A Copper-Catalyzed One-Pot, Three-Component Diastereoselective Synthesis of 3-Spiroazetidinimine-2-oxindoles and Their Synthetic Transformation into Fluorescent Conjugated Indolones

Somasundharam Periyaraja, ${ }^{[a]}$ Ponnusamy Shanmugam,*[a] and Asit Baran Mandal ${ }^{[b]}$

Keywords: Synthetic methods / Multicomponent reactions / Nitrogen heterocycles / Spiro compounds / Copper / Click chemistry

Abstract

A facile and efficient copper(I)-catalyzed one-pot, three-component diastereoselective synthesis that provides new 3 -spi-roazetidinimine-2-oxindoles in excellent yield has been accomplished. The 3 -spiroazetidinimine-2-oxindoles underwent a facile ring-opening reaction of the spiroazetidinimine

Abstract

unit by treatment with $\mathrm{KOH} / \mathrm{MeOH}$ and p-thiocresol under basic conditions to afford two new classes of fluorescent conjugated indolones. This method has general applications with regard to the imines that are derived from 9-fluorenone, 1,2-diketones, and 1,2,3-triketones.

Introduction

Spirocyclic compounds are an important class of naturally occurring substances because of their pronounced biological properties. ${ }^{[1-3]}$ Among them, spiro- β-lactams are important because of their antiviral ${ }^{[4]}$ and antibacterial properties. ${ }^{[5]}$ Several syntheses of spiro- β-lactams have been described in the literature. ${ }^{[6]}$ The copper $(\mathrm{I})^{[7]}$-catalyzed multicomponent reaction ${ }^{[8]}$ between sulfonyl azides and alkynes has drawn special interest because its products are synthetically and biologically important. ${ }^{[9]}$ The synthesis of N-sulf-onylazetidin-2-imines ${ }^{[9 a]}$ through a copper-catalyzed cascade reaction of an alkyne and azide with an imine has been reported. However, copper-catalyzed alkyne-azide cycloaddition reactions (CuAAC) with imines that are derived from 1,2-diketones and 1,2,3-triketones have not been explored. To the best of our knowledge, there have been no reports for the synthesis of 3 -spiroazetidinimine-2-oxindoles. Therefore, in continuation of our work on the synthesis of spirooxindoles, ${ }^{[10]}$ we, herein, report the results for the synthesis of various ketone-derived spiroazetidin-2-imines by using a copper-catalyzed in situ generated ketenimine and imine in a formal $[2+2]$ cycloaddition reaction. Ringopening reactions of azetidines are very efficient methods to synthesize biologically important nitrogen heterocycles. ${ }^{[11]}$ Thus, in addition, we, herein, report two efficient methods

[^0]for the ring-opening reaction of 3 -spiroazetidinimines by using methanolic KOH and p-thiocresol under mild basic conditions to afford two new classes of merocyanine dye analogues. One of the ring-opened conjugated indolones shows emission in the violet region.

Results and Discussion

Initially, to a mixture of N-methylisatinimine 1a (1.0 equiv.), p-toluenesulfonyl azide ($\mathbf{2 a}, 1.1$ equiv.), and $10 \mathrm{~mol}-\%$ of CuI in $\mathrm{CH}_{3} \mathrm{CN}$ were added phenyl acetylene (3a, 1.1 equiv.) and $E t_{3} \mathrm{~N}$ (2 equiv.), and the resulting mixture was stirred at room temperature for 16 h under nitrogen. The reaction afforded a mixture of the separable diastereomeric 3-spiroazetidinimine-2-oxindoles $\mathbf{4 a}$ and $\mathbf{5 a}$ in 9 and 73% yield, respectively (see Scheme 1). The structure of compounds $\mathbf{4 a}$ and $\mathbf{5 a}$ were assigned on the basis of spectroscopic analysis (FTIR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and HRMS), and the relative stereochemistry of compounds $\mathbf{4 a}$ and 5a were derived from single-crystal X-ray analysis (see Figure 1). ${ }^{[12]}$

To optimize the reaction conditions, different parameters were studied that include changing the molar ratio of the catalyst as well as varying the solvent and base. Using $10 \mathrm{~mol}-\%$ of CuI and 2 equiv. of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{3} \mathrm{CN}$ were determined as the optimum conditions to afford the maximum yield of products (see Table 1, Entry 1). A prolonged reaction time of 24 h or the use of 2 equiv. of pyridine as the base did not improve the yield. In addition to $\mathrm{CH}_{3} \mathrm{CN}$, a number of other solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and tetrahydrofuran (THF) were examined under the basic conditions, but no obvious improvement in the yield was observed (see Table 1, Entries 4-6). A change to the molar ratio of the catalyst also proved to be unsuccessful (see

Scheme 1. Synthesis of 3-spiroazetidinimine-2-oxindoles $\mathbf{4 a}$ and $\mathbf{5 a}$.

Figure 1. ORTEP diagrams of compounds $\mathbf{4 a}$ and $\mathbf{5 a}$.

Table 1, Entries 7 and 8). The diastereomeric ratio of the products was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude samples.

Table 1. Optimization of the synthesis of 3 -spiroazetidinimine-2oxindoles 4a and 5a.

Entry	Catalyst $[\mathrm{mol}-\%]$	Solvent	Base	$\%$ Yield $\mathbf{4 a} / \mathbf{5 a} \mathbf{a}^{[\mathrm{a}, \mathbf{b}]}$	Diastereomeric ratio $\mathbf{4 a} \mathbf{a} \mathbf{5 a} \mathbf{a}^{[\mathrm{c}]}$
1	10	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Et}_{3} \mathrm{~N}$	$9 / 73$	$15: 85$
2	10	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Et}_{3} \mathrm{~N}$	$6: 71^{[\mathrm{d}]}$	$10: 90$
3	10	$\mathrm{CH}_{3} \mathrm{CN}$	pyridine	$8: 68$	$12: 88$
4	10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	$7: 62$	$14: 86$
5	10	CHCl_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	$6: 69$	$8: 92$
6	10	THF_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	$4: 58$	$7: 93$
7	20	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Et}_{3} \mathrm{~N}$	$7: 72$	$9: 91$
8	5	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Et}_{3} \mathrm{~N}$	$2: 64$	$12: 88$

[a] Isolated yield. [b] All reactions were performed for 16 h . [c] Determined by the ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude product. [d] Reaction was performed for 24 h .

Having optimized reaction conditions in hand, the methodology was extended to isatinimines $\mathbf{1 a} \mathbf{-} \mathbf{1} \mathbf{j}$ (see Supporting Information, Figure S1) with phenylacetylene (3a) and 4-ethynyl- α, α, α-trifluorotoluene (3b). All the reactions proceeded smoothly and provided the corresponding 3-spiroaz-etidinimine-2-oxindoles in good to excellent combined yields (see Figure 2). Imines that were derived from N methylisatin and anilines that contained an electron-releasing group afforded the products in a very good combined yield. Imine 1b, which was derived from p-bromoaniline and N -methylisatin, afforded the single diastereomer $\mathbf{5 b}$ in 70% yield. Imine 1c, which was derived from isatin and p toluidine afforded the single diastereomer $\mathbf{5 c}$ in 66% yield, which is a lower yield than that of the products from imine 1a. Imine 1d, which was derived from p-anisidine and N methylisatin, resulted in the single diastereomer 5d in 74% yield. The reaction of imine $\mathbf{1 e}$ that was derived from 1 naphthylamine and N-methylisatin gave the single isomer 5e in 62% yield, which was probably lower than the others because of steric factors. Imine $\mathbf{1 f}$, which is derived from aniline and N-methylisatin, afforded diastereomers $\mathbf{4 f}$ and 5f in 79% combined yield with a diastereomeric ratio of 11:89. Imine $\mathbf{1 g}$ that was derived from aniline and 5-nitro1 -methylisatin resulted in product $\mathbf{5 g}$ in 72% yield. Imine $\mathbf{1 h}$, which was derived from aniline and 5-bromo-1-methylisatin, afforded diastereomers $\mathbf{4 h}$ and $\mathbf{5 h}$ in 82% combined yield with a diastereomeric ratio of 13:87. Imine $\mathbf{1 i}$, from aniline and 5-fluoro-1-methylisatin, afforded diastereomers $4 \mathbf{i}$ and $\mathbf{5 i}$ in a combined yield of 86% with a diastereomeric ratio of 29:71. Imine $\mathbf{1} \mathbf{j}$, which was derived from aniline and 5-(trifluoromethoxy)-1-methylisatin, afforded diastereomers $\mathbf{4 j}$ and $\mathbf{5 j}$ in 82% combined yield with a diastereomeric ratio of $14: 86$. The reaction of $\mathbf{1 a}$ and the alkyne substrate $\mathbf{3 b}$ afforded diastereomers $\mathbf{4 k}$ and $\mathbf{5 k}$ in a combined yield of 82% with a diastereomeric ratio of $15: 85$. Thus, the substitution of the aniline moiety altered the product yield considerably more than that from the substitution of the N methylisatin unit or phenyl acetylene.

To demonstrate the scope of the reaction, imines derived from various ketones were also employed (see Supporting Information, Figure S 1). Imine $\mathbf{1 k}$, which was derived from aniline and 9 -fluorenone, afforded the single isomer $\mathbf{5 k}$ in 90% yield. Similarly, imine 11 that was derived from aniline

5a (73\%)

5c (66\%)

5g (72\%)

4h (8\%)

5h (74\%)

51 (90\%)

5m (72\%)

Figure 2. Synthesized spiroazetidinimines $(\mathrm{Ts}=p$-tolylsulfonyl, $\mathrm{Ms}=$ methylsulfonyl).
and ninhydrin afforded the single isomer $\mathbf{5 l}$ in 72% yield. Imine $\mathbf{1 m}$, from aniline and camphoroquinone, afforded diastereomers $\mathbf{4 m}$ and $\mathbf{5 m}$ in a combined yield of 92% with a diastereomeric ratio of $26: 74$. Imine $\mathbf{1 n}$, which was derived from 4-chloroaniline and acenaphthoquinone, afforded an inseparable diastereomeric mixture of spiroazetidinimines
$\mathbf{4 n}$ and $\mathbf{5 n}$ in 74% combined yield with a diastereomeric ratio of $20: 80$. However, the imines of 9,10 -phenanthroquinone $\mathbf{1 0}$ and $\mathbf{1 p}$ that are derived from 2,4,6-trimethylaniline and 2,6-diisopropylaniline, respectively, decomposed to 9,10 -phenanthrenequinone in the reaction to form the azetidinimine. An aliphatic sulfonyl azide such as mesyl az-
ide $\mathbf{2 b}$ with imine $\mathbf{1 a}$ and alkyne $\mathbf{3 a}$ afforded diastereomers $\mathbf{4 t}$ and $\mathbf{5 t}$ in 88% combined yield with a diastereomeric ratio of $17: 83$. An aliphatic acetylene such as cyclohexylacetylene (3c) with imine 1a and p-toluenesulfonyl azide (2a) afforded only the single isomer $\mathbf{5 u}$ in 55% yield.

To further demonstrate this method, isatin $\mathbf{1 q}$ and 1,3dibromopropane under basic conditions afforded the highly
functionalized N-bridged isatin $1 \mathbf{r}$ in 85% yield. Bis(imine) 1s was prepared in 90% yield by treating N-bridged bis(isatin) $\mathbf{1 r}$ in ethanol with 2.1 equiv. of p-toluidine and a catalytic amount of glacial acetic acid followed by heating the reaction mixture to reflux. To our delight, imine 1 s in $\mathrm{CH}_{3} \mathrm{CN}$ with tosyl azide (2a), phenyl acetylene (3a), CuI, and triethylamine was stirred for 16 h to afford a single iso-

Scheme 2. Synthesis of bis(3-spiroazetidinimine-3-oxindole) 4s.

Scheme 3. A plausible mechanism of the reaction.

Scheme 4. Synthetic transformations of 3-spiroazetidinimine-2-oxindoles 4 and 5.
mer of N -bridged bis(3-spiroazetidinimine-2-oxindole) 4 s in 65% yield (see Scheme 2).

A plausible reaction mechanism for the formation of 4 and $\mathbf{5}$ is shown in Scheme 3. Initially, alkyne $\mathbf{3}$ undergoes a reaction with sulfonyl azide 2 in the presence of triethylamine and CuI to form the (1-sulfonyl-4-phenyltriazol-5yl) copper intermediate A. By following pathways I and II, intermediate A could give the two possible intermediates \mathbf{B} and \mathbf{D}, respectively, which could lead to the formation of ketenimine intermediate \mathbf{C} along with the regeneration of the Cu catalyst. The mechanism of ketenimine formation is well established from the literature. ${ }^{[9 a]}$ Then, intermediate \mathbf{C} could undergo a reaction with imine $\mathbf{1}$, which is derived from a ketone. This reaction could proceed through a $[2+2]$ cycloaddition reaction to afford the observed products 4 and 5. The selectivity of the product formation can be explained from the well-established polarization of the ketenimine and the imine p and p^{*} orbitals. ${ }^{[9 f]}$ Thus, orientation \mathbf{E} gives the minor product $\mathbf{4}$, whereas orientation \mathbf{F} affords the major product 5 .

To demonstrate the synthetic use of the 3-spiroazetidin-imine-2-oxindoles, we conducted the reaction of $\mathbf{5 h}$ with KOH in methanol to afford the ring-opened product $\mathbf{6 h}$ in excellent yield. However, both the product and the starting material had the same R_{f} value, as the reaction was monitored by TLC (see Scheme 4). On the other hand, the attempt to detosylate $\mathbf{5 g}$ by using p-thiocresol and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N-dimethylformamide (DMF) gave the spiroazetidinimine ring-opened product $7 \mathbf{g}$ in excellent yield (with a lower R_{f} value than the starting material). The relative stereochemistry of compounds $\mathbf{6 h}(1 Z, 2 Z)$ and $7 \mathbf{g}(1 E, 2 E)$ were derived from single-crystal X-ray analysis (see Figure 3). ${ }^{[12]}$ Experiments involving both reactions pathways and starting with mixtures of diastereomers 4 and 5 also afforded single isomers of the ring-opened product. Thus, this method is an efficient route to the synthesis of synthetically important conjugated imine analogues. ${ }^{[13]}$ Azetidinimine 51 from 9-fluorenone was treated with methanolic KOH to afford ring-opened product $\mathbf{6 l}$ in 97% yield. Upon treatment with methanolic KOH , the inseparable mixture of the diastereomeric spiroazetidinimines $\mathbf{4 0}$ and $\mathbf{5 0}$ afforded the single ring-opened product $\mathbf{6 o}$ in 94% yield.

A plausible mechanism for the formation 6 and 7 has been proposed in Scheme 5. The highly strained spiroazetidinimine ring system is vulnerable to undergo a ring-opening reaction with nucleophiles. Thus, the first step to form product 6 is the nucleophilic attack of the alkoxide ion $\left(\mathrm{RO}^{-}\right)$at the spiro carbon. The subsequent cleavage of the $\mathrm{C}-\mathrm{N}$ bond gives ring-opened intermediate \mathbf{I}, which can be drawn as its resonance structure intermediate J. Deprotonation followed by elimination of ROH affords the final product 6. Similarly, the first step to form product 7 is the nucleophilic attack of ArS^{-}at the spiro carbon to give ringopened intermediate \mathbf{K}. Intermediate \mathbf{K} can also be drawn as its resonance structure intermediate \mathbf{L}. Deprotonation followed by elimination of ArSH affords the final product 7. There is steric hindrance between the nucleophile ArS^{-} and the tosyl group. Thus, the reaction between azetidine

Figure 3. ORTEP diagrams of compounds $\mathbf{5 g}, \mathbf{6 h}$, and $\mathbf{7 g}$.
$4 / 5$ and the nucleophile ArS^{-}exclusively affords product 7, whereas the reaction with the less sterically hindered RO^{-} nucleophile affords product 6 .

To confirm the fluorescent properties of conjugated indolones 6 and 7, absorption and emission spectra of these compounds were recorded. Compounds $\mathbf{6 f}, \mathbf{6 g}, \mathbf{6 h}, \mathbf{6 1}$, and

Scheme 5. Plausible mechanism for the formation of $\mathbf{6}$ and 7.

60 showed UV absorption maxima in a range from 312 to 322 nm (see Figure 4 and Table 2) and emission in a range from 408 to 424 nm (see Figure 5 and Table 2). Compounds 7 g and 7 h showed UV absorption at 317 and 320 nm , respectively, however, they did not show any emission.

Figure 4. Absorption spectrum of compounds $\mathbf{6 g}, \mathbf{6 0}, \mathbf{6 h}, \mathbf{6 f}$, and 61.

Table 2. Absorption and emission data of compounds $\mathbf{6 f}, \mathbf{6 g}, \mathbf{6 h}$, 6l, and 60.

Entry	Product	Absorption $\lambda_{\text {max,abs }}[\mathrm{nm}]$	Emission $\lambda_{\text {max }, \text { em }}[\mathrm{ab} \mathrm{b}]$	Stokes shift $\left[\mathrm{cm}^{-1}\right]$
1	$\mathbf{6 f}$	322	415	6959
2	$\mathbf{6 g}$	333	409	5580
3	$\mathbf{6 h}$	322	424	7471
4	$\mathbf{6}$	320	408	6741
5	$\mathbf{6 o}$	312	414	7897

[a] Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. [b] Excited at the longest wavelength of the absorption maxima.

Figure 5. Emission spectrum of compounds $\mathbf{6 g}, \mathbf{6 0}, \mathbf{6 h}, \mathbf{6}$, and $\mathbf{6}$.

Conclusions

In summary, we have demonstrated a one-pot, threecomponent synthesis that provides new 3-spiroazitidin-imine-2-oxindoles in excellent yields. The approach has been successfully extended to synthetically and biologically important mono-, di-, and triketones. Both diastereomeric 3-spiroazetidinimine-2-oxindoles underwent a facile ringopening reaction of the spiroazetidinimine unit by treatment with methanolic KOH and p-thiocresol under mild basic conditions to afford two new classes of synthetically important conjugated indolones.

Experimental Section

General Methods: All reactions were carried out in oven-dried glassware. The progress of the reactions was monitored by thin layer chromatography (TLC), and purification of crude compounds was carried out by column chromatography with neutral alumina. The NMR spectroscopic data were recorded with Jeol-500 MHz and Bruker- 400 MHz spectrometers. Chemical shifts are reported
in δ (ppm) relative to TMS (for ${ }^{1} \mathrm{H}$ NMR) or CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR) as internal standards. The signal integrations are in accordance with the assignments, and coupling constants are given in Hz . All the ${ }^{13} \mathrm{C}$ NMR spectra are proton decoupled. Multiplicity is indicated according to s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), and br. s (broad singlet). HRMS analyses were recorded with a Waters ${ }^{\circledR}$ Micromass ${ }^{\circledR}$ Q-TOF Micro TM spectrometer, yields refer to the quantities that were obtained after chromatography. All solvents were purified prior to use by following literature procedures.
Typical Experimental Procedure for the Synthesis of Diastereomeric 3-Spiroazetidinimine-2-oxindoles 4a and 5a: A mixture of N -methylisatin ($161 \mathrm{mg}, \quad 1 \mathrm{mmol}, 1$ equiv.), p-toluidine, $(0.128 \mathrm{mg}$, $1.0 \mathrm{mmol}, 1.2$ equiv.), and acetic acid (catalytic amount) in ethanol was heated at reflux for 2 h . After the completion of the reaction (monitored by TLC, the R_{f} values of the imines were similar to their corresponding isatin), ethanol and acetic acid were removed by using a rotary evaporator at $70^{\circ} \mathrm{C}$ under vacuum. The resulting residue was purified by column chromatography on silica gel (ethyl acetate/hexane, 30:70) to afford imine $\mathbf{1 a}$ as a yellow solid (212 mg , 85% yield). To imine $1 \mathbf{1 a}$ ($125 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv.) in acetonitrile (3 mL) were added tosyl azide ($\mathbf{2 a}, 0.086 \mathrm{~mL}, 1.1$ equiv.), copper iodide ($9.5 \mathrm{mg}, 10 \mathrm{~mol}-\%$), phenylacetylene ($\mathbf{3 a}, 0.06 \mathrm{~mL}$, 1.1 equiv.), and triethylamine ($0.13 \mathrm{~mL}, 2$ equiv.), and the resulting mixture was stirred at room temperature for 16 h . The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was passed through a pad of neutral alumina (ethyl acetate), and the solvent was evaporated in vacuo. The residue was treated with dichloromethane $(25 \mathrm{~mL})$ and washed successively with dilute $\mathrm{HCl}(10 \mathrm{~mL})$ and brine solution $(10 \mathrm{~mL})$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Chromatography on silica gel (gradient of ethyl acetate/hexane) yielded compounds 4a ($23.5 \mathrm{mg}, 9 \%$ yield) and $\mathbf{5 a}$ ($190.5 \mathrm{mg}, 73 \%$ yield).
Typical Experimental Procedure for the Synthesis of Merocyanine 6: A mixture of 3 -spiroazetidinimine-2-oxindole $4 \mathbf{a} / 5 \mathrm{a}$ (156 mg , 0.3 mmol , 1 equiv.) and potassium hydroxide ($56 \mathrm{mg}, 0.3 \mathrm{mmol}$, 3 equiv.) in ethanol (5 mL) was stirred at room temperature for 1 h . After the completion of the reaction (monitored by TLC, product had same R_{f} value as the corresponding spiroazetidine), the ethanol was removed in vacuo. The residue was treated with dichloromethane $(25 \mathrm{~mL})$ and washed successively with dilute $\mathrm{HCl}(10 \mathrm{~mL})$ and brine solution (10 mL). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Chromatography on silica gel (gradient of hexane/ethyl acetate) yielded compound $\mathbf{6 a}(151 \mathrm{mg}, 97 \%$ yield) as a yellow solid.
Typical Experimental Procedure for the Synthesis of Merocyanine 7: A mixture of 3 -spiroazetidinimine-2-oxindole $\mathbf{4 h} / 5 \mathrm{~h}$ (175 mg , 0.3 mmol , 1 equiv.), p-thiocresol ($55.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), and potassium carbonate ($124.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv.) in DMF was stirred at room temperature for 1 h . After the completion of the reaction (monitored by TLC, product had lower R_{f} value than the corresponding spiroazetidine), the reaction mixture was treated with dichloromethane (25 mL) and washed successively with dilute $\mathrm{HCl}(10 \mathrm{~mL})$ and brine solution (10 mL). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Chromatography on silica gel (gradient of hexane/ethyl acetate) yielded compound 7 h ($148 \mathrm{mg}, 85 \%$ yield) as a yellow solid.

4-Methyl- N - [(2S,3S)-1'-methyl-2'-oxo-3-phenyl-1-p-tolylspiro-(azetidine-2, $\mathbf{3}^{\prime}$-indoline)-4-ylidene]benzenesulfonamide (4a): White powder ($23.5 \mathrm{mg}, 9 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3427,2924,1730$,

1640, 1515, 1491, 1415, 1154, 1092, 817, $759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}_{\mathrm{NMR}}$ ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.23(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}$, $3 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8 \mathrm{~Hz}, 2$ H), 7.11-7.18 (m, 9 H), 7.24-7.28 (m, 1 H), 7.42-7.45 (m, 1 H), $7.47(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.1,21.6,64.6,71.4,109.2,118.5$, 123.6, 123.8, 124.3, 127.0, 127.1, 127.9, 128.0, 128.5, 129.0, 129.1, $129.2,129.6,129.8,130.3,131.2,133.9,135.7,138.9,142.9,143.4$, $163.2,169.7 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 522.1851; found 522.1849.

4-Methyl- N-I(2S,3R)-1'-methyl-2'-oxo-3-phenyl-1-p-tolylspiro-(azetidine-2, $\mathbf{3}^{\prime}$-indoline)-4-ylidene]benzenesulfonamide (5a): White powder ($190.5 \mathrm{mg}, 73 \%$ yield). FTIR (KBr): $\tilde{v}_{\max }=3438,3062$, $2925,1745,1616,1515,1470,1402,1371,1315,1250,1155,1091$, $1016,915,812,737,700,670,548 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 5.31(\mathrm{~s}$, $1 \mathrm{H}), 6.13-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.09$ (m, 4 H), 7.19-7.24 (m, 6 H), 7.75 (d, $J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=20.9$, 21.6, 62.2, 71.0, 118.3, 118.4, 120.6, 122.8, 126.0, 126.9, 127.0, 128.1, 128.5, 128.6, 129.2, 129.3, 129.7, 129.8, 131.0, 134.3, 135.5, $139.2,142.8,143.6,163.3,173.3 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$522.1851; found 522.1832.
N-I(2S,3R)-1-(4-Bromophenyl)-1'-methyl-2'-oxo-3-phenylspiro-(azetidine-2, $\mathbf{3}^{\prime}$-indoline)-4-ylidene]-4-methylbenzenesulfonamide (5b): White powder ($205 \mathrm{mg}, 70 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3441$, 3061, 2928, 1730, 1623, 1489, 1394, 1372, 1315, 1251, 1156, 1090, 1010, 857, 820, $669,546 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} /\right.$ TMS): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,27.1,62.5$, 71.1, 109.1, 118.7, 119.9, 120.3, 123.0, 127.1, 128.3, 128.5, 128.7, $129.4,131.3,132.3,132.4,135.9,138.9,143.2,143.6,163.5$, 172.8 ppm. HRMS (FAB): calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 585.0799; found 585.0797

4-Methyl- N-I($2 S, 3 R$)-2'-oxo-3-phenyl-1-p-tolylspiro(azetidine-2,3'-indoline)-4-ylidene]benzenesulfonamide (5c): White powder ($167.5 \mathrm{mg}, 66 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3365,3310,2960,2923$, $1739,1616,1469,1403,1307,1188,1152,921,813,762,669$, $542 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.21(\mathrm{~s}, 3 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 6.56-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=21.0,21.6,62.1,71.5,111.3,115.4,118.4,120.5,120.9$, $122.8,126.2,127.1,128.3,128.7,129.3,129.7,129.9,131.0,132.3$, 134.4, 135.7, 139.1, 140.9, 142.9, 163.5, 175.4 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 508.1695$; found 508.1688 .
N-I(2S,3R)-1-(4-Methoxyphenyl)-1'-methyl-2'-oxo-3-phenylspiro-(azetidine-2,3'-indoline)-4-ylidene]-4-methylbenzenesulfonamide (5d): White powder ($198.6 \mathrm{mg}, 74 \%$ yield). FTIR (KBr): $\tilde{\mathrm{v}}_{\max }=$ 3436, 3032, 3006, 2936, 2836, 1728, 1615, 1511, 1469, 1370, 1309, 1251, 1154, 1091, 1021, 914, 880, 738, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 3 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.26$ (m, 6 H$)$, 7.75 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.6,27.0,55.5,62.3,71.3,108.9,114.5,120.3,120.7,122.9$, 126.1, 126.9, 128.2, 128.6, 128.7, 129.3, 130.1, 131.1, 132.6, 142.9, 143.8, 157.4, 163.2, 173.1 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 538.1800$; found 538.4416

4-Methyl- N - $(2 S, 3 R)$-1'-methyl-1-(naphthalen-1-yl)-2'-oxo-3-phen-ylspiro(azetidine-2, $\mathbf{3}^{\prime}$-indoline)-4-ylidene]benzenesulfonamide (5e): White powder ($173 \mathrm{mg}, 62 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3360$, 3262, 2923, 2852, 1732, 1629, 1529, 1492, 1306, 1160, 1087, 907, 817, 703, $535 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.41$ (s, 3 H), $3.16(\mathrm{~s}, 3 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.6,62.8,74.9,108.8,120.8$, 122.7, 124.1, 124.3, 125.1, 126.4, 126.7, 126.8, 126.9, 128.1, 128.2, 128.7, 128.9, 129.2, 129.4, 129.9, 131.0, 131.8, 133.0, 134.3, 139.5, 142.7, 144.5, 167.1, 173.6 ppm . HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 558.1851$; found 558.1832.
4-Methyl- N-I($2 S, 3 S$)-1'-methyl-2'-oxo-1,3-diphenylspiro(azetidine-2,3'-indoline)-4-ylidene]benzenesulfonamide (4f): White powder ($17 \mathrm{mg}, 7 \%$ yield). FTIR (KBr. FTIR (KBr): $\tilde{v}_{\text {max }}=3439,3056$, 2961, 2930, 2872, 1729, 1641, 1495, 1471, 1415, 1314, 1248, 1154, 1091, 916, 819, 760, 704, $541 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.1$ (m, 1 H), 7.13 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16-7.19 (m, 5 H), 7.21-7.24 (m, 4 H$), 7.26(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,26.8,64.6$, $71.4,109.2,118.4,123.6,123.8,124.2,125.0,127.0,128.0,128.5$, $129.2,129.3,130.2,131.3,136.3,138.7,142.9,143.3,163.4$, 169.6 ppm. HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$508.1695; found 508.1697.
4-Methyl- N-I($2 S, 3 R$)-1'-methyl-2'-oxo-1,3-diphenylspiro(azetidine$\mathbf{2 , 3}$ '-indoline)-4-ylidene]benzenesulfonamide (5f): White powder ($182.5 \mathrm{mg}, 72 \%$ yield). FTIR (KBr): $\tilde{v}_{\max }=3433,3061,2931,1726$, 1624, 1407, 1408, 1370, 1317, 1251, 1016, 917, 754, 674, $546 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3$ H), $5.32(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), $6.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.11(\mathrm{~m}, 2$ H), 7.15-7.20 (m, 7 H), $7.24(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,27.1$, $62.3,71.1,109.0,118.4,120.6,122.9,125.7,126.1,127.1,128.2$, 128.6, 128.7, 129.3, 129.4, 131.1, 136.9, 139.2, 143.0, 143.7, 163.6, 173.0 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$508.1695; found 508.1688 .

4-Methyl- N - $\left[(2 S, 3 R)-1^{\prime}\right.$-methyl-5'-nitro-2'-oxo-1,3-diphenylspiro-(azetidine-2, $\mathbf{3}^{\prime}$-indoline)-4-ylidene]benzenesulfonamide (5 g): White powder ($198 \mathrm{mg}, 72 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3460,3066,2927$, 1741, 1631, 1523, 1457, 1494, 1405, 1336, 1157, 1090, 933, 824, $675,547 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.43(\mathrm{~s}, 3$ H), 3.41 (s, 3 H), 5.39 (s, 1 H$), 6.98$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.14$ (m, 5 H), 7.19-7.26 (m, 7 H), $7.52(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.17$ (dd, $J=9.25,2.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,27.6,62.8,70.1,108.8,118.2$, 121.7, 126.1, 127.2, 127.8, 128.3, 128.9, 129.1, 129.4, 129.6, 131.5, $136.4,138.6,143.4,148.8,162.8,173.2 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 553.1545$; found 553.1546.
N-[(2S,3S)-5'-Bromo-1'-methyl-2'-oxo-1,3-diphenylspiro(azetidine-2,3'-indoline)-4-ylidene]-4-methylbenzenesulfonamide (4h): White powder ($23 \mathrm{mg}, 8 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3440,3062,2979$, 2927, 1732, 1631, 1494, 1411, 1310, 1245, 1152, 1093, 927, 820, $739,691,543 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.41$ $(\mathrm{s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 5.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 3$ H), 7.17-7.21 (m, 6 H$), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 1$ H), $7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=$
$21.7,26.9,64.8,70.0,110.8,116.5,118.3,118.4,125.9,126.2,126.7$, 127.1, 128.1, 128.7, 128.9, 129.2, 129.3, 129.4, 129.5, 129.9, 134.2, 136.1, 138.6, 142.2, 143.1, 163.0, 169.0 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$588.0779; found 588.0796.
N-I(2S,3R)-5'-Bromo-1'-methyl-2'-oxo-1,3-diphenylspiro(azetidine-2,3'-indoline)-4-ylidenel-4-methylbenzenesulfonamide (5h): White powder ($216 \mathrm{mg}, 74 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3443,3062,2924$, 1731, 1632, 1493, 1461, 1407, 1319, 1251, 1156, 1094, 926, 813, $742,675,547 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.39$ (s, 3 H), $3.29(\mathrm{~s}, 3 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.24(\mathrm{~m}, 10$ H), $7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): ~ \delta=21.7,27.3,62.4,70.7,110.5$, 115.6, 118.2, 122.5, 125.9, 127.1, 128.5, 128.6, 128.9, 129.1, 129.4, $129.5,132.1,133.9,136.6,138.9,142.6,143.2,163.2,172.4 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+} 588.0779$; found 588.0789 .
N-[(2S,3S)-5'-Fluoro-1'-methyl-2'-oxo-1,3-diphenylspiro(azetidine-2,3'-indoline)-4-ylidene]-4-methylbenzenesulfonamide (4i): White powder ($57 \mathrm{mg}, 22 \%$ yield). FTIR (KBr): $\tilde{\mathrm{v}}_{\text {max }}=3437,3069,2924$, $2855,1728,1628,1495,1456,1320,1159,1093,975,882,812,756$, $672,548 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.41$ ($\mathrm{s}, 3$ H), $3.33(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}$, $J=4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.09(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 5$ H), $7.76(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=21.7,27.3,63.35,70.81,109.6,114.1,114.3,117.4,117.6$, 118.3, 122.4, 125.8, 127.1, 128.4, 128.6, 129.4, 132.1, 136.7, 138.9, 139.6, 143.2, 157.9, 159.8, 163.2, 172.8 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 526.1600$; found 526.1592.
N-I(2S,3R)-5'-Fluoro-1'-methyl-2'-oxo-1,3-diphenylspiro(azetidine-2,3'-indoline)-4-ylidenel-4-methylbenzenesulfonamide (5i): White powder ($168 \mathrm{mg}, 64 \%$ yield). FTIR (KBr): $\tilde{v}_{\max }=3361,3262,2925$, 2855, 1732, 1627, 1550, 1304, 1259, 1217, 1156, 1093, 1019, 815, $693,548 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.43$ (s, 3 H), $3.05(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.94(\mathrm{dd}, J=9.15,4 \mathrm{~Hz}), 7.12$ (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.28(\mathrm{q}, J=8.5$, $7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7$, $27.3,62.4,70.8,109.5,109.6,114.1,114.3,117.4,117.6,118.3$, $122.4,122.5,125.8,127.1,128.4,128.6,128.9,129.2,129.3,129.4$, 132.1, 136.7, 139.5, 143.1, 157.9, 159.8, 163.2, 172.8 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 526.1601$; found 526.1584 .
4-Methyl- N - $\left[(2 S, 3 S)-1^{\prime}\right.$-methyl-2'-oxo-1,3-diphenyl-5'-(trifluoro-methoxy)spiro(azetidine-2,3'-indoline)-4-ylidene|benzenesulfonamide (4j): White powder ($27 \mathrm{mg}, 9 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3445$, 3065, 2927, 1733, 1632, 1496, 1459, 1406, 1319, 1363, 1632, 1496, $1459,1406,1319,1363,1319,1254,1220,1158,1092,919,862$, 814, 755, 737, 692, $547 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.39(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.73(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=$ 21.6, 27.3, 62.4, 70.8, 109.9, 118.3, 119.2, 119.9, 121.2, 122.1, 124.5, $125.5,127.1,128.3,128.6,128.9,129.4,129.5,131.9,136.6,138.9$, 142.3, 143.3, 144.6, 163.3, 173.9 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 592.1518$; found 592.1536 .
4-Methyl- N - [(2S,3R)-1'-methyl-2'-oxo-1,3-diphenyl-5'-(trifluoro-methoxy)spiro(azetidine-2,3'-indoline)-4-ylidene|benzenesulfonamide (5 j): White powder ($215 \mathrm{mg}, 73 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3443$, 3065, 3035, 2927, 1732, 1632, 1599, 1498, 1406, 1364, 1458, 1406, 1316, 1256, 1220, 1157, 919, 862, 814, 756, 693, 611, $546 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=2.41(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$, $5.25(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ $7.24(\mathrm{~m}, 8 \mathrm{H}), 7.29(\mathrm{t}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1$
H), $7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=21.6,27.3,62.5,70.7,109.7,110.2,117.5,118.3,119.2$, 119.9, 121.2, 122.2, 124.2, 124.4, 125.9, 127.0, 127.1, 128.1, 128.3, 128.6, 128.9, 129.3, 129.4, 129.5, 129.9, 136.6, 138.9, 142.2, 143.2, 144.6, 163.2, 172.9 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}$592.1518; found 592.1521.
4-Methyl- N - $\{(2 S, 3 S)$-1'-methyl-2'-oxo-1-p-tolyl-3-[4-(trifluoro-methyl)phenyl|spiro(azetidine-2, 3^{\prime}-indoline)-4-ylidene\} benzenesulfonamide ($\mathbf{4 k}$): White powder ($29 \mathrm{mg}, 10 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3439,3063,2987,2927,1730,1632,1515,1471,1324,1247$, $1155,1121,1091,1069,922,861,815,754,685,661,540 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.25(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $3.06(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 6.9(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8 \mathrm{~Hz}, 3$ H), $7.50(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} /\right.$ TMS): $\delta=21.0,21.5,26.9,63.6,71.2,109.4,118.4,122.9,123.7$, 123.8, 123.9, 124.8, 124.9, 125.1, 125.1, 126.6, 129.2, 129.9, 130.1, $130.2,130.5,131.6,133.6,133.9,136.0,138.7,143.1,143.2,162.6$, 169.4 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 590.1725$; found 590.1734.

4-Methyl- N-\{(2S,3R)-1'-methyl-2'-oxo-1-p-tolyl-3-[4-(trifluoro-methyl)phenyl]spiro(azetidine- $2,3^{\prime}$-indoline)-4-ylidene $\}$ benzenesulfonamide (5k): White powder ($212 \mathrm{mg}, 72 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3435,3063,2925,1731,1633,1614,1517,1406,1371,1251$, $1158,1115,1091,1068,1018,918,834,812,754,731,709,662$, $550,537 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.21$ ($\mathrm{s}, 3$ H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 5 \mathrm{H})$, 7.47 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.0,21.6,27.2,61.5,70.9,109.2$, 118.4, 120.3, 122.8, 123.1, 125.0, 125.6, 125.7, 125.9, 126.7, 126.9, 129.0, 129.2, 129.4, 130.2, 131.4, 134.1, 135.9, 136.7, 139.1, 143.2, 143.7, 143.7, $162.4,172.7 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 590.1725$; found 590.1731 .
(R)- N-(1,3-Diphenylspiro[azetidine-2,9' ${ }^{\prime}$-fluorene]-4-ylidene)-4-methylbenzenesulfonamide (51): White powder ($236 \mathrm{mg}, 90 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3427,3060,2924,2856,1621,1496,1458$, 1408, 1311, 1241, 1155, 1091, 910, 808, 748, 686, $544 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.96(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,63.6,76.7,118.8,120.5,120.9$, $122.9,125.3,126.0,127.1,127.3,127.8,128.4,128.5,128.7,129.1$, $129.4,129.9,130.3,133.6,136.8,138.0,139.5,139.9,140.5,142.9$, 143.1, 163.8 ppm . HRMS:calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 527.1793$; found 527.1793.
(R)- N-(1,3-Diphenylspiro[azetidine-2,9'-fluorenel-4-ylidene)-4-methylbenzenesulfonamide (51): White powder ($236 \mathrm{mg}, 90 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3427,3060,2924,2856,1621,1496,1458$, $1408,1311,1241,1155,1091,910,808,748,686,544 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.96(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.21$ (m, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): ~ \delta=21.7,63.6,76.7,118.8,120.5,120.9$,
122.9, 125.3, 126.0, 127.1, 127.3, 127.8, 128.4, 128.5, 128.7, 129.1, $129.4,129.9,130.3,133.6,136.8,138.0,139.5,139.9,140.5,142.9$, 143.1, 163.8 ppm . HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$527.1793; found 527.1793.
(R)- N-($\mathbf{1}^{\prime}, \mathbf{3}^{\prime}$-Dioxo-1,3-diphenyl-1' ${ }^{\prime} \mathbf{3}^{\prime}$-dihydrospiro|azetidine-2,2'-indene]-4-ylidene)-4-methylbenzenesulfonamide (5 m): White powder ($182 \mathrm{mg}, 72 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3450,3.61,2924,1751$, 1718, 1632, 1595, 1498, 1458, 1410, 1314, 1226, 1154, 1090, 882, $755,728,694,554,530 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.14$ (m, 1 H), 7.17-7.29 (m, 10 H$), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), $8.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=21.6,62.7,74.1,118.1,124.2,124.4,126.1,127.0,128.6$, 128.9, 129.1, 129.7, 129.2, 129.3, 129.4, 129.9, 136.2, 137.2, 137.6, 138.6, 139.7, 140.4, 143.1, 162.1, 191.6, 193.6 ppm. HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 507.1378$; found 507.1374.

4-Methyl-N-I($\left.1^{\prime} S, 2 R, 3 S, 4^{\prime} R\right)-1^{\prime}, 7^{\prime}, 7^{\prime}$-trimethyl-3'-oxo-1,3-diphenyl-spiro(azetidine-2,2'-bicyclo[2.2.1]heptane)-4-ylidene]benzenesulfonamide (4n): White powder ($51 \mathrm{mg}, 20 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}$ $=3430,3063,3035,2965,2934,2875,1744,1627,1593,1454,1408$, 1310, 1154, 1091, 1008, 915, 881, 827, 768, 734, 684, $553 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=0.79(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H})$, $0.95(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.33-7.37(\mathrm{~m}$, 5 H), 7.45 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=9.6,18.9,20.9,21.5,22.3,31.3,45.0,55.5,60.2$, $65.2,81.7,124.5,126.5,127.9,128.1,128.3,128.6,128.8,129.5$, 130.8, 137.2, 138.5, 142.2, 166.8, 213.1 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$513.2212; found 513.2226.

4-Methyl- N-I($\left(1^{\prime} S, 2 R, 3 R, 4^{\prime} R\right)-1^{\prime}, 7^{\prime}, 7^{\prime}$-trimethyl-3'-oxo-1,3-diphen-ylspiro(azetidine-2,2'-bicyclo[2.2.1]heptane)-4-ylidene]benzenesulfonamide (5n): White powder ($184 \mathrm{mg}, 72 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3469,3092,3004,3034,2875,1748,1632,1592,1495,1453$, $1420,1305,1152,1090,1003,914,880,833,768,686,539 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=0.07$ (s, 3 H), 0.61 ($\mathrm{s}, 3 \mathrm{H}$), $0.83(\mathrm{~s}, 3 \mathrm{H}), 0.85-0.89(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.40(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ 7.28 (m, 4 H), $7.32-7.36(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=9.3,19.9,21.5,21.6,25.4,26.6,46.2,51.6,57.5$, $60.7,82.3,126.6,128.0,128.1,128.8,129.3,129.5,129.8,129.9$, 131.3, 135.2, 139.3, 143.1, 168.8, 211.1 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$513.2212; found 513.2196.
(S)- N -[1'-(4-Chlorophenyl)-2-oxo-3'-phenyl-2H-spiro(acenaphth-ylene-1,2'-azetidine)-4'-ylidene]-4-methylbenzenesulfonamide (40): White powder ($207 \mathrm{mg}, 74 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3434$, 3057, 2924, 1730, 1634, 1494, 1401, 1313, 1153, 1014, 931, 857, 834, 733, 691, $552 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=$ $2.43(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2$ H), 7.08-7.17 (m, 8 H$), 7.19$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{t}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.54$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43-7.79 (m, $5 \mathrm{H}), 7.82-7.86(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.19-8.23 (m, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=21.7,22.6,62.5,65.5,75.6,75.7,119.6,119.7$, $120.4,122.9,123.3,123.4,126.5,126.9,127.1,128.2,128.3,128.4$, $128.5,128.6,128.7,128.9,129.0,129.2,129.3,129.5,130.5,130.6$, $130.7,130.8,130.9,132.7,132.8,133.5,134.9,135.5,140.9,141.8$, 143.2, 143.3, 163.7, 163.8, 195.9, 199.3 ppm . HRMS: calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$563.1196; found 563.1210.
$\operatorname{Bis}($ spiroazetidine-3-oxindole) (4s): White powder ($347 \mathrm{mg}, 65 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3435,3033,2927,2865,1725,1629$, 1515, 1466, 1316, 1156, 1091, 917, 812, 745, 698, $672 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=1.82$ ($\mathrm{s}, 4 \mathrm{H}$), 1.97 ($\mathrm{s}, 4 \mathrm{H}$), 2.09 (s, 2 H), 2.38-2.40 (br. d, 6 H), 3.83-3.98 (m, 4 H), 5.30 (d, J $=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.78-$ $6.81(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.98-$ $7.04(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.23$ (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=20.8,20.9,21.6,24.9,25.1,40.1$, $62.2,62.3,70.8,70.9,109.1,109.2,117.8,118.1,120.6,120.7,126.3$, 127.0, 128.2, 128.3, 128.4, 128.7, 128.8, 129.2, 129.3, 129.7, 129.8, $131.2,132.4,132.5,133.9,134.3,135.6,135.7,139.2,139.3,142.5$, $142.6,142.9,163.1,163.2,173.3 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{64} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$1069.3781; found 1069.3765 .
$N-I(2 S, 3 S)-1^{\prime}$-Methyl-2'-oxo-1,3-diphenylspiro(azetidine-2,3'-indoline)-4-ylidene|methanesulfonamide (4t): White powder (24 mg , 11% yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3437,3229,1726,1632,1499$, 14561, 1415, 1308, 1149, 1113, 972, 793, 761, 734, 704, 530, $513 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.97(\mathrm{~s}, 3 \mathrm{H})$, $3.08(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{q}, J=$ $8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 4 \mathrm{H})$, $7.30-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=26.8,42.3,64.4,71.5,109.2,118.4,123.6,123.9$, $125.8,127.9,128.2,128.8,129.2,136.2,143.2,164.5,169.5 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 454.1202$; found 454.1199.
$N-\left[(2 S, 3 R)-1^{\prime}\right.$-Methyl-2'-oxo-1,3-diphenylspiro(azetidine-2, $\mathbf{3}^{\prime}$ -indoline)-4-ylidene]methanesulfonamide (5t): White powder (165 mg , 77% yield). FTIR (KBr): $\tilde{v}_{\max }=3439,2927,2854,1730,1622$, 1497, 1468, 1405, 1370, 1309, 1154, 1091, 953, 756, $679,545 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=3.10(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3$ H), $5.29(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.29(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=27.1,42.8,62.1,71.0$, 108.9, 118.32, 120.45, 122.94, 125.74, 126.0, 128.3, 128.4, 128.7, 129.3, 131.1, 132.4, 136.7, 143.5, 164.1, 173.0 ppm . HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 454.1202$; found 454.1201.
N-I($2 S, 3 R$)-3-Cyclohexyl-1'-methyl-2'-oxo-1-phenylspiro(azetidine-2,3'-indoline)-4-ylidene]-4-methylbenzenesulfonamide (5u): Yellow powder ($140.8 \mathrm{mg}, 55 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3437,3031$, 1731, 1644, 1498, 1471, 1408, 1298, 1252, 1139, 1115, 971, 915, $858,786,763,691,505 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=0.92-1.1(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.47(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.40$ (s, 3 H), $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 4$ H), 7.09-7.14 (m, 3 H), $7.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44-7.49$ (m, 2 H), 7.91 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.5,25.8,26.2,26.4,26.9,30.2,31.1$, $38.0,63.5,69.9,109.3,118.5,121.5,123.0,125.3,126.4,126.5$, 129.1, 131.3, 136.7, 140.1, 142.6, 144.2, 165.2, 174 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 536.1984$; found 536.1989.
(1E,2Z)-2-(1-Methyl-2-oxoindolin-3-ylidene)-2-phenyl- N-p-tolyl-N^{\prime}-tosylacetimidamide (6a): Yellow powder ($151 \mathrm{mg}, 97 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3442,3283,3064,2929,1742,1627,1526$, $1492,1452,1336,1294,1156,1086,932,824,755,692,549 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.26$ (s, 3 H), 2.44 ($\mathrm{s}, 3$ H), $3.17(\mathrm{~s}, 3 \mathrm{H}), 6.59-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.05-7.10$ (br. s, 2 H), 7.14-7.18 (m, 1 H$), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 9.97(\mathrm{~s}, 1$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.1,21.7,26.1$,
$108.2,120.9,121.8,123.2,126.2,127.2,128.5,128.7,128.9,129.2$, $129.5,130.1,130.6,133.7,133.9,138.1,138.7,141.7,143,144.7$, 164.3, 165.9 ppm . HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 544.1671; found 544.1674.
(1E,2Z)-2-(1-Methyl-2-oxoindolin-3-ylidene)- $N, 2$-diphenyl- N^{\prime} tosylacetimidamide (6f): Yellow powder ($149 \mathrm{mg}, 98 \%$ yield). FTIR $(\mathrm{KBr}): \tilde{v}_{\text {max }}=3439,3285,3155,3118,3057,2927,1711,1605,1569$, $1521,1443,1375,1341,1283,1144,1085,1025,974,875,756,694$, $553 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.44(\mathrm{~s}, 3 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 6.06-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ ($\mathrm{s}, 2 \mathrm{H}$), $7.12-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 10.07(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,26.1,108.2,120.9,121.8$, 123.2, 126.2, 127.2, 128, 128.7, 129, 129.2, 130.1, 130.7, 133.7, 136.3, 138.4, 143.1, 144.7, 164.2, 165.9 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$508.1695; found 508.1679.
(1E,2Z)-2-(1-Methyl-5-nitro-2-oxoindolin-3-ylidene)-N,2-diphenyl-N^{\prime}-tosylacetimidamide (6 g): Yellow powder ($152 \mathrm{mg}, 92 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3438,3269,3064,2926,1719,1608,1569$, $1526,1446,1337,1289,1145,1085,1024,901,812,755,704 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.46(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3$ H), $6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1$ H), 7.13-7.17 (m, 2 H), 7.19-7.23 (m, 1 H$), 7.28-7.35(\mathrm{~m}, 4 \mathrm{H})$, $7.42-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3},\left[\mathrm{D}_{6}\right] \mathrm{DMSO} / \mathrm{TMS}\right): ~ \delta=21.5,26.5,108.1,118.6,121.3$, $122.6,124.8,125.6,126.1,126.3,126.8,126.9,128.7,129,129.3$, $129.8,131.1,133.6,138.0,140.2,142.1,142.6,147.2,149.3,159.4$, 165.9 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$ 575.1365; found 575.1381.
(1E,2Z)-2-(5-Bromo-1-methyl-2-oxoindolin-3-ylidene)-N,2-diphen-yl- N^{\prime}-tosylacetimidamide (6 h): Yellow powder ($167 \mathrm{mg}, 95 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3436,3250,3060,2925,2856,1708,1603$, $1563,1527,1385,1280,1145,1086,1025,988,884,810,763,702$, $542 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.45(\mathrm{~s}, 3 \mathrm{H})$, $3.16(\mathrm{~s}, 3 \mathrm{H}), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1$ H), $7.23-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 10.07(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=21.7,26.2,109.6,114.4$, $125.9,126.2,127.2,128.2,128.7,128.8,129,129.3,130.6,133.1$, 133.2, 136.2, 138.4, 143.2, 143.5, 163.6, 165.4 ppm. HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 608.0620$; found 608.0638 .
(Z)-2-(9H-fluoren-9-ylidene)- $\mathrm{N}, 2$-diphenyl- N^{\prime}-tosylacetimidamide (61): Yellow powder, ($153 \mathrm{mg}, 97 \%$ yield). FTIR $(\mathrm{KBr}): \tilde{\mathrm{v}}_{\max }=$ $3438,3271,3058,2924,2855,1599,1568,1521,1442,1389,1234$, 1146, 1084, 1024, 946, 910, 813, 733, 691, 594, 555, $526 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.46(\mathrm{~s}, 3 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.5,16 \mathrm{~Hz}, 3$ H), $7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 10.09(\mathrm{~s}, 1$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,119.5$, 119.8, 121.7, 124.7, 125.1, 125.4, 126.9, 127.4, 125.1, 125.4, 126.9, 127.2, 127.4, 127.7, 127.9, 128.9, 129.1, 129.2, 129.6, 130.9, 133.6, $135.5,136.2,137,137.7,138.7,140.9,141.3,143.6,163.7 \mathrm{ppm}$. HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 549.1613$; found 549.1590.
(1Z,2E)-N-(4-Chlorophenyl)-2-[2-oxoacenaphthylen-1(2H)-yl-idenel-2-phenyl- \boldsymbol{N}^{\prime}-tosylacetimidamide (60): Yellow powder ($158 \mathrm{mg}, 94 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3410,3275,3059,2924$, $1708,1599,1566,1522,1494,1433,1399,1281,1148,1088,1025$,

826, 780, 711, 686, 555, $524 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=2.45(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (s, 2 H), 7.27-7.33 (m, 5 H), 7.42 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (d, J $=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{q}, J=4,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 8.04(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$, 10.07 (s, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.8$, 120.9, 121.9, 126.8, 127.2, 127.8, 128.1, 128.8, 129.1, 129.3, 130.3, $130.5,131.7,131.8,133.8,134.9,135.5,138.2,140.9,143.3,164.5$, 191.3 ppm . HRMS: calcd. for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$563.1196; found 563.1176.
(1Z,2E)-2-(1-Methyl-5-nitro-2-oxoindolin-3-ylidene)- $N, 2$-diphenyl-\boldsymbol{N}^{\prime}-tosylacetimidamide (7 g): Yellow powder ($141 \mathrm{mg}, 82 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3441,3285,3066,2927,1740,1629,1524$, $1495,1452,1405,1336,1294,1154,1088,930,822,753,690$, $549 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H})$, $3.16(\mathrm{~s}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{q}, J=5,8 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 2$ H), $7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{dd}$, $J=2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=21.7,26.1,108.2,120.9$, $121.8,123.2,123.9,125.4,126.2,127.1,127.2,127.6,127.6,128.0$, 128.7, 128.8, 129, 129.1, 129.2, 129.7, 130.1, 130.6, 130.7, 131.1, 133.7, 136.3, 138.4, 143.1, 144.7, 164.2, 165.9 ppm. HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 575.1365$; found 575.1378 .
(1Z,2E)-2-(5-Bromo-1-methyl-2-oxoindolin-3-ylidene)- N,2-diphen-yl- N^{\prime}-tosylacetimidamide (7 h): Yellow powder ($149 \mathrm{mg}, 85 \%$ yield). FTIR (KBr): $\tilde{v}_{\text {max }}=3439,3263,3062,2926,1712,1603,1483$, 1529, 1364, 1332, 1276, 1144, 1067, 1024, 988, 885, 813, 759, 695, $553 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=2.45(\mathrm{~s}, 3 \mathrm{H})$, $3.15(\mathrm{~s}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $7.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 3$ H), 7.32 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97 (d, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $10.06(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS): $\delta=21.7,26.1,109.51,114.3,118.2,122.5,125.8,126.1$, 127.1, 127.5, 128.1, 128.3, 128.6, 128.8, 128.9, 129.2, 129.3, 129.4, 133.1, 133.2, 136.1, 138.3, 143.2, 163.6, 165.3 ppm . HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 608.0619$; found 608.0625 .
Supporting Information (see footnote on the first page of this article): Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS spectra of all compounds are provided.

Acknowledgments

S. P. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Senior Research Fellowship. Funding support from the CSIR-12 ${ }^{\text {th }}$ five-year plan project CSC0201 is also acknowledged.
[1] a) C. Marti, E. M. Carreira, Eur. J. Org. Chem. 2003, 22092219; b) C. V. Galliford, K. A. Scheidt, Angew. Chem. 2007, 119, 8902; Angew. Chem. Int. Ed. 2007, 46, 8748-8758; c) B. M. Trost, M. K. Brennan, Synthesis 2009, 3003-3025; d) H. Waldmann, Synlett 1995, 133-141.
[2] For reviews on spirocycles, see: a) A. P. Krapcho, Synthesis 1974, 383-419; b) M. Sannigrahi, Tetrahedron 1999, 55, $9007-$ 9071; c) R. Pradhan, M. Patra, A. K. Behera, B. K. Mishra, R. K. Behera, Tetrahedron 2006, 62, 779-828; d) S. Kotha, A. C. Deb, K. Lahiri, E. Manivannan, Synthesis 2009, 165193; e) A. Padwa, S. K. Bur, Tetrahedron 2007, 63, 5341-5378; f) L. F. Tietze, N. Rackelmann, Pure Appl. Chem. 2004, 76, 1967-1983; g) P. Chiba, W. Holzer, M. Landau, G. Bechmann, K. Lorenz, B. Plagens, M. Hitzler, E. Richter, G. Ecker, J. Med.

Chem. 1998, 41, 4001-4011; h) M. P. Castaldi, D. M. Troast, J. A. Porco, Org. Lett. 2009, 11, 3362-3365.
[3] For a recent review on spirooxindoles, see: G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104-6155.
[4] W. Skiles, D. McNeil, Tetrahedron Lett. 1990, 31, 7277-7280.
[5] a) M. H. Khan, Nizamuddin, Indian J. Chem. B 1997, 36, 625; b) K. C. Joshi, R. Jain, V. Sharma, J. Indian Chem. Soc. 1986, 63, 430; c) J. C. Sheehan, E. Chacko, Y. S. Lo, D. R. Ponzi, E. Sato, J. Org. Chem. 1978, 43, 4856-4859
[6] For a review on the synthesis and reactivity of spiro-fused β lactams, see: a) G. S. Singh, M. D'hooghe, N. De Kimpe, Tetrahedron 2011, 67, 1989-2012; for general papers, see: b) A. Bhalla, P. Venugopalan, K. K. Bhasin, S. S. Bari, Tetrahedron 2007, 63, 3195-3204; c) C. V. Galliford, J. S. Martenson, C. Stern, K. A. Scheidt, Chem. Commun. 2007, 631-633; d) B. Alcaide, P. Almendros, T. M. del Camop, R. Rodríguez-Acebes, Adv. Synth. Catal. 2007, 349, 749-758; e) B. V. S. Reddy, G. Karthik, T. Rajasekaran, A. Antony, B. Sridhar, Tetrahedron Lett. 2012, 53, 2396-2401.
[7] For recent selected papers of Cu -catalyzed multicomponent reactions (MCRs), see: a) N. Chernyak, V. Gevorgyan, Angew. Chem. 2010, 122, 2803; Angew. Chem. Int. Ed. 2010, 49, $2743-$ 2746; b) N. Sakai, N. Uchida, T. Konakahara, Tetrahedron Lett. 2008, 49, 3437-3440; c) K. Namitharan, K. Pitchumani, Adv. Synth. Catal. 2013, 355, 93-98; d) K. Namitharan, K. Pitchumani, Org. Lett. 2012, 14, 5728-5731; e) S. U. Dighe, S. Hutait, S. Batra, ACS Comb. Sci. 2012, 14, 665-672; f) L. Zhang, H. C. Malinakova, J. Org. Chem. 2007, 72, 1484-1487; g) F. Colombo, M. Benaglia, S. Orlandi, F. Usuelli, J. Mol. Catal. A: Chem. 2006, 260, 128-134; h) A. Gheorghe, A. Matsuno, O. Reiser, Adv. Synth. Catal. 2006, 348, 1016-1020.
[8] For reviews, see: a) J. D. Sunderhaus, S. F. Martin, Chem. Eur. J. 2009, 15, 1300-1308; b) N. Isambert, R. Lavilla, Chem. Eur. J. 2008, 14, 8444-8454; c) A. Dömling, Chem. Rev. 2006, 106, $17-89$; d) R. V. A. Orru, M. de Greef, Synthesis 2003, $1471-$ 1499; e) H. Bienaymé, C. Hulme, G. Oddon, P. Schmitt, Chem. Eur. J. 2000, 6, 3321-3329; f) A. Dömling, I. Ugi, Angew. Chem. 2000, 112, 3300; Angew. Chem. Int. Ed. 2000, 39, $3168-$ 3210; g) I. Ugi, A. Dömling, B. Werner, J. Heterocycl. Chem. 2000, 37, 647-658; h) L. Weber, K. Illgen, M. Almstetter, Synlett 1999, 366-374; i) R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown, T. A. Keating, Acc. Chem. Res. 1996, 29, 123-131; j) I. Ugi, A. Dömling, W. Hörl, Endeavour 1994, 18, 115-122.
[9] a) M. Whiting, V. V. Fokin, Angew. Chem. 2006, 118, 3229; Angew. Chem. Int. Ed. 2006, 45, 3157-3161; b) M. P. Cassidy, J. Raushel, V. V. Fokin, Angew. Chem. 2006, 118, 3226; Angew. Chem. Int. Ed. 2006, 45, 3154-3157; c) E. J. Yoo, I. Bae, S. H. Cho, H. Han, S. Chang, Org. Lett. 2006, 8, 1347-1350; d) S. L. Cui, X. F. Lin, Y. G. Wang, Org. Lett. 2006, 8, 4517-4520; e) S. H. Cho, E. J. Yoo, I. Bae, S. Chang, J. Am. Chem. Soc. 2005, 127, 16046-16047; f) I. Bae, H. Han, S. Chang, J. Am. Chem. Soc. 2005, 127, 2038-2039; g) J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, Oxford, UK, 2001.
[10] a) P. Shanmugam, V. Vaithiyanathan, V. Baby, Tetrahedron 2006, 62, 4342-4348; b) P. Shanmugam, B. Viswambharan, M. V. Suchithra, Org. Lett. 2007, 9, 4095-4098; c) B. Viswambharan, K. Selvakumar, S. Madhavan, P. Shanmugam, Org. Lett. 2010, 12, 2108-2111; d) S. Periyaraja, P. Shanmugam, A. B. Mandal, T. S. Kumar, P. Ramamurthy, Tetrahedron 2013, 69, 2891-2899.
[11] a) Y. Dejaegher, N. M. Kuz'menok, A. M. Zvonok, N. De Kimpe, Chem. Rev. 2002, 102, 29-60; b) Y. Dejaegher, N. De Kimpe, J. Org. Chem. 2004, 69, 5974-5985; c) K. S. Kenis, M. D'hooghe, G. Verniest, T. A. D. Thi, C. P. The, T. V. Nguyen, N. De Kimpe, J. Org. Chem. 2012, 77, 5982-5992; d) B. Alcaide, P. Almendros, C. Aragoncillo, Chem. Commun. 2000, 757-758; e) B. Alcaide, P. Almendros, C. Aragoncillo, Chem. Eur. J. 2002, 8, 3646-3652; f) M. K. Ghorai, A. Kumar,
K. Das, Org. Lett. 2007, 9, 5441-5444; g) M. K. Ghorai, D. Shukla, A. Bhattacharyya, J. Org. Chem. 2012, 77, 3740-3753; h) M. K. Ghorai, A. Kumar, D. P. Tiwari, J. Org. Chem. 2010, 75, 137-151.
[12] CCDC-834010 (for 4a), -834011 (for 5a), -916626 (for 5g), -923623 (for $\mathbf{6 h}$), and -923622 (for $7 \mathbf{g}$) contain the supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[13] a) K. Jiang, B. Tiwari, Y. R. Chi, Org. Lett. 2012, 14, $2832-$ 2385; b) L. Hao, Y. Du, X. Chen, H. Jiang, Y. Shao, Y. R. Chi, Org. Lett. 2012, 14, 2154-2157.

Received: August 19, 2013
Published Online: December 2, 2013

[^0]: [a] Organic Chemistry Division, Council of Scientific and
 Industrial Research (CSIR) - Central Leather Research Institute (CLRI),
 Adyar, Chennai 600020, India
 E-mail: shanmu196@rediffmail.com
 http://www.clri.org/WriteReadData/Biodata/PShanmugam.html
 [b] Chemical Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc. 201301244.

