Stereoselective total synthesis of penaresidin A starting from \mathbf{D}-galactal

B. V. Subba Reddy *, Ch. Kishore, A. Srinivas Reddy
Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

A R T I C L E I N F O

Article history:

Received 6 September 2013
Revised 17 October 2013
Accepted 20 October 2013
Available online 26 October 2013

Keywords:

d-Galactal
Asymmetric epoxidation
Azetidine formation
Jung's protocol
Julia-Kocienski olefination

Abstract

A stereoselective total synthesis of penaresidin A has been accomplished involving Sharpless asymmetric epoxidation, regioselective ring-opening of epoxide, azetidine formation via $\mathrm{S}_{\mathrm{N}} 2$ reaction, Jung's protocol, and Julia-Kocienski olefination. This approach has successfully demonstrated the synthetic utility of D-galactal in the construction of azetidine core of the natural product.

© 2013 Elsevier Ltd. All rights reserved.

Marine sponge is a rich source of various sphingosine derivatives. In particular, penaresidin A (1) and B(2) were isolated from Okinawan marine sponge Penares sp. ${ }^{1}$ in 1991 as a mixture of the corresponding tetraacetyl derivatives (Fig. 1). They are known to behave as potent actomyosin ATPase activators. Penaresidin A constitutes an azetidine core which is separated from a hydroxy isobutyl subunit by a long alkyl chain. The absolute configuration of the five stereogenic centers was established as $2 S, 3 R, 4 S, 15 S$ and $16 S$ by spectroscopic methods ${ }^{1,2}$ and subsequent synthetic studies. ${ }^{3}$

Following our interest on the total synthesis of natural products, ${ }^{4}$ we herein report a concise approach for the total synthesis of penaresidin A (1) starting from 3,4,6-tri-O-benzyl-d-galactal. Our retrosynthetic analysis is shown in Scheme 1.

According to our approach, we envisaged that the target molecule could be accomplished from the intermediate $\mathbf{3}$ through a Ju-lia-Kocienski olefination of aldehyde 4 with sulfoxide 5 . The azetidine core $\mathbf{4}$ was assumed to be accessed from amino alcohol 6 which could in turn be prepared from allyl alcohol 7, derived from 3,4,6-tri-O-benzyl-d-galactal. The sulfoxide moiety 5 could be prepared from epoxy alcohol 8, derived from nonanediol.

The synthesis of the key fragment 4 began with d-galactal. Accordingly, treatment of 3,4,6-tri-O-benzyl-d-galactal with HgSO_{4} in the presence of aq $\mathrm{H}_{2} \mathrm{SO}_{4}$ in dioxane ${ }^{5}$ at room temperature afforded the hydroxy-trans-enal exclusively which was then subjected to chemoselective reduction with $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBH}_{4}$ under Luche conditions ${ }^{6}$ to furnish the allyl alcohol 7. Asymmetric epoxidation

[^0]of allyl alcohol 7 under Sharpless conditions ${ }^{7}$ followed by ring opening of the epoxide with Red-Al gave triol 9 in 57% yield. Protection of triol 9 with 2,2-DMP in the presence of cat. p-TSA gave 1,3 -acetonide $\mathbf{1 0}$. The secondary hydroxyl group of $\mathbf{1 0}$ was protected as its mesylate and then converted into azide $\mathbf{1 1}$ using NaN_{3} in DMF under reflux conditions. Reduction of azide with LAH followed by tosylation with tosyl chloride and triethylamine provided the tosyl derivative 12 in 90% yield. Removal of acetonide 12 using p-TSA in methanol followed by selective protection of the primary hydroxyl group with tert-butyldiphenylsilyl chloride afforded the TBDPS ether $\mathbf{6}$ in good yields. Conversion of free hydroxyl group of $\mathbf{6}$ as its mesylate using methanesulfonyl chloride in pyridine followed by cyclization with NaH gave azetidine $\mathbf{1 3}$ in 51% yield over two steps. Desilylation of $\mathbf{1 3}$ using TBAF followed by oxidation of the hydroxyl group with IBX in DMSO gave the key

Figure 1. Representative examples of azetidine natural products.

Scheme 1. Retrosynthetic analysis of penaresidin A.

Scheme 2. Reagents and conditions: (a) (i) $\mathrm{HgSO}_{4} / \mathrm{aq}_{\mathrm{H}} \mathrm{SO}_{4}$, dioxane, rt, 12 h , (ii) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 65 \%$ two steps; (b) (i) (+)-DIPT, Ti(Oi$\left.{ }^{i} \mathrm{Pr}\right)_{4}, \mathrm{TBHP}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA \mathrm{MS},-20^{\circ} \mathrm{C}, 6 \mathrm{~h}$, (ii) Red-Al, THF, $0^{\circ} \mathrm{C}, 8 \mathrm{~h}, 57 \%$ two steps; (c) 2,2-DMP, p-TSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}, 85 \%$; (d) (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$, (ii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 90^{\circ} \mathrm{C}$, $6 \mathrm{~h}, 75 \%$; (e) (i) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$, (ii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; (f) (i) p-TSA, $\mathrm{CH}_{3} \mathrm{OH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, (ii) TBDPSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 72 \%$; (g) (i) MsCl, pyridine, $0^{\circ} \mathrm{C}$, (ii) $\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 51 \%$; (h) (i) TBAF, THF, rt, 3 h , (ii) IBX, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 56% two steps.
aldehyde 4, which was used directly in Julia-Kocienski olefination (Scheme 2).

Another key fragment 5 was prepared from 1,9-nonanediol. Mono-protection of nonanediol as its benzyl ether followed by oxidation and a subsequent Wittig reaction with a stable ylide gave the 2,3 -unsaturated ester $\mathbf{1 4}$ in 73% yield with E-stereoselectivity. The stereochemistry of olefin was confirmed by comparing the chemical shift value of methyl protons attached to olefinic carbon with previous reports. ${ }^{8}$ Further treatment of ester $\mathbf{1 4}$ with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the methyl substituted allylic alcohol, which was

Scheme 3. Reagents and conditions: (a) (i) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 5 \mathrm{~h}$, (ii) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}$, (iii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}$, benzene, reflux, $6 \mathrm{~h}, 73 \%$; (b) (i) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, (ii) (+)-DIPT, Ti($\left.\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA \mathrm{MS},-20^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (c) TBSOTf, DIPEA, MS $4 \AA \AA,-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$, (ii) n - $\mathrm{BuLi}, \mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 56 \%$; (d) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}, \mathrm{H}_{2}, 5 \mathrm{~h}, 90 \%$; (e) A, $\mathrm{Ph}_{3} \mathrm{P}$, DIAD, THF, $0-\mathrm{rt}, 3 \mathrm{~h}, 80 \%$; (f) ammonium molybdate, $\mathrm{H}_{2} \mathrm{O}_{2}$, EtOH, 6 h, 85%.

Scheme 4. Reagents and conditions: (a) KHMDS, THF, $-78{ }^{\circ} \mathrm{C}, 70 \%$; (b) P-TSA, $\mathrm{MeOH}, \mathrm{rt}$; (c) (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, 4 \mathrm{~h}, 85 \%$, (ii) Na , naphthalene, DME, $0^{\circ} \mathrm{C}$.
then subjected to Sharpless asymmetric epoxidation ${ }^{9}$ to afford the epoxy alcohol $\mathbf{8}$. Protection of $\mathbf{8}$ with TBSOTf and DIPEA in DCM at $-20^{\circ} \mathrm{C}$ under Jung's conditions ${ }^{10}$ afforded the aldehyde, which was further treated with a C 1 ylide to give the terminal olefin 15. Reduction of $\mathbf{1 5}$ with $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ afforded the alcohol 16 in 90% yield, which was then converted into thioester 17 using 1-phe-nyl-1H-tetrazole-5-thiol in the presence of TPP/DIAD. Oxidation of thioester with molybdenum salt and hydrogen peroxide gave sulfone 5 in 85% yield (Scheme 3).

Having both aldehyde and sulfone fragments in hand, we next attempted the Julia-Kocienski olefination using KHMDS as a base at $-78{ }^{\circ} \mathrm{C}$ to give the olefin $\mathbf{3}$ in 70% yield. Desilylation of $\mathbf{3}$ with p-TSA in methanol gave alcohol 18 in 80% yield (Scheme 4). Treatment of $\mathbf{1 8}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ under hydrogen atmosphere followed by treatment with Na /naphthalene and a subsequent salt formation with acetic acid gave the acetic acid salt of the target molecule 19 in 60% yield (Scheme 4). The spectral data of penaresidin A (1) were in good agreement with the data reported in the literature. ${ }^{3 e, 11}$

In conclusion, we have developed an efficient synthetic approach for the synthesis of penaresidin A starting from 3,4,6-tri-O-benzyl-d-galactal and 1,9-nonanediol. The key steps involved in this synthesis are Sharpless asymmetric epoxidation,
regioselective ring-opening of epoxide, $\mathrm{S}_{\mathrm{N}} 2$ reaction for azetidine formation, Jung's protocol, and Julia-Kocienski olefination. The azedine core was constructed from the allyl alcohol 7, which was in turn derived from d-galactal in two steps with 65% yield. The reactions involved in the azetidine formation, are highly stereoselective with no possibility of formation of other stereoisomers. The present synthetic approach involves 19 steps from d-galactal with 2.1% overall yield.

Acknowledgements

Ch.K. thanks UGC New Delhi, for the award of a fellowship. B.V.S. thanks CSIR, New Delhi for financial support as a part of XII five year plan under title DENOVA (CSC-0205).

References and notes

1. Kobayashi, J.; Cheng, J.-F.; Ishibashi, M.; Wälchli, M. R.; Yamamura, S.; Ohizumi, Y. J. Chem. Soc., Perkin Trans. 1 1991, 1135.
2. Kobayashi, J.; Tsuda, M.; Cheng, J.-F.; Ishibashi, M.; Takikawa, H.; Mori, K. Tetrahedron Lett. 1996, 37, 6775-6776.
3. (a) Knapp, S.; Dong, Y. Tetrahedron Lett. 1997, 38, 3813; (b) Takikawa, H.; Maeda, T.; Seki, M.; Koshino, H.; Mori, K. J. Chem. Soc., Perkin Trans. 1 1997, 111; (c) Takikawa, H.; Maeda, T.; Mori, K. Tetrahedron Lett. 1995, 36, 7689; (d) Liu, D.-G.; Lin, G.-Q. Tetrahedron Lett. 1999, 40, 337; (e) Raghavan, S.; Krishnaiah, V. J. Org. Chem. 2010, 75, 748.
4. (a) Reddy, B. V. S.; Reddy, B. P.; Pandurangam, T.; Yadav, J. S. Tetrahedron Lett. 2011, 52, 2306; (b) Reddy, P. J.; Reddy, A. S.; Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2012, 53, 4051; (c) Kishore, Ch.; Reddy, A. S.; Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2012, 53, 4551.
5. (a) Gonzalez, F.; Lesage, S.; Perlin, A. S. Carbohydr. Res. 1975, 42, 267; (b) Sagar, R.; Pathak, R.; Shaw, A. K. Carbohydr. Res. 2004, 339, 2031; (c) Hirata, N.; Yamagiwa, Y.; Kamikawa, T. J. Chem. Soc., Perkin Trans 1 1991, 2279.
6. Germal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
7. Sagar, R.; Reddy, L. V. R.; Shaw, A. K. Tetrahedron: Asymmetry 2006, 17, 1189.
8. (a) Gaich, T.; Karig, G.; Martin, H. J.; Mulzer, J. Eur. J. Org. Chem. 2006, 3372; (b) Yadav, J. S.; Raju, A.; Ravinder, K.; Reddy, B. V. S. Tetrahedron Lett. 2013, 54, 3227.
9. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974; (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
10. (a) Jung, M. E.; D’Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208 ; (b) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1997, 119, 12150; (c) Jung, M. E.; Lee, W. S.; Sun, D. Org. Lett. 1999, 1, 307.
11. (R)-4-((1S,2S)-2-Azido-1,3-bis(benzyloxy)propyl)-2,2-dimethyl-1,3-dioxane (11): $[\alpha]_{D}^{25}-1.0\left(c 5.5, \mathrm{CHCl}_{3}\right)$. IR (neat): v 3063, 2989, 2868, 2097, 1455, 1375, $1270,1104,741,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~m}, 10 \mathrm{H}), 4.64(\mathrm{~s}$, $2 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-3.43(\mathrm{~m}, 7 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.36$ (s, 3H), $1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.8,128.4,128.1,127.9$, 127.8, 127.7, 127.6, 98.3, 81.0, 74.2, 73.3, 69.5, 68.9, 61.5, 59.7, 29.7, 27.1, 18.8; ESI-MS [M+Na] 434; HRMS [M+Na] calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Na} 434.2050$, found: 434.2043.
(2S,3R,4S)-3-(Benzyloxy)-2-((benzyloxy)methyl)-4-(2-((tert-butyldiphenylsilyl)oxy) ethyl)-1-tosylazetidine (13): $[\alpha]_{D}^{25}+16.9\left(c 7.3, \mathrm{CHCl}_{3}\right)$. IR (neat): $v 3282,3066$, 3031, 2927, 2857, 2097, 1596, 1455, 1331, 1160, 1107,740, $703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.67(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}$, $2 \mathrm{H}), 4.30(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H})$, $3.31(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 138.8,129.5,128.3,127.8,127.5,113.8,75.9,74.9,70.9,70.7,60.1,55.2,39.5$, 36.0, 33.8, 32.0, 24.5, 22.6, 14.0. ESI-MS [M+H] 720; HRMS [M+H] calcd for $\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{O}_{5}$ NSSi 720.3173 , found: 720.3172 .
(E)-Ethyl 11-(benzyloxy)-2-methylundec-2-enoate (14): IR (neat): v 2930, 2860, 1710, 1648, 1448, 1366, 1266, 1096, 1028, 742, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}, 4.19)(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28(\mathrm{~m}$, 13H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,138.6,133.2,129.5,128.2,127.5$ $127.4,72.7,70.3,60.1,34.3,29.6,29.2,29.1,28.9,17.2,14.2$; ESI-MS [M+Na] 341.
((2S,3S)-3-(8-(Benzyloxy)octyl)-2-methyloxiran-2-yl)methanol (8): $[\alpha]_{D}^{25}-50$ (c $0.3, \mathrm{CHCl}_{3}$); IR (neat): $v 3428,2929,2858,1602,1455,1384,1276,1114,1070$, $713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H})$, $3.47(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~m}, 10 \mathrm{H}, 1.28$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.7,129.9,128.2,73.9,67.3,65.0,62.6$, 29.3, 29.1, 28.5, 26.7, 25.8. ESI-MS [M+Na] 329; HRMS [M+Na] calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na} 329.2087$, found: 329.2084.
(((3S,4S)-12-(Benzyloxy)-3-methyldodec-1-en-4-yl)oxy)(tert-butyl)dimethylsilane (15): $[\alpha]_{D}^{25}-7$ (c 1.7, CHCl_{3}). IR (neat): v 3067, 2930, 2855, 1638, 1431, 1253, $1102,836,773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H})$, $4.98(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.32(\mathrm{~m}, 12 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.7, ‘ 138.7,128.3,127.4,113.6,75.9,72.8,70.5,42.7,33.8$, 29.7, 29.5, 29.4, 26.2, 25.9, 25.2, 18.2, 14.8, -4.3, -4.4; ESI-MS [M+Na] 441. (9S,10S)-9-((tert-Butyldimethylsilyl)oxy)-10-methyldodecan-1-ol (16): $[\alpha]_{D}^{25}-2$ (c 3.0, CHCl_{3}); IR (neat): v 3339, 2930, 2857, 1464, 1381, 1252, 1056, 835, 773, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.64(\mathrm{~J}=6.6 \mathrm{~Hz}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.28(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~m}, 16 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 75.6,63.1,39.6,36.6,33.5,32.8,29.8,29.6,29.4,27.1$, 25.9, 25.2, 19.2, 18.2, 14.1, 13.8, 12.2, -4.2, -4.4. ESI-MS [M+H] 331. 5-(((9S,10S)-9-((tert-Butyldimethylsilyl)oxy)-10-methyldodecyl)thio)-2-phenyl2 H -tetrazole (17): $[\alpha]_{D}^{25}-3.5$ (c 3.0, CHCl_{3}); IR (neat): v 3090, 2929, 2855, 1597, 1500, 1463, 1385, 1250, 1053, 835, $765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.56(\mathrm{~m}, 5 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{~s}, J=5.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.83(\mathrm{~m}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.4,133.7,129.9,129.7,123.8,75.6,39.6$, $33.3,33.5,29.7,29.4,29.0,28.6,25.9,25.8,25.1,18.1,13.8,12.2,-4.2,-4.5$; ESI-MS $[\mathrm{M}+\mathrm{H}]$ 491; HRMS $[\mathrm{M}+\mathrm{H}]$ calcd for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{ON} \mathrm{N}_{4} \mathrm{SSi} 491.3234$, found: 491.3222.
(2S,3R,4S)-3-(Benzyloxy)-2-((benzyloxy)methyl)-4-((11S,12S)-11-((tert-Butyldimethyl-silyl)oxy)-12-methyltetradec-2-en-1-yl)-1-tosylazetidine (3): $[\alpha]_{D}^{25}-15.0$ (c 0.1, CHCl_{3}). IR (neat): $v 3448,2925,2854,1461,1259,1159,1093,800,772 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 12 \mathrm{H}), 6.16-5.64(\mathrm{~m}, 1 \mathrm{H})$, $5.52-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.35(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H})$, $2.55(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{~s}$, 9H), $0.82(\mathrm{~m}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.0,136.5,135.4$, 133.8, 129.4, 129.0, 128.3, 127.7, 127.5, 127.4, 127.3, 127.2, 126.8, 125.1, 78.0, $75.6,73.1,72.2,71.5,70.5,56.6,39.6,33.5,32.7,30.6,29.8,29.6,29.5,29.3$, 29.1, 25.9, 25.2, 22.7, 21.5, 13.9, 12.3, -4.2, -4.4. ESI-MS [M+Na] 798.
(3S,4S)-14-((2S,3R,4S)-3-(Benzyloxy)-4-((benzyloxy)methyl)-1-tosylazetidin-2-yl) -3-methyltetradec-12-en-4-ol (18): $[\alpha]_{D}^{25}-13.3$ (c 0.3, CHCl_{3}). IR (neat): v 3486, 3030, 2927, 2866, 1598, 1495, 1453, 1337, 1155, 1093, 1047, 700, $676 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 12 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.66$ $(\mathrm{m}, 1 \mathrm{H}), 5.49-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.36$ $(\mathrm{m}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.1,138.0,137.7,137.9,136.4,135.4,133.7,129.4,129.1$, 128.3, 128.2, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 126.8, 121.6, 78.9, 74.9, $73.1,72.2,71.5,70.5,69.8,68.6,68.4,68.2,56.6,39.9,34.5,32.6,31.9,29.6$, 29.5, 29.3, 26.2, 22.6, 21.5, 14.1, 13.1, 11.8. ESI-MS [M+Na] 684; HRMS [M+Na] calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{NO}_{5} \mathrm{SNa}$ 684.3699, found: 684.3696.
Penaresidine A acetic acid salt (19): $[\alpha]_{D}^{25}-15.0\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (neat): v 3427, 2924, 2854, 1565, 1410, 1123, $654 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 4.53-$ $4.49(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.45-$ 3.41 (m, 1H), 1.96-1.79 (m, 2H), 1.90 (s, 3H), 1.53-1.44 (m, 1H), 1.43-1.22 (m, $19 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 178.3,75.5,69.8,66.6,65.1,60.0,41.5,35.4,30.9,30.8$, 30.75, 30.7, 30.6, 30.5, 27.9, 27.5, 27.1, 26.2, 13.9, 12.3. ESI-MS: $330[\mathrm{M}+\mathrm{H}]$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$ calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{3} 330.3008$, found: 330.2994 .

[^0]: * Corresponding author. Fax: +91 4027160512.

 E-mail address: basireddy@iict.res.in (B.V. Subba Reddy).

