m, C6H5), 7.37 (1H, d,
J¼ 7.28Hz, H-6), 7.27 (1H, m, H-5), 7.15 (1H, s, H-2), 7.09 (1H, m, H-4), 2.34 (3H, s,
CH3), 1.83 (1H, broad s, SH).

N-(p-Nitrophenyl)-N0-phenylthiourea (6). C13H11N3O2S (Calcd: 273.0573), yield 1.3%,
m.p. 188–189�C, (lit. 191�C) (Otterbacher & Whitemore, 1929) yellow crystalline solid; IR
(KBr), �max (cm�1): 3457.3 and 3206.6 (N–H stretching), 3031.7, 2925.8, 2856.4, 1594.0,
1527.4, 1447.9 and 1340.3, (N–H amide), 1237.1 and 1139.9 (C¼S), 1069, 931; EIMS m/z
(rel. int.%): 228.1 [Mþþ 1�NO2] (16.87) [M

þ
�NO2], 195.1 (11.09) [Mþ�NO2� SH],

136.0 (20.87) [NH�C6H4�NO2], 93.1(100) [NH�C6H5], 77.0 (49.84) [C6H5]; negative
ion FAB-MS m/z: [M�H]þ; positive ion FAB-MS m/z: [MþH]þ, 274; 1H-NMR
(400MHz, CDCl3); � 7.98 (2H, s, NH), 7.39 (2H, d, J¼ 8.24Hz, H-3,5), 7.36 (5H, m,
C6H5), 7.24 (2H, d, J¼ 6.4Hz, H-2,6), 1.66 (1H, broad s, SH).

N-(p-Chlorophenyl)-N0-phenylthiourea (7). C13H11N2ClS (Calcd: 262.0333; found:
262.0300), yield 83.1%, m.p. 150–152�C (lit. 152�C) (Furniss et al., 1986; Otterbacher &
Whitemore, 1929), white crystalline solid; IR (KBr), �max (cm

�1): 3470.7 and 3206.0 (N–H
stretching), 3026.8, 1591, 1527.6, 1488.1 and 1337.8 (N–H amide), 1225.6 (C¼S), 1089.8,
1015.2, 970.2, 811.1, 770.7; EIMS m/z (rel. int.%): 262 (83.0) [Mþ], 227.2 (6.5), 126.9
(98.1), 93.0 (100); 1H-NMR (400MHz, CDCl3); � 8.1 (2H, s, N–H), 7.40 (2H, d,
J¼ 6.76Hz, H-3,5), 7.328 (5H, m, C6H5), 7.2 (2H, d, J¼ 6.69Hz, H-2,6), 1.59 (1H, broad
s, SH).

N-(o-Chlorophenyl)-N0-phenylthiourea (8). C13H11N2ClS (Calcd: 262.0333; found:
261.9978), yield 42.5%, m.p. 154–155�C (lit. 156�C) (Furniss et al., 1986; Otterbacher &
Whitemore, 1929) white crystalline solid; IR (KBr) �max (cm�1): 3450.9 and 3170.4
(N–H stretching), 3000.3, 1591.3, 1543.7, 1363.7, 1315 (N–H amide), 1291.0, 1249.2
(C¼S), 1124; EIMS m/z (rel. int.%): 228 [Mþ�Clþ 1H] (3.7), 169 (85.5), 135 (100),
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93 (70), 77 (49.9) 1H-NMR (400MHz, CDCl3); � 8.1 (2H, s, 2N–H), 7.46 (1H, d,
J¼ 7.8Hz, H-6), 7.44 (2H, d, J¼ 7.54Hz, H-20,60), 7.39 (1H, m, H-40), 7.36 (1H, d,
J¼ 6.6Hz, H-3), 7.32 (1H, dd, J¼ 8.4, 8.9Hz, H-4), 7.28 (1H, dd, J¼ 7.7, 7.6Hz, H-5),
7.15 (2H, m, H-30,50),1.55 (1H, broad s, SH).

N-(p-Bromophenyl)-N0-phenylthiourea (9). C13H11N2BrS (Calcd: 307.9900; found:
307.9805), yield 77.8%, m.p. 148�C (sharp) (lit. 148�C) (Furniss et al., 1986; Otterbacher
& Whitemore, 1929), pale yellow crystalline solid; IR (KBr), �max (cm�1): 3433.1 and
3209.3 (N–H stretching), 2927.7, 2806.2, 1591.2, 1542.9, 1332.7 (N–H amide), 1292.2,
1238.2 (C¼S), 1064.6, 1010.6, 925.8; EIMS m/z (rel. int.%): 307.8 [Mþ] (26.8), 271.9 (9.97),
170.8 (100), 93.0 (90.58), 76.9 (53.0) 1H-NMR (400MHz, CDCl3); � 8.2 (2H, s, NH),
7.46 (5H, m, C6H5), 7.32 (2H, d, J¼ 7.2Hz, H-3,5), 7.27 (2H, d, J¼ 7.32Hz, H-2,6), 1.72
(1H, s, SH).

N-Phenyl-N0-(2-pyridinyl)thiourea (10). C12H11N3S (Calcd: 229.0675; found: 229.0684),
yield 75.9%, m.p. 171–172�C (Lit. 172�C) (Sarkis & Faisal, 1985), white shiny crystalline
solid; IR (KBr), �max (cm

�1): 3462.3 and 3220.2 (N–H stretching), 1601.1, 1598.1, 1537.9,
1473.6, 1431.5, 1353.9, 1342.2 (N–H amide), 1265.1, 1184.8 and 1142.4 (C¼S),; EIMS m/z
(rel. int.%): 229.0 (71.43) [Mþ], 196.1 (27.13), 137.0 (36.29), 94.0 (100), 78.0 (50.47);
1H-NMR (400MHz, CDCl3); � 13.68 (1H, s, N–H), 9.39 (1H, s, N0–H), 8.19 (1H, d,
J¼ 4.25Hz, H-6), 7.65 (2H, d, J¼ 7.86Hz, H-20,60), 7.62 (1H, m, H-4), 7.39 (2H, dd,
J¼ 7.6, 7.8Hz, H-30,50), 7.24 (1H, dd, J¼ 7.4, 7.3Hz, H-40), 6.97 (2H, d, J¼ 6.92Hz, H-3),
6.94 (1H, m, H-5), 1.67 (1H, s, SH).

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-N0-phenylthiourea (11).
C18H18N4OS (Calcd: 338.1203; HRFAB-MS 339.1290 (339.1281 for C18H19N4OS), yield
98.9%, m.p. 198�C (sharp) (lit. 198�C) (Cuhna et al., 2005) crystalline solid; IR (KBr),
�max (cm�1): 3441.4 and 3272.9 (N–H stretching), 3034.3 (Ar–H stretching), 1632.8,
1600.3, 1585.9, 1532.6, 1494.8, 1450.7, 1416.3, 1313.5 (N–H amide), 1293.1S (C¼S); EIMS
m/z (rel. int.%): 304 (15.1) [Mþ�H2S], 244.96 (100) [Mþ�NH – C6H5], 203 (46.8)
[Mþ�CSNHC6H5], 134.97 (64.2) [CSNHC6H5], 93.1 (43.1) [NHC6H5], 77.0 (38.5) [C6H5];
positive ion FAB-MS m/z: [MþH]þ, 339.1, HRFAB-MS m/z: 339.1290 (Calcd: 339.1281
for C18H19N4OS); 1H-NMR (400MHz, DMSO-d6); � 9.7 (2H, broad s, NH), 7.51 (4H, d,
J¼ 7.6Hz, H-20,200, 60,600), 7.45 (1H, m, H-40), 7.33 (4H, dd, J¼ 7.73, 8.85Hz,
H-30,300,50,500), 7.13 (1H, m, H-400), 3.1 (3H, s, N–CH3), 2.4 (3H, s, C–CH3), 2.18 (1H,
broad s, SH); 13C-NMR (CDCl3): 181.45 (C-8), 161.72 (C-3), 153.05 (C-10), 139.7 (C-100),
134.94 (C-5), 129.18 (C-30,C-50), 128.32 (C-300,C-500), 126.6 (C-20,C-60), 124.818 (C-40,400),
124.04 (C-200,C-600), 113.4 (C-4), 35.59 (C-6), 10.90 (C-7).

N-(1-Naphthyl)-N0-phenylthiourea (12). C17H14N2S (Calcd: 278.0879; found: 277.9988),
yield 88.6%, m.p. 196�C (sharp) (Lit. 165�C) (Furniss et al., 1986), white crystalline solid;
IR (KBr), �max (cm�1): 3450.76 (N–H stretching), 1627.91, 1594.28 1526.50, 1493.43,
1435.97, 1393.9, 1329.17 (N–H amide), 1274.1, 1218.7 (C¼S); EIMS m/z (rel. int.%):
278 (2.9) [Mþ], 244 (39.7) [Mþ�H2S], 185 (82.6)[Mþ�C6H5NH], 143 (68.6)
[Mþ�C6H5NHCS], 127 (33.4) Naphthyl group; 1H-NMR (400MHz, DMSO-d6); � 9.79
(2H, broad s, NH), 8.00 (2H, d, J¼ 7.2Hz, H-4, 5), 7.96 (2H, d, J¼ 7.5Hz, H-20, 60), 7.84
(2H, d, J¼ 7.2Hz, H-30, 50), 7.54 (6H, m, H-3, 4, 40 6, 7, 8), 2.4 (1H, broad s, SH).

2-Phenyl-N-phenyl-1-hydrazinecarbothioamide (13). C13H13N3S (Calcd: 243.0832; found:
243.0802), yield 55.5%, m.p. 171–172�C (lit. 172�C) (Furniss et al., 1986), crystalline solid;
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IR (KBr), �max (cm�1): 3452.3 and 3280.7 (N–H stretching), 3168.8, 1596.0, 1542.0,

1492.8, 1440.7, 1300.0 (N–H amide), 1271.0 1234.4, 1203.5, 1101.3 (C¼S); EIMS m/z

(rel. int.%): 242.9 (37.9) [Mþ], 149.9 (2.1), 135.9 (14.3), 124.8 (100), 107.9 (47.0),

91.9 (13.9), 76.9 (18.9); 1H-NMR (400MHz, CDCl3); � 8.9 (3H, broad s, H–N), 7.58

(2H, d, J¼ 7.74Hz, H-200, 600), 7.35 (2H, m, H-300,500), 7.31 (2H, m, H-30,50), 7.21 (1H, dd,

7.4, 7.2Hz, H-40), 7.02 (1H, m, H-400), 6.92 (2H, d, J¼ 7.612Hz, H-20,60), 1.65 (1H, broad

s, SH).

2-(20,40-Dinitrophenyl)-N-phenyl-1-hydrazinecarbothioamide (14). C13H11N5O4S (Calcd:

333.18444); (Calcd%: C, 46.820; H, 3.327; N, 21.01, S, 9.6) (found%: C, 46.423;

H, 4.09, N, 19.83; S, 12.09), yield 100%, m.p. 177.6�C (sharp) (lit. not available) (Truong

& Ngo, 1999), pale yellow crystalline solid; IR (KBr) �max (cm
�1): 3460.1, 3319.3, 3244.0

and), 3087.8 (N–H stretching), 1598.9, 1533.3, 1500, 1438.8, 1352.0, 1309.6 (N–H amide

sretching), 1247.9, 1197.7 and 1143.7 (C¼S), 1097.4; EIMS m/z (rel. int.%): 182.9 (3)

[Mþ�C6H5NHCS], 152.9 (4.2) [Mþ�NHC6H3(NO2)2], 134.9 (48.1), 121.9 (2.9), 108.0

(6.7), 93.0 (81.9), 77.0 (100); 1H-NMR (400MHz, DMSO-d6); � 10.279 (2H, d, J¼ 52.3Hz,

NH-1, NH-2), 9.9 (1H, broad s, NH), 8.86 (1H, d, J¼ 2.55Hz, H-30), 8.45 (1H, d,

J¼ 8.86Hz, H-50), 7.36 (2H, d, J¼ 9.7Hz, H-200,600), 7.32 (2H, m, H-300,500), 7.23 (1H, d,

J¼ 9.46Hz, H-6), 7.16 (1H, m, H-400), 2.4 (1H, broad s, SH); 13C-NMR (100MHz,

DMSO-d6): 180.80 (CS), 147.99 (C0-1), 138.93 (C-40), 137.15 (C-100), 131.0 (C-20), 130.29

(C-50), 128.53 (C-300,C-500), 125.55 (C-400), 123.81 (C-200, C-600), 122.86 (C-30), 115.17 (C-60).

4. Determination of biological activities

4.1. Phytotoxic bioassay (Lemna Welv.)

Phytotoxic bioassays were performed at 5, 50 and 500 mgmL�1 concentration in methanol.

These tests were conducted using a modified protocol by McLaughlin et al. (1991). The

compounds of desired concentrations from stock solution were inoculated in sterilised

conical flasks, and solvent was evaporated overnight. Each flask was inoculated with

sterilised E-medium (20mL) and 10 Lemna aequinocitalis Welv., each containing a roselle

of three fronds. Negative controls were taken with flasks containing methanol and a

reference inhibitor, i.e. parquet, serving as the positive control. The flasks were incubated

at 30�C in a fisons Fi-Tortran 600H growth cabinet for 7 days, 9000 lux light intensity,

56� 10 rh (relative humidity), and 12 h day length. The growth of L. aequinocitalis in the

flasks containing compounds was determined by counting the number of fronds per dose

and growth inhibition was calculated with reference to the negative control.

4.2. Cytotoxic brine shrimp bioassay

Brine shrimp (A. salina Leach) eggs were hatched in a shallow rectangular plastic dish

(22� 32 cm) filled with artificial seawater, which was prepared with commercial salt

mixture (Instant Ocean Aquarium System, Inc., Mentor, Ohio, USA) and doubly distilled

water. A plastic divider with several 2mm holes was clamped in the dish to make two

unequal compartments. Approximately 50mg of eggs were sprinkled into the large

compartment, which was darkened, while the smaller compartment was opened to

ordinary light. After 2 days, nauplii was collected by a pipette from the side in light.

A sample of the test compound was prepared by dissolving 20mg of each compound in
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2mL of methanol. The solvent was allowed to evaporate overnight. After 2 days, when
shrimp larvae were ready, 1mL of seawater and 10 shrimps were added to each vial
(30 shrimps dilution�1) and the volume was adjusted with seawater to 5mL per vial. After
24 h, the number of the survivors was counted. Data were analysed with the Finney
program to determine the LD50 (Finney, 1971; Meyer et al., 1982).

4.3. Acetylcholinesterase and butrylcholinesterase bioassays

Acetylcholinesterase and butrylcholinesterase inhibition activities were measured by a
spectrophotometric method (Ellman, Courtney, Andres, & Featherstone, 1961). The
reaction mixture, containing 150 mL of (100mM) sodium phosphate buffer (pH 8.0), 10 mL
of 5,5-dithiobis-2-nitrobenzoic acid, 10 mL of the test compound solution and 20 mL of the
acetylcholinesterase or butrylcholinesterase solution, was mixed and incubated for 15min
at 25�C. The reaction was then initiated by the addition of 20 mL acetylthiocholine iodide
or butyrylthiocholine chloride, in that order. The hydrolysis of these substrates
was monitored by the formation of yellow 5-thio-2-nitrobenzoate anion as the result of
the reaction of DTNB with thiocholine, released by the enzymatic hydrolysis of
acetylthiocholine iodide or butyrylthiocholine chloride, respectively, at a wavelength of
412 nm for 15min. Test compounds and the positive control (galanthamine and eserine)
were dissolved in EtOH. All the reactions were performed in triplicate in 96-well
microplates in Spectrmax 340 (Molecular Devices, USA).
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