

Formation of Dimer-Type Ketals in the **Reaction of 2,4,6-Trichlorophenol and** 2,4,6-Trichloro-*m*-cresol with Calcium Hypochlorite in Methanol: Conversion to Quinones and Other Compounds[†]

Victor L. Heasley,* James D. Anderson, Zachery S. Bowman, John C. Hanley, Jr., Geoffery A. Sigmund, David Van Horn, and Dale F. Shellhamer

Department of Chemistry, Point Loma Nazarene University, San Diego, California 92106-2899

vheasley@ptloma.edu

Received May 2, 2002

Abstract: 2,4,6-Trichlorophenol (2) and 2,4,6-trichloro-mcresol (5) react with calcium hypochlorite $(Ca(OCl)_2)$ in MeOH to give respectively dimer-type ketals 2-(2',4',6'trichlorophenoxy)-4,4-dimethoxy-6-chlorocyclohexadien-2,5one (6) and 2-(3'-methyl-2',4',6'-trichlorophenoxy)-4,4-dimethoxy-5-methyl-6-chlorocyclohexadien-2,5-one (7). Ketal 6, which was too unstable to be isolated, and 7 hydrolyzed in H₂O/HCl to 2-(2',4',6'-trichlorophenoxy)-6-chloro-1,4-benzoquinone (8) and 2-(3'-methyl-2',4',6'-trichlorophenoxy)-5methyl-6-chloro-1,4-benzoquinone (9), respectively. Ketal 6 and quinone 8 were also produced when 2 and $Ca(OCI)_2$ reacted in DMF, followed by addition of MeOH and H₂O, respectively. The mechanisms of these reactions are examined. Conversion of the ketals and quinones to other products is described.

Recently¹ we reported on the formation of ketone-ester 1, a minor product, in the reaction of 2,4,6-trichlorophenol (2) with calcium hypochlorite, Ca(OCl)₂, in methanol, MeOH. Compound 1 is an analogue of a ketone-ester derivative (3) of Hantzsch's acid (4), a compound for

which we described an improved synthesis starting with the reaction of 2 and hypochlorite ion, OCl⁻, in basic, aqueous solution. In the current note, we now consider the major products in the reaction of 2 and 2,4,6-trichloro*m*-cresol (5) with $Ca(OCl)_2$ in MeOH, examining their synthesis, the mechanisms involved in the synthesis, and

The major products in the reaction of **2** and **5** with Ca-(OCl)₂ are ketals 6 and 7, respectively (eq 1). Ketal 7 was

isolated and its structure confirmed by MS (gas chromatography-mass spectrometry; GC-MS), ¹H and ¹³C NMR, IR (GC-FT infrared spectroscopy; GC-FTIR), HRMS, and elemental analysis. Ketal 6 was unstable and could not be isolated; its structure was confirmed by its MS (M⁺; $M - OMe^+$; $M - OMe_1 - Cl^+$; $M - OC_6H_2Cl_3^+$) and IR (OCH₃; CO; C=C) obtained directly from the crude reaction solution.

Ketals 6 and 7, however, were easily hydrolyzed to their respective substituted quinones (8 and 9) in acid solution (eq 2); both quinones were isolated and charac-

terized: 8, MS, ¹H and ¹³C NMR, IR, HRMS, and elemental analysis; 9, MS, ¹H and ¹³C NMR, IR, HRMS, elemental analysis and X-ray crystallography. Compound 8 has been reported previously as a product in the oxidation of 2 with various metal oxides² and nickel peroxide.³ Our melting point (116.5-118 °C) differed somewhat from the reported melting points 134.5–136 °C² and 120–124 °C.³ We repeated the oxidation of 2 with PbO₂ as reported² and obtained **8** as established by its mass spectra (GC-MS); however, the product from 2 and PbO₂ always contained an unknown impurity that we were unable to remove even with column chromatography. Perhaps this impurity was responsible for the high melting point that was reported² for 8.

Reaction of **2** with $Ca(OCl)_2$ in dimethyformamide, DMF, followed by addition of H₂O led directly to quinone

[†] Presented in part at the 219th National Meeting of the American

Chemical Society in San Francisco, CA, in March 2000 (Z.S.B.). (1) Heasley, V. L.; Wadley, B. D.; Alexander, M. D.; Anderson, J. D.; Anderson, J. H.; Allen, R. T.; Hernandez, M. L.; Ismail, M. L.; Sigmund, G. A.; Shellhamer. D. F. J. Org. Chem. 2000, 65, 8111.

⁽²⁾ Hunter, W. H.; Morse, M. J. Am. Chem. Soc. 1926, 48, 1615. (3) Sugita, J. Nippon Kagaku Zasshi 1966, 87, 741.

JOC Note

SCHEME 1

8 (eq 3). An intermediate, tertiary chloride (see Scheme 1) was assumed to be involved in the reaction but was not detected. Direct reaction of **2** with $Ca(OCl)_2$ in H_2O gave only a trace of **8**.

Quinones 8 and 9 were reduced to phenols 10 and 11, respectively, with sodium borohydride; 10 and 11 were reoxidized with $CrO_3/acetic$ acid (HOAc) to 8 and 9 (eq 4). The structures of 10 and 11 were confirmed as

follows: **10**, MS, ¹H and ¹³C NMR, IR, and HRMS; **11**, MS, ¹H and ¹³C NMR, IR, and HRMS.

To establish a possible expanded, synthetic use for the quinones, we examined the hydrogenation (H_2/Pd) of **8** as a model. Hydrogenation of **8** gave dihydrophenol **12**, which was subsequently oxidized to quinone **13** (eq 5). The structure of **12** was confirmed by MS, ¹H and ¹³C NMR, IR, and HRMS; **13** was established by MS, ¹H and ¹³C NMR, IR, and HRMS.

Direct hydrogenation (H₂/Pd) of ketal 7 gave a substituted phenol (**14**) (eq 6). The structure of **14** was confirmed by MS, ¹H and ¹³C NMR, IR, and HRMS.

It seemed likely to us that the mechanisms leading to ketals 6/7 in MeOH and guinone 8 in DMF involved attack of a trichlorophenoxide ion, from an equilibrium reaction of a trichlorophenol with Ca(OCl)₂, on a tetrachlorocyclohexadienone intermediate that was subsequently converted to the ketals by solvolysis. Therefore, to test these mechanisms, we synthesized 2,4,6,6-tetrachloro-2,4-cyclohexadienone (15) and 2,4,4,6-tetrachloro-2,5-cyclohexadienone (16) according to literature procedures and examined their reactions with sodium 2,4,6trichlorophenoxide in DMF. Both 15 and 16 reacted with sodium 2,4,6-trichlorophenoxide in DMF, followed by H₂O, to give quinone 8. Product 8 was not dectected in the GC until the addition of H₂O. As shown in Scheme 1, we suggest an S_N 2 attack on 15 and an S_N 2' attack on 16 by the 2,4,6-trichlorophenoxide ion to give an intermediate tertiary chloride (undetected on the GC) that hydrolyzed in H₂O to give 8.5 Similarly, 15 and 16 and sodium 2,4,6-trichlorophenoxide in DMF, followed by MeOH yielded 6, presumably by a similar mechanism to that outlined in Scheme 1 for quinone formation. It is not clear why the phenoxide ion prefers to attack at the 2-position for both 15 and 16; perhaps the orbitals of the carbonyl group, which are known to accelerate an S_N2

⁽⁴⁾ Svec, P.; Zbirovsky, M. Sci. Pap. Inst. Chem. Technol. 1974, 21, 23.

⁽⁵⁾ Compound 15 has been shown to rearrange to 16^4 so it is possible that rearrangement occurred during the reaction. Both compounds 15 and 16 decompose extensively to 2,4,6-trichlorophenol (2) and other byproducts in the injection port of the GC and therefore it was impossible to determine the extent of reaction of 15 or 16 prior to addition of $\rm H_2O$. Our assumption is that the intermediary tertiary chloride also was not detected because of decomposition in the injection port.

reaction, also increase the rate of an $S_N 2'$ reaction.⁶ The greater preponderance of positive charge at the 4-position, with subsequent attack of H_2O at this position, is probably a result of instability of the charge in the 2-position, adjacent to the carbonyl group.

Experimental Section

Materials. 2,4,6-Trichlorophenol (2), calcium hypochlorite, Ca(OCl)₂, Pd(30%)/charcoal, and MeOH (anhydrous) were obtained commercially. Sodium 2,4,6-trichlorophenoxide was prepared by mixing the appropriate amounts of sodium methoxide and 2,4,6-trichlorophenol in MeOH, followed by removal of the MeOH under vacuum leaving the dry solid. Sodium 2,4,6-trichlorophenoxide was identified by comparison of its IR spectrum with the literature spectrum. 2,4,6-Trichloro-*m*-cresol (5) was prepared by passing Cl₂ into a solution of *m*-cresol in CCl₄ until GC and GC-MS analyses showed that the product was primarily 5. The solvent was then removed under vacuum and 5 was crystallized by adding ice-cold petroleum ether. Compound 5 was identified by its mp, 44–46 °C; (lit.⁷ mp 46 °C).

Instrumentation. Mass spectral data are expressed as m/z and as relative intensity (%). GC and GC-FTIR analyses were performed under the following conditions: 25 m column of internal diameter 0.20 mm with a methyl silicone stationary phase of 0.33 mm film thickness and programmed from 120 to 220 °C and 10 °C/min.

Reaction of 2 with Ca(OCl)₂ in DMF. To 137 mg (0.69 mmol) of **2** in 5 mL of DMF with stirring was added 100 mg of Ca(OCl)₂ (0.70 mmol). After 20 min, 10 mL of H₂O and 5 mL of CH₂Cl₂ were added. The CH₂Cl₂ solution was separated and dried over MgSO₄. Yield of **8** by GC, 40%.

Reaction of 2,4,6,6-Tetrachloro-2,4-cyclohexadienone (15) and 2,4,4,6-Tetrachloro-2,5-cyclohexadienone (16) with Sodium 2,4,6-Trichlorophenoxide in DMF. To a stirred solution of 80 mg (0.34 mmol) of 15 or 16 in 5 mL of DMF was added 76 mg (0.30 mmol) of sodium 2,4,6-trichlorophenoxide. After 20 min, 10 mL of H₂O and 5 mL of CH₂Cl₂ were added and the organic layer was isolated and dried over MgSO₄. The formation of quinone 8 from either 15 or 16 was confirmed by its mass spectrum (GC-MS).

Reaction of 2,4,6,6-Tetrachloro-2,4-cyclohexadienone (15) and 2,4,4,6-Tetrachloro-2,5-cyclohexadienone (16) with **Sodium 2,4,6-Trichlorophenoxide in MeOH.** The reaction conditions were identical with those described in DMF. The formation of ketal **6** from either **15** or **16** was confirmed by its mass spectrum (GC-MS).

2-(2',4',6'-Trichlorophenoxy)-4,4-dimethoxy-6-chlorocyclohexadien-2,5-one (6). Ketal **6** is an intermediate in the synthesis of quinone **8**. Ketal **6** could not be isolated by crystallization and it decomposed and hydrolyzed to **8** when subjected to silica gel. The presence and structure of **6** were confirmed by GC (ret. time, 28 min), GC-MS, and GC-FTIR. MS m/z (EI) 384, 382 (M⁺); 355, 353, 351 (M – OMe); 320, 318, 316 (M – OMe, -Cl, 100); 189, 187 (M – OC₆H₂Cl₃). IR (cm⁻¹): CH, 3007; CH₃, 2950; OCH₃, 2836; C=O, 1713; C=C, 1661 and 1620.

2-(3'-Methyl-2',4',6'-trichlorophenoxy)-4,4-dimethoxy-5methyl-6-chlorocyclohexadien-2,5-one (7). 2,4,6-Trichloro*m*-cresol (**15**, 0.64 g, 1.55 mmol) was dissolved in 20 mL of MeOH. To this stirred solution was added 0.32 g (2.24 mmol) of Ca(OCl₂). After 20 min, ketal **7** was isolated by filtration. Crude **7** was dissolved in CH₂Cl₂ and washed with H₂O to remove inorganic material. The CH₂Cl₂ solution was dried over MgSO₄ and the solvent was removed under vacuum. The resulting solid (**7**) was washed with pentane to remove any unreacted starting phenol. Recrystallization for MeOH gave 0.20 g of **7**. Yield: 32%. Mp: 165–168 °C. ¹H NMR (300 MHz): δ 2.09 (s, 3H), 2.49 (s, 3H), 3.15 (s, 6H), 5.3 (s, 1H), 7.47 (s, 1H). ¹³C NMR (75.4 MHz): 14.7, 17.9, 51.3, 98.5, 116.3, 125.8, 128.8, 129.9, 131.8, 132.7, 135.6, 144.2, 148.7, 152.6, 172.0. MS m/z (EI): 414, 412, 410 (M⁺); 381, 379, 377, 375 (M – Cl); 203, 201 (M – OC₆HCH₃Cl₃, 100). HRMS (CI): MH⁺, calcd for C₁₆H₁₅Cl₄O₄ 410.9724, found 410.9689. IR (cm⁻¹): OCH₃, 2842; C=O, 1703; C=C, 1631. Anal. Calcd for C₁₆H₁₄Cl₄O₄: C, 46.64; H, 3.42; Cl, 34.41. Found: C, 46.50; H, 3.40; Cl, 34.50. GC retention time: 46 min.

2-(2',4',6'-Trichlorophenoxy)-6-chloro-1,4-benzoquinone (8). 2,4,6-Trichlorophenol (2, 0.75 g, 3.80 mmol) was dissolved in 25 mL of MeOH. To this stirred solution was added 0.40 g (2.80 mmol) of Ca(OCl)₂. The solution was stirred for 15 min. Ketal 6, which is present at this point, was converted in situ to 8 by the dropwise addition of 5 drops of concentrated HCl in 35 drops of H₂O. After being stirred for 30 min, the solution was filtered and shaken with 25 mL of CH₂Cl₂ and 50 mL of H₂O. The CH₂Cl₂ layer was separated, dried over MgSO₄, and removed under vacuum. The gummy residue was heated with 6 mL of boiling hexane. The hot solution was decanted from insoluble material and the solvent was removed under vacuum to leave another gummy solid. As ice-cold MeOH (5-10 mL) was stirred into the gummy material in an ice bath, 0.41 g of bright-yellow quinone 8 precipitated. Yield of crude 8: 64%. After recrystallization from CHCl₃/hexane (80:20), the yield was reduced to 48%. Mp: 116.5-118 °C. ¹H NMR (300 MHz): δ 5.63 (d, 1H, J = 0.4 Hz), 6.990 (d, 1H, J = 0.40 Hz), 7.46 (s, 2H). ¹³C NMR (75.4 MHz): 111.2, 129.2, 129.5, 133.3, 133.9, 142.2, 143.7, 154.0, 155.0, 173.2, 184.0. MS m/z (EI): 342, 340, 338, 336 (M⁺); 305, 303, 301 (M - Cl, 100); 277, 275, 273 (M - Cl, -CO). HRMS (EI): M^+ , calcd for $C_{12}H_4Cl_4O_3$ 335.8919, found 335.8915. IR (cm⁻¹): CO, 1703; C=C, 1646. Anal. Calcd for C₁₂H₄Cl₄O₃: C, 42.65; H, 1.19; Cl, 41.96. Found: C, 42.32; H, 1.48; Cl, 42.28. GC retention time: 21 min.

2-(3'-Methyl-2',4',6'-trichlorophenoxy)-5-methyl-6-chloro-**1,4-benzoquinone (9).** A 100-mg (0.24 mmol) sample of ketal 7 was added to 14 drops of H₂O and 2 drops of concentrated HCl. THF was then added dropwise with stirring until 7 dissolved. After 4 h, 10 mL of CH₂Cl₂ and 20 mL of H₂O were added. The solution was shaken vigorously and the CH₂Cl₂ layer was separated and dried over MgSO4. Removal of the CH2Cl2 layer gave 39.5 mg of crude 9. Yield: 45%. Recrystallization from MeOH gave a return of approximately one-half of the 9. Mp: 145.0-145.5 °C. ¹H NMR (300 MHz): δ 2.21 (s, 3H), 2.49 (s, 3H), 5.61 (s, 1H), 7.48 (s, 1H). 13C NMR (75.4 MHz): 13.9, 17.9, 110.7, 125.5, 128.9, 129.4, 133.5, 135.9, 138.9, 142.9, 143.5, 154.8, 173.2, 184.0. MS m/z (EI): 370, 368, 366, 364 (M⁺); 333, 331, 329 (M - Cl, 100); 298, 296, 294 (M - 2Cl). HRMS (EI): calcd for C₁₄H₈Cl₄O₃ 363.9228, found 363.9214. IR (cm⁻¹): CO, 1703; C=C, 1652. Anal. Calcd for C14H8Cl4O3: C, 45.94; H, 2.20; Cl, 38.74. Found: C, 45.49; H, 2.28; Cl, 39.17. The structure of 9 was also confirmed by X-ray crystallography, performed by Molecular Structure Corporation, Houston, TX. GC retention time: 34.7 min.

2-(2',4',6'-Trichlorophenoxy)-6-chloro-1,4-dihydroquinone (10). To a stirred solution of 20 mg (0.53 mmol) of NaBH₄ in 12 mL of 95% EtOH was added slowly 50 mg (0.15 mmol) of 8. After the solution was stirred for 10 min, 12 mL of CH₂Cl₂ and 25 mL of H₂O were added and the solution was shaken vigorously. The CH₂Cl₂ layer was separated, dried over MgSO₄, and passed through silica gel. The solvent was removed and the crude product was chromatographed with silica gel, using CCl₄/ CH₂Cl₂ mixtures. Dihydroquinone 10 (0.35 mg, 0.10 mmol) was obtained in the CH₂Cl₂ fraction. Yield: 70%. Mp: 162-164 °C. ¹H NMR (300 MHz): δ 5.95 (d, 1H, J = 2.8), 6.61 (d, 1H, J =2.8), 7.68 (s, 2H), 8.20 (s, 1H), 8.22 (s, 1H). (H₂O appeared in the acetone- d_6 solvent at ~3.1 ppm.) The peaks at 8.20 and 8.22 ppm were confirmed as hydroxy protons since they disappeared when D₂O was added to the solvent. ¹³C NMR (75.4 MHz): 101.5, 111.2, 122.4, 130.2, 130.9, 132.1, 136.9, 146.6, 146.9, 150.9. MS m/z (EI): 344, 342, 340, 338 (M⁺); 307, 305, 303 (M - Cl); 272, 270, 268 (M - 2Cl); 132, 130 (100). HRMS (EI): calcd for C₁₂H₆-Cl₄O₃ 337.9075, found 337.9071. IR (cm⁻¹): OH, 3485, 3429; C= C, 1614. GC retention time: 38 min. Additional confirmation for the structure of 10 was derived from its oxidation to 8 with CrO₃ in HOAc and H₂O.

⁽⁶⁾ Carey, F.; Sundbery, R. *Advanced Organic Chemistry*, 3rd ed.; Plenum Press: New York and London, 1990; p 264

⁽⁷⁾ Crowther, H. L.; McCombie, H. J. Chem. Soc. 1913, 103, 536.

2-(3'-Methyl-2',4',6''-trichlorophenoxy)-5-methyl-6-chloro-1,4-dihydroquinone (11). Dihydroquinone **11** was prepared by reduction of **9** with NaBH₄ as described with **10**. Yield: 89%. Mp: 177–179 °C. ¹H NMR (300 MHz): 2.19 (s, 3H), 2.49 (s, 3H), 5.97 (s, 1H), 7.69 (s, 1H), 7.90 (s, 1H), 8.07 (s, 1H). (H₂O appears in the acetone- d_6 solvent at ~3.0 ppm.) ¹³C NMR (75.4 MHz): 12.8, 18.0, 100.6, 118.1, 123.5, 127.6, 129.6, 131.5, 132.3, 136.2, 136.9, 143.7, 144.4, 148.4. MS m/z (EI): 372, 370, 368, 366 (M⁺, 100); 335, 333, 331 (M – Cl); 300, 298, 296 (M – 2Cl). HRMS (EI): calcd for C₁₄H₁₀Cl₄O₃ 365.9384, found 365.9393. IR (cm⁻¹): OH, 3509. GC retention time: 68 min. Additional confirmation for the structure of **11** was derived from its oxidation to **9** with CrO₃ in acetic acid and H₂O.

2-Phenoxy-1,4-dihydroquinone (12). 8 (80 mg, 0.24 mmol) or 10 (80 mg, 0.24 mmol) and 95 mg of 30% palladium on charcoal in 15 mL of MeOH were reduced with hydrogen in a Parr bottle. Compounds 8 and 10 required 4.5 and 3.5 h, respectively, for hydrogenation to 12. MeOH was removed under vacuum to leave a viscous liquid. CH2Cl2 was added to remove 12 from a polymeric contaminant. Removal of the CH₂Cl₂ under vacuum gave 45 mg of crude 12 from either 8 or 10. Yield: 94%. Compound 12 was purified by silica gel as described for 10. ¹H NMR (60 MHz): 6.48 (m, 7H), 8.03 (s, 1H), 8.81 (s, 1H), 9.01 (s, 1H). (H₂O appeared in the DMF- d_7 solvent at \sim 3.4 ppm.) The peaks at 8.81 and 9.01 ppm were confirmed as hydroxy protons since they disappeared when D₂O was added to the solvent. ¹³C NMR (75.4 MHz): 108.8, 117.8, 118.2, 123.2, 130.4, 142.8, 144.3, 151.6, 158.9. MS m/z (EI): 202 (M⁺, 100); 173 (M - HCO); 125 $(M - C_6H_5)$; 96 $(M - C_6H_5, -HCO)$; 77 (C_6H_5) . HRMS (EI): calcd for C₁₂H₁₀O₃ 202.0624, found 202.0630. IR (cm⁻¹): OH, 3657, 3602. GC retention time: 12 min.

2-Phenoxy-1,4-benzoquinone (13). Compound **13** was prepared by oxidation of **12** as described below. It was isolated as a viscous, yellow liquid by silica gel with hexane/ether. **13** eluted in the 5% ether fraction. ¹H NMR (300 MHz): δ 5.73 (d, 1H, J = 2.0 Hz), 6.70–6.85 (m, 2H), 7.07–7.16 (m, 2H), 7.26–7.35 (m, 1H), 7.41–7.51 (m, 2H). ¹³C NMR (75.4 MHz): 110.9, 120.9, 126.6, 134.5, 137.0, 152.2, 158.5, 181.5, 187.5. MS *m*/*z* (EI): 200 (M⁺, 100); 172 (M – CO); 144 (M – CO, –CO). HRMS (EI): calcd for C₁₂H₈O₂ 200.0473, found 200.0480. IR (cm⁻¹): CO, 1693, 1672. GC retention time: 10 min.

Oxidation of the Dihydroquinones to the Benzoquinones. The following procedure was used in the oxidations of **10**, **11**, and **12**. The procedure is outlined using the oxidation of **12** to **13**: 40.4 mg (0.21 mmol) of **12** were dissolved in 6 mL of 60% HOAc/H₂O and cooled below 5 °C in an ice bath. To this stirred solution was added 24 mg (0.24 mmol) of CrO₃ in 1 mL of HOAc and 2 mL of H₂O at such a rate that the temperature of the reaction solution did not exceed 10 °C throughout the addition. The benzoquinones began to separate immediately from the solution. After 20 min, 10 mL of H₂O and 5 mL of CH₂Cl₂ were added. The CH₂Cl₂ solution was washed with saturated NaH-CO₃, dried over MgSO₄, and evaporated under vacuum. The crude CH₂Cl₂ solution was passed through silica gel to remove polymeric impurities. The yields for **10** and **11** exceeded 90%; the yield for **13** was not determined but was observed to be high.

2-(3'-Methylphenoxy)-4-methoxy-5-methylphenol (14). Ketal 7 (0.25 g, 0.60 mmol) and 0.30 g of 30% palladium on charcoal were added to 20 mL of MeOH in a Parr hydrogenation bottle. Reduction with hydrogen required 4 h to reduce the chloro intermediates to 14. The catalyst was removed by filtration and the solvent was removed under vacuum. The residue was dissolved in a minimum of CH_2Cl_2 and passed through silica gel. Removal of the solvent under vacuum gave 14 (22 mg) as a viscous liquid. Yield: 15%. ¹H NMR (300 MHz): 2.19 (s, 3H), 2.32 (s, 3H), 3.68 (s, 3H), 6.46 (s, 1H), 6.80-6.91 (m, 4H), 7.17-7.22 (m, 1H), 7.26 (s, 1H). ¹³C NMR (75.4 MHz): 15.8, 21.4, 56.1, 103.5, 113.9, 117.5, 118.2, 123.6, 123.9, 129.6, 140.1, 141.2, 151.5, 157.5. MS m/z (EI): 244 (M⁺, 100); 229 (M - CH₃); 214 (M -2CH₃); 211 (M - CH₃OH). HRMS (CI): calcd for MH⁺, C₁₅H₁₈O₃ 245.1177, found 245.1178. IR (cm⁻¹): OH, 3600; OCH₃, 2867. GC retention time: 13 min.

Acknowledgment. We recognize, with pleasure, support from the following sources: NSF-RUI (CHE-9528446); NSF-RUI (CHE-9902718); NSF-RUI (CHE-9974456); NSF-RUI (CHE-0132224); Howard Hughes Medical Institute Award, 71196-552001 (Geoffery A. Sigmund); Research Associates of Point Loma Nazarene University; and the Mass Spectroscopy Facility, University of California, Riverside.

Supporting Information Available: NMR and mass spectra of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020311N