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Optical imaging techniques used to detect malignant tumors
by endoscopy or at surgery require near-infrared fluorescence
(NIRF) probes containing dyes with high signal-to-noise (S/
N) ratios.[1] Along with a high S/N ratio in the near-infrared
spectral region, these probes must accumulate specifically in
the targeted tumor tissues. Spherical amphiphilic assemblies
with diameters of 50–200 nm, such as liposomes, liposome-
like assemblies,[2] and micelles or vesicles of polymer con-
jugates,[3] have been investigated with the expectation that
they accumulate in solid tumors because of their enhanced
permeability and retention (EPR) effect.[4]

Optical tumor imaging faces two problems. The first
problem is the stability of the self-assembled amphiphilic
copolymers. The disassembly of amphiphiles under diluted
conditions, especially in blood vessels, reduces both their S/N
ratio and specificity as probes for tumors. The second problem
concerns the fluorescence intensities. Hydrophobic dyes
attached to copolymers are prone to aggregate in aqueous
solution, and self-quenching therefore reduces the quantum

yields.[5] To address the first problem, we focused our
attention on the cross-linked assemblies of copolymers with
hydrophobic and hydrophilic polymeric side chains
(Figure 1). Because the polymer backbone bearing hydro-

phobic and hydrophilic polymeric side chains forms a part of a
permeable interface between a hydrophobic core and hydro-
philic shell,[6] the self-assemblies are expected to be highly
stable. Additionally, partial cross-linking of the interface
preserves the mobility of hydrophobic dyes dispersed in the
hydrophobic core. Therefore, we assumed that the dispersed
hydrophobic dyes conjugated with long side chains inherently
emit fluorescence even in aqueous media (Figure 2).

Ring-opening metathesis polymerization (ROMP) of
strained bicyclic compounds was used to produce readily
multiblock copolymers and random copolymers in high yields
with a low polydispersity index.[7] The synthetic method, living
ROMP, and its compatibility with highly functional groups are
found to be most important for the preparation of highly
functionalized amphiphilic copolymers that form spherical
nanoparticles for tumor therapy and imaging.[8, 9] Although
several amphiphilic brush-like copolymers with polymeric
side chains obtained by ROMP have been reported to form
self-assemblies,[10] to the best of our knowledge, there is no

Figure 1. Amphiphilic polymer brushes which form spherical self-
assemblies in aqueous media.

Figure 2. Self-assemblies consisting of PMA and PEG-grafted amphi-
philic brush-like copolymers used as imaging probes.
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example for their application to tumor imaging in vivo. We
report here high-contrast tumor imaging probes consisting of
polymer backbones bearing poly(methacrylate) (PMA) and
poly(ethylene glycol) (PEG) polymer brushes, which are
obtained by ROMP.

The synthesis of copolymers 1–4 bearing hydrophobic and
hydrophilic polymer brushes includes ROMP to introduce
PMA moieties as hydrophobic segments, copper-catalyzed
[2+3] cyclization[11] to graft PEG segments, and dihydroxy-
lation[12] of double bonds in the main chain of the polymer
(Figure 3). We prepared random copolymers of PEG, the
NIRF indocyanine green (ICG) dye, and targeting-agent
segments, followed by end-capping reactions of PMA macro-
monomers to obtain PMA-grafted copolymers.[13, 14] The
random copolymerization enhanced the fluorescence inten-
sities of the amphiphilic copolymer assemblies because the
self-quenching of the dye moieties was restricted (see Fig-
ure S4 in the Supporting Information). The folate-containing
copolymer A, which forms self-assemblies without cross-
linked interface, was also prepared as control sample.[9b] For
its conjugation with cyclic RGD peptides (RGD) and glucos-
amine molecules (GA) as targeting agents, we synthesized a
new ICG derivative[15] bearing an amino functional group,

which readily reacts with carboxyl
groups on the polymer side chains of
random copolymers.

All copolymers 1–4 were dissolved
in aqueous solution and formed nano-
meter-sized self-assemblies (Table 1).
The molecular weights of copolymers
1–4 were about three times as large as
that of copolymer A, whereas the
diameters of the nanoparticles formed
by copolymers 1–4 were slightly larger
than that of A as observed by trans-
mission electron microscopy (TEM)
and dynamic light scattering (DLS).[16]

This slight difference in the diameters
might be caused by the high-density
cohesion of the hydrophobic cores in
the polymeric self-assemblies. Because
the critical aggregation concentrations
(cac) estimated by static light scattering
(SLS) were 7–40 times lower than that
of copolymer A, self-assemblies of
copolymers 1–4 were extremely stable

under diluted conditions in aqueous solution.[17] The stronger
fluorescence of assemblies of copolymers 3 and 4 relative to
that of 1 and 2 indicates that hydrophobic ICG dye moieties
tethered by long side chains, which could enhance their
mobility, prefer to disperse in the hydrophobic core of the
assemblies and thereby display inherent fluorescence.

To examine the characteristics of the brush-like copoly-
mers 1–4 as tumor-specific probes in vivo, we performed a
series of optical imaging experiments (Figure 4). We intra-
venously injected polymer conjugates 1–4 into nude mice
bearing a subcutaneous tumor xenograft[18] in their right hind
leg and monitored their distribution using an optical in vivo
imaging device.[19] The probes gradually accumulated in
tumor tissues, and their fluorescence intensities exceeded
the threshold level within six hours after injection. As shown
in Figure 4a, the tumor site could be visualized through the
EPR effect of copolymer 1, despite the strong fluorescence
from the liver.[20] The accumulation of copolymer 2 in the liver
relative to that of copolymer 1 was slightly suppressed by the
effect of folate-receptor targeting (Figure 4b). In contrast,
optical in vivo imaging of copolymers 3 and 4 afforded high-
contrast images of clearly visualized tumor sites (Figure 4 c,d).
We measured fluorescence intensities in two defined regions
of interest (ROIs): at a tumor site (ROI 1) and in the liver and
kidney (ROI 2, Figure 5a). The fluorescence intensities of
copolymers 3 and 4 in the tumor sites were four to six times as
strong as those of copolymers 1 and 2 (Figure 5b). The
contrast ratios (defined as the ratio of fluorescence intensities
of ROIs 1 and 2) show that copolymers 1 and 2 did not
accumulate efficiently in the tumor tissues (purple and green
lines in Figure 5c). However, copolymers 3 and 4 accumu-
lated in the tumor tissues and exhibited contrast ratios as high
as 1.5 after one day (red and blue lines in Figure 5c). In
ex vivo experiments, fluorescence is obviously stronger in the
tumor sites than in the kidneys, heart, and lungs (Figure 6),
although uptake of copolymers 3 and 4 was found in the

Figure 3. Amphiphilic copolymers A and 1–4. All segments inside bold brackets were polymer-
ized randomly; Mn(PMA)=5400 and Mn(PEG)= 2000.

Table 1: Diameters, critical aggregation concentrations, and fluores-
cence intensities of the self-assembled copolymers 1–4 and A.

Polymer DTEM [nm][a] DDLS [nm][b] cac [g L�1][c] Relative FL intensity[d]

1 170�37 194 8.1 � 10�5 1.00
2 164�37 216 6.7 � 10�5 0.83–0.88
3 163�49 204 1.4 � 10�5 3.68–3.76
4 151�46 212 4.0 � 10�5 3.56–3.67
A 158�32 182 5.5 � 10�4 –

[a] Distribution of the diameters of nanoparticles determined by TEM.
[b] Hydrodynamic diameters of nanoparticles in aqueous solution
measured by DLS. [c] Measured by SLS. [d] Fluorescence intensities of
2–4 relative to that of 1 in aqueous solution (10 mgmL�1).
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liver.[21] The elongation of the side chains of copolymer 2
improved the fluorescence intensity of the nanoparticles (by
1.4–1.8 times), whereas the tumor selectivity decreased in
in vivo imaging (see Figure S8 in the Supporting Informa-

tion). This indicates that the tumor-targeting folate
moieties prefer to hide inside the more hydrophobic
environment because of the poor hydrophilicity of
folic acid relative to that of the RGD peptides and
GA moieties.[22] Considering the cac values of
copolymers 1–4 shown in Table 1, it is likely that
the cyclic RGD peptides and GA moieties localize
on the surface of the hydrophilic PEG shells without
hampering the formation of stable self-assemblies.
Moreover, cyclic RGD peptides and GA moieties
work effectively as active targeting agents, that is,
the assemblies accumulate efficiently in the tumor
tissues. Although it is difficult to explain the differ-
ences in the recognition processes of the targeting
moieties in the tumor tissues,[23] these results clearly
show that self-assembled brush-like copolymers
with cyclic RGD peptides and GA moieties as
targeting agents are better high-contrast optical
imaging probes than the studied probes with and
without folate moieties.

In summary, we have developed assemblies
consisting of amphiphilic brush-like copolymers
prepared through ROMP and grafting of PEG
brushes. The assemblies with a partially cross-
linked interface are sufficiently stable in aqueous
media to accumulate in tumor tissues because of
their EPR effect. Conjugation with cyclic RGD
peptides and glucosamine molecules further
enhanced their selectivity of tumors because these
targeting agents, localized on the surface of the self-
assemblies, effectively come in contact with tumor-
specific ligands on tumor tissues. The present
ROMP-based amphiphilic copolymers, used as
imaging probes, accumulate rapidly and efficiently
in targeted tumor tissues. The results might offer
great potential, ideally not only for noninvasive and
effective optical imaging, but also for biomedical
applications, that is, for drug-releasing molecular
medicines.

Experimental Section
Materials: Detailed information about the materials, preparation of
copolymers 1–4, characterization of their self-assemblies, and optical
imaging experiments are provided in the Supporting Information.
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Figure 4. NIRF images (photons per second) of tumor-bearing mice after injection
(after 6, 9, and 24 h) of 100 mL of ICG-containing self-assembled copolymers a) 1,
b) 2, c) 3, and d) 4 (5.0 mg mL�1). Color code: low intensity black, high intensity
yellow, and tumor site red circle. Thresholds were appropriately established:
5.0 � 106 (copolymers 1 and 2) and 2.7 � 107 (copolymers 3 and 4).

Figure 5. a) The regions of interest (ROIs), labeled by red circles of the same size,
were studied in all imaging experiments displayed in Figure 4. ROI 1: tumor site
and ROI 2: liver and kidney. b) Fluorescence intensity in a tumor site and
c) fluorescence intensity ratios (ROI 1/ROI 2). Color code: Copolymer 1 green,
copolymer 2 purple, copolymer 3 red, and copolymer 4 blue. The data are given as
mean value�standard deviation (n = 3 per group).

Figure 6. ROI analysis of the ex vivo NIRF imaging experiments
(photonss�1 cm�2) of dissected major organs of the tumor-bearing
mice four days after intravenous injection of copolymer 3 (dose:
100 mL, 5 mg mL�1). The data are given as mean value� standard
deviation (n = 3). **: p<0.01.
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