# Easy Access to (n+3)-Dimethylamino-1-ethenylbicyclo[n.1.0]alkanes and their Facile Conversion to Ring-annelated Cyclopentadienes ${ }^{1}$ 

Tobias Voigt, Harald Winsel, Armin de Meijere*<br>Institut für Organische Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany<br>Fax +49(551)399475; E-mail: Armin.deMeijere@chemie.uni-goettingen.de<br>Received 31 May 2002


#### Abstract

Aminocyclopropanation of 1-ethenylcycloalkenes 2a-d with $N, N$-dibenzyl- and $N, N$-dimethylformamide, respectively, by treatment with cyclohexylmagnesium bromide in the presence of methyltitanium triisopropoxide yielded the exo-( $n+3)-N, N$-dime-thylamino-1-ethenylbicyclo[n.1.0]alkanes 3a-d (58-72\%). Compounds $\mathbf{7 b -} \mathbf{d}$ could be transformed by thermal vinylcyclopropane to cyclopentene rearrangement to the corresponding exo-4-dimethylaminobicyclo[ $n .3 .0$ ]alk-1-enes $7 \mathbf{b b}-\mathbf{d}$ (84-90\%). Elimination of the dimethylamino group led to the cyclopentadienes 11b-d and 12bd (72-82\%). The 5-dimethylamino-1-ethenylbicyclo[2.1.0]pentane did not undergo the typical vinylcyclopropane rearrangement, but ring-opening at the bridgehead-bridgehead bond to form 1 -ethenyl-2-dimethylaminocyclopentene 8 .


Key words: cyclopentadiene derivatives, cyclopropane derivatives, organometallics, rearrangement, titanium chemistry

Ring-annelated cyclopentadienes, including chirally modified ones, play a significant role as ligands in transitionmetal complexes, ${ }^{2,3}$ several of which are valuable catalysts. ${ }^{2}$ A number of five-membered ring-annelation methodologies that make such compounds available, have previously been published. ${ }^{4}$ Utilizing our recently reported regioselective aminocyclopropanation of conjugated dienes, ${ }^{5}$ we have developed an alternative five-membered ring-annelation protocol that may complement and in certain cases be superior to previous ones starting from cycloalkanones.

A series of 1-ethenylcycloalkenes 2a-d was prepared from cycloalkanones 1a-d via the corresponding 1-ethenylcycloalkanols according to published procedures (Scheme 1). ${ }^{6-8}$ Titanium-mediated aminocyclopropanation of conjugated dienes has been found to occur at the more highly substituted double bond. ${ }^{5}$ Thus, treatment of the dienes $\mathbf{2 a} \mathbf{- d}$ with cyclohexylmagnesium bromide in the presence of methyltitanium triisopropoxide and $\mathrm{N}, \mathrm{N}$ -dibenzyl- or $N, N$-dimethylformamide, respectively, afforded the pure 1-ethenyl-exo- $(n+3)$-dialkylaminobicyclo[n.1.0]alkanes 3a-d. ${ }^{9,10}$ The outcome of the reactions of $\mathbf{2 b}-\mathbf{d}$ was rather sensitive to both the amounts of $\mathrm{N}, \mathrm{N}-$ dimethylformamide as well as cyclohexylmagnesium bromide. After individual optimization of both these parameters acceptable yields ( $58-72 \%$ ) of the desired products could be obtained. It is particularly remarkable
that 1-ethenylcyclobutene $\mathbf{2 a}$ is converted to exo-5-dibenzylaminobicyclo[2.1.0]pentane (3a) without any problems in $63 \%$ yield. This is the first example of a bicyclo[2.1.0]pentylamine.


Scheme 1

The most likely mechanism of this transformation is that the formamide adds by way of an ene-reaction to the cycloalkenyltitanacyclopropane 4 , which reacts as an allyltitanium species, to yield the cycloalkyl-annelated oxatitanacycloheptene $\mathbf{5}$. Subsequent ring opening gives the iminium titaniumoxide zwitterion 6 , which can cyclize to the dimethylaminoethenylcyclopropane 3 with liberation of diisopropyloxytitanium oxide (Scheme 2).




Scheme 2

The well established vinylcylopropane to cyclopentene rearrangement ${ }^{12}$ has previously also been applied to a number of 2-ethenylcyclopropylamines. ${ }^{13}$ This rearrangement could be accomplished for 3b by flash vacuum pyrolysis (FVP) at $500{ }^{\circ} \mathrm{C} / 10^{-5} \mathrm{Torr}$, to provide the product 7b in $89 \%$ yield. Surprisingly, when 3c and 3d were subjected to FVP under the same conditions, inseparable mixtures of the expected products $\mathbf{7 c}$ and $\mathbf{7 d}$ with 22 and $43 \%$, respectively, of unidentified isomeric by-products were obtained. ${ }^{14}$ At lower temperature ( $300^{\circ} \mathrm{C}$ ), incomplete conversion, and at higher temperature $\left(600^{\circ} \mathrm{C}\right)$, partial decomposition was observed. However, when 3c and 3d were heated in decalin in a sealed tube at $220-240{ }^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h},{ }^{15}$ the pure products $\mathbf{7 c}$ and $7 \mathbf{d}$ were isolated in 84 and $90 \%$ yield, respectively. The 1-ethenylbicyclo[2.1.0]pentane derivative 3a did not undergo the same type of rearrangement as its higher homologues $\mathbf{3 b}$-d, but simple ring opening of the three-membered ring at its internal bond with subsequent hydrogen shift to quantitatively form dibenzyl-(2-ethenylcyclopentenyl)amine (8) upon heating in toluene at $80^{\circ} \mathrm{C}$ for 2 h .

The conversion of the dimethylaminocyclopentenyl-7b-d to the cyclopentadienyl-annelated cycloalkanes $\mathbf{1 1 b} \mathbf{- d}$ / 12b-d can be achieved by either a Hofmann or a Cope elimination. Quaternization of $\mathbf{7 b}-\mathbf{d}$ with methyl iodide, conversion of the ammonium iodides to the hydroxides with silver oxide and subsequent thermolysis gave inseparable mixtures of two isomeric cyclopentadienes 11b-d/ 12b-d each in $64-76 \%$ yield. Oxidation of $\mathbf{7 b}-\mathbf{d}$ to the $N$ oxides 10b-d and subsequent thermolysis afforded 11bd and 12b-d in only $36-45 \%$ over two steps. The observed isomers $\mathbf{1 1}$ and $\mathbf{1 2}$ are known to interconvert into each other by a pericyclic $1,5-\mathrm{H}$ shift which is rapid under the reaction conditions, and the observed ratios apparently depend on the size of the annelated ring. ${ }^{16}$


Scheme 3 (a) MeI, $\mathrm{Et}_{2} \mathrm{O}$, r.t., 5 h; (b) $\mathrm{H}_{2} \mathrm{O}_{2}$, r.t., 2 d; (c) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, 10 Torr, $180{ }^{\circ} \mathrm{C}$, 30 min ; (d) $\mathrm{H}_{2} \mathrm{O}, 1$ Torr, $150^{\circ} \mathrm{C}$. Details see Table.

In conclusion, ring-annelated cyclopentadienes can easily be obtained from cycloalkanones via 1-ethenylcycloalkenes, their titanium-mediated aminocyclopropanation, followed by thermal rearrangement and elimination.

Table Yields of Quaternary Ammonium Iodides 9, $N$-Oxides 10 and Annelated Cyclopentadienes $\mathbf{1 1}$ and $\mathbf{1 2}$ (See Scheme 3)

| Yield (\%) |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Entry | $n$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1 / 1 2}^{\mathrm{a}}$ | $\left(\mathbf{1 1 / 1 2}{ }^{\mathrm{b}}\right)$ | Ratio |
| $\mathbf{b}$ | 3 | 95 | 95 | 80 | $(47)$ | $48: 52(49: 51)$ |
| c | 4 | 95 | 94 | 82 | $(40)$ | $93: 7 \quad(88: 12)$ |
| d | 5 | 89 | 87 | 72 | $(41)$ | $21: 79(24: 76)$ |

${ }^{\text {a }}$ From 9.
${ }^{\mathrm{b}}$ From 10.

## Acknowledgement

This work was supported by the Fonds der Chemischen Industrie. T. V. is indebted to the Studienstiftung des deutschen Volkes for a fellowship. The authors are grateful to Dr. Burkhard Knieriem for his careful proofreading of the final manuscript.

## References

(1) (a) Part 82 in the series 'Cyclopropyl Building Blocks for Organic Synthesis'. Part 81 see: Frank, D.; Kozhushkov, S. I.; Labahn, T.; de Meijere, A. Tetrahedron 2002, in press. (b) Part 80: von Seebach, M.; de Meijere, A.; Grigg, R. Eur. J. Org. Chem. 2002, in press
(2) For reviews on substituted cyclopentadienyl ligands and their complexes see: (a) Okuda, J. Top. Curr. Chem. 1992, 160, 97. (b) Janiak, C.; Schumann, H. Adv. Organomet. Chem. 1991, 33, 291. (c) Okuda, J.; Eberle, T. In Metallocenes; Togni, A.; Halterman, R. L., Eds.; Wiley: New York, 1998, 415.
(3) Winterfeldt, E. Chem. Rev. 1993, 93, 827.
(4) Halterman, R. L. Chem. Rev. 1992, 92, 965.
(5) Williams, C. M.; Chaplinski, V.; Schreiner, P. R.; de Meijere, A. Tetrahedron Lett. 1998, 39, 7695.
(6) 1-Ethenylcyclobutene (2a): (a) Markgraf, J. H.; Greeno, E. W.; Miller, D. M.; Zaks, W. J.; Lee, G. A. Tetrahedron Lett. 1983, 24, 241. (b) Thummel, R. P.; Nutakul, W. J. Org. Chem. 1977, 42, 300.
(7) 1-Ethenylcycloalkenes $\mathbf{2 b}-\mathbf{d}$ and NMR spectroscopic data: (a) Mason, T. J.; Harrison, M. J.; Hall, J. A.; Sargent, G. D. J. Am. Chem. Soc. 1973, 95, 1849. (b) Rodriguez, J.; Brun, P.; Waegell, B. J. Organomet. Chem. 1989, 359, 343. (c) Biela, R.; Bilas, W.; Ihsan, U.; Pritzkow, W.; SchmidtRenner, W. J. Prakt. Chem. 1983, 325, 893. (d) Thummel, R. P.; Rickburn, B. J. Org. Chem. 1971, 36, 1365. (e) Meier, H.; Schmitt, M. Tetrahedron Lett. 1989, 30, 5873. (f) Maciagiewicz, I.; Dybowski, P.; Skowronñska, A. Tetrahedron Lett. 1999, 40, 3791. (g) Salomon, R. G.; Sinka, A.; Salomon, M. F. J. Am. Chem. Soc. 1987, 100, 520.
(8) Alternatively, 1-ethenylcycloalkenes 2a-d may be prepared from the corresponding cycloalkanones via the enol triflates by Stille cross coupling with tri-n-butylvinylstannane. Cf. ref. ${ }^{6}$
(9) General Procedure (GP) for the Preparation of 1-ethenyl-exo-(n+3)-dialkylaminobicyclo[n.1.0]alkanes 3: To a well-stirred solution of the corresponding 1ethenylcycloalkene 2a-d ( 10 mmol ), $\mathrm{MeTi}(i-\mathrm{PrO})_{3}(12$ mmol) and $N, N$-dialkylformamide ( $10-20 \mathrm{mmol}$ ) in 30 mL of THF was added cyclohexylmagnesium bromide (13.3-24 $\mathrm{mL}, 20-36 \mathrm{mmol}$ ) as a 1.50 M solution in diethyl ether) over a period of 2 h , and the mixture was stirred at ambient
temperature overnight. The reaction was quenched by carefully adding 5 mL of water, the mixture was exposed to air until it had turned light yellow or colorless and then filtered. The solids on the filter were washed with diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined filtrates were concentrated in vacuo, and the light yellow residue was subjected to column chromatography (column $2 \times 25 \mathrm{~cm}, 40 \mathrm{~g}$ of silica gel) eluting with pentane/diethyl ether/triethylamine 90:9.5:0.5.
exo-5-Dibenzylaminobicyclo[2.1.0]pentane (3a): According to GP, 962 mg ( 12 mmol ) of 1-ethenylcyclobutene (2a) with $N, N$-dibenzylformamide ( $5.63 \mathrm{~g}, 25 \mathrm{mmol}$ ), methyltitanium triisopropoxide ( $2.88 \mathrm{~g}, 12 \mathrm{mmol}$ ) and 15.8 $\mathrm{mL}(30 \mathrm{mmol})$ of cyclohexylmagnesium bromide solution (1.90 M in diethyl ether) gave $2.20 \mathrm{~g}(63 \%)$ of $\mathbf{3 a}$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.42$ (ddd, ${ }^{2} J=11.0,{ }^{3} J=6.5,{ }^{3} J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\text {endo }}$ ), 1.55 $\left(\mathrm{ddd},{ }^{2} J=11.0,{ }^{3} J=6.5,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\text {endo }}\right), 1.79$ (d, ${ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ ), 2.01 (dddd, ${ }^{2} J=11.0,{ }^{3} J=11.0$, $\left.{ }^{3} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\text {exo }}\right), 2.31\left(\mathrm{ddd},{ }^{2} J=11.0\right.$, $\left.{ }^{3} J=11.0,{ }^{3} J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\text {exo }}\right), 2.36(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$, $3.61\left(\mathrm{AB}, \mathrm{d},{ }^{2} J=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.80(\mathrm{AB}, \mathrm{d}$, $\left.{ }^{2} J=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.09\left(\mathrm{dd},{ }^{2} J=1.9\right.$,
$\left.{ }^{3} J_{\text {trans }}=17.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 5.17\left(\mathrm{dd},{ }^{2} J=1.9\right.$,
$\left.{ }^{3} J_{\text {cis }}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 6.20\left(\mathrm{dd},{ }^{3} J_{\text {trans }}=17.5\right.$,
$\left.{ }^{3} J_{\text {cis }}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.25-7.47(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additionally DEPT): $\delta=19.2$ (-, C-3), 22.9 (-, C-2), 31.3 (+, C-4), $36.0\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}-1\right), 56.9$ $\left(-, 2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 57.7$ (+, C-5), 112.3 (,$- \mathrm{C}-7$ ), 126.9 (+, $2 \mathrm{C}, \mathrm{Ph}-\mathrm{C}), 128.1$ (+, $4 \mathrm{C}, \mathrm{Ph}-\mathrm{C}), 129.3$ (+, $4 \mathrm{C}, \mathrm{Ph}-\mathrm{C}), 137.4$ (+, C-6), $137.9\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{Ph}-\mathrm{C}\right) . \mathrm{MS}(70 \mathrm{eV}): m / z(\%)=$ 289(16) $\left[\mathrm{M}^{+}\right]$, 288(12) $\left[\mathrm{M}^{+}-\mathrm{H}\right]$, 262(3) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3}\right]$, 224(11), 198(29) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 170(5)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{2} \mathrm{H}_{4}\right]$, 144(20) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{C}_{4} \mathrm{H}_{6}\right]$, 106(8) $\left[\mathrm{HNC}_{7} \mathrm{H}_{7}{ }^{+}\right], 91(100)$ $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}: 289.1830$ (correct HRMS). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}$ (289.4): C, 87.15; H, 8.01; N, 4.84. Found; C, 86.88; H, 7.90; N, 4.97.
(10) All new compounds were fully characterized by spectroscopic techniques ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, MS), and bulk purities - except for the quaternary ammonium salts 9 and N oxides $\mathbf{1 0}$ - were established by elemental analyses.
Spectroscopic data of representative examples: exo-N,N-
Dimethyl-(1-ethenylbicyclo[4.1.0]hept-7-yl)amine (3c): ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.03$ (ddd, ${ }^{3} J=1.8$, $\left.{ }^{3} J=8.0 \mathrm{~Hz},{ }^{3} J_{\text {trans }}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 1.08-1.24(\mathrm{~m}, 3 \mathrm{H}$, $\left.3-\mathrm{H}^{*}, 4-\mathrm{H}\right), 1.27-1.37(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 1.45$ (d,
$\left.{ }^{3} J_{\text {trans }}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 1.52-1.63(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 5-\mathrm{H})$,
$1.87-1.98(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 5-\mathrm{H}), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.99(\mathrm{dd}$, $\left.{ }^{2} J=1.6,{ }^{3} J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.03\left(\mathrm{dd},{ }^{2} J=1.6\right.$, $\left.{ }^{3} J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.82\left(\mathrm{dd},{ }^{3} J=10.8,{ }^{3} J=17.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=21.1$ $\left(-, \mathrm{C}-3^{*}\right), 22.7\left(-, \mathrm{C}-4^{*}\right), 22.1\left(-, \mathrm{C}-5^{* *}\right), 25.8\left(-, \mathrm{C}-2^{* *}\right)$, 27.7 (+, C-6), $28.5\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-1\right), 45.0\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right), 58.4(+$, C-7), 110.4 (,$- \mathrm{C}-2^{\prime}$ ), 143.7 (+, C-1'). MS ( $70 \mathrm{eV}, \mathrm{EI}$ ): $m / z(\%)=165(100)\left[\mathrm{M}^{+}\right], 150(42), 136$ (62), 122 (30), 108 (23), 84 (57), 70 (38), 58 (30), 42 (48). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}(165.3)$ : C, 79.94; H, 11.59; N, 8.47. Found: C, 79.66; H, 11.35; N, 8.53.
exo- $\mathrm{N}, \mathrm{N}$-Dimethyl-(1-ethenylbicyclo[5.1.0]oct-8-
yl)amine (3d): ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.89-1.14$ (m, $\left.4 \mathrm{H}, 2-\mathrm{H}^{*}, 6-\mathrm{H}, 7-\mathrm{H}\right), 1.20-1.31\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}^{*}\right), 1.40(\mathrm{~d}$, $\left.{ }^{3} J_{\text {trans }}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right), 1.48-1.56\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}^{*}\right), 1.58-$ $1.72\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}^{*}\right), 1.74-1.83\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}^{*}\right), 2.19(\mathrm{~s}, 6 \mathrm{H}$,
$\mathrm{CH}_{3}$ ), 2.14-2.27 (m, $\left.1 \mathrm{H}, 6-\mathrm{H}\right), 2.30-2.37$ (m, $\left.1 \mathrm{H}, 5-\mathrm{H}^{*}\right)$, $5.01\left(\mathrm{dd},{ }^{2} J=1.6 \mathrm{~Hz},{ }^{3} J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.02(\mathrm{dd}$, $\left.{ }^{2} J=1.6 \mathrm{~Hz},{ }^{3} J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.67(\mathrm{dd}$,
$\left.{ }^{3} J=11.1 \mathrm{~Hz},{ }^{3} J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=27.0\left(-, \mathrm{C}-2^{*}\right), 29.4(-$, C-3*), 30.8 (-, C-6), $32.4\left(-, \mathrm{C}-4^{*}\right), 32.5\left(-, \mathrm{C}-5^{*}\right), 33.8(+$, $\mathrm{C}-7), 34.7\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-1\right), 45.2\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right), 64.8(+, \mathrm{C}-8)$, 111.1 (,$- \mathrm{C}-2^{\prime}$ ), 142.4 (+, C-1'). MS (70 eV, EI): $m / z(\%)=$ 179 (30) $\left[\mathrm{M}^{+}\right], 164(21), 150(18), 136(100), 122(39)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right], 108$ (80) [ $\left.\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right], 84$ (62), 71(45), 42 (100), 41 (49). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}$ (179.3): C, 80.38; H, 11.81; N, 7.81. Found: C,80.18; H, 11.74; N, 7.74. (2,4,5,6,7,7a-Hexahydro- $\mathbf{H}$-inden-1-yl)dimethylamine (7c): ${ }^{1} \mathrm{H}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.93-1.38(\mathrm{~m}, 3 \mathrm{H}$, $\left.4-\mathrm{H}^{*}, 5-\mathrm{H}^{*}\right), 1.69-1.80\left(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}^{*}\right), 1.80-1.98(\mathrm{~m}, 1 \mathrm{H}$, 7-H*), 1.98-2.17 (m, 1 H, 7-H*), 2.17-2.45 (m, $4 \mathrm{H}, 1-\mathrm{H}$, 2-H, 4-H), 2.23 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.55-2.64 (m, $\left.1 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}\right)$, $5.15\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 3-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=26.1(-$, C-6), $26.9(-$, C-5), $29.2(-, \mathrm{C}-4), 35.4$ ( -C-2), 35.5 (-, C-7), 43.3 (+, $2 \mathrm{C}, \mathrm{CH}_{3}$ ), 48.5 (+, C-7a), 73.2 (+, C-1), 118.3 (+, C-3), $144.8\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-3 \mathrm{a}\right) . \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$ : $m / z(\%)=165(100)\left[\mathrm{M}^{+}\right], 150(42), 136(51), 122(23)$, 108 (15), 91 (24), 84 (41), 70 (33), 58 (19), 42 (26). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}$ (165.3): C, 79.94; H, 11.59; N, 8.47. Found: C, 79.85 ; H, 11.57; N, 8.35.
4,5,6,7-Tetrahydro-1H-indene(11c) and 4,5,6,7-Tetrahydro- $\mathbf{2 H}$-indene (12c): 11c: ${ }^{1} \mathrm{H}$ NMR see ref. ${ }^{11}$. ${ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=23.1\left(-, \mathrm{C}-4^{*}\right)$, $23.3\left(-, \mathrm{C}-5^{*}\right), 24.4\left(-, \mathrm{C}-6^{*}\right), 25.3\left(-, \mathrm{C}-7^{*}\right), 34.1(-, \mathrm{C}-1)$, 129.8 (+, C-2), 134.5 (+, C-3), 137.9 (C quat , C-3a*), 139.2 $\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-7 \mathrm{a} *\right) .12 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.58-$ $1.80[\mathrm{~m}, 4 \mathrm{H}, 5(6)-\mathrm{H}], 2.47-2.58[\mathrm{~m}, 4 \mathrm{H}, 4(7)-\mathrm{H}], 2.72-$ $2.80(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 5.97\left[\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, 1(3)-\mathrm{H}\right] .{ }^{13} \mathrm{C}$ NMR ( $62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=24.4[-, \mathrm{C}-4(7)], 25.7[-$, C-5(6)], 39.7 (-, C-2), 125.1 [ + , C-1(3)]. The signals of the quaternary carbon atoms $\mathrm{C}-3 \mathrm{a}$ and $\mathrm{C}-7$ a were not visible because of the low concentration of 12c.
(11) Dané, L. M.; de Haan, J. W.; Klosterziel, H. Tetrahedron Lett. 1970, 9, 2755.
(12) (a) Hudlicky, T.; Becker, D. A.; Fan, R. L.; Kozhushkov, S. I. Methods in Organic Chemistry (Houben-Weyl), Vol. E 17c; de Meijere, A., Ed.; Thieme: Stuttgart, 1997, 2538. (b) Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis, Vol. 5; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991, 899.
(13) (a) Richey, H. G.; Shull, D. W. Tetrahedron Lett. 1976, 575. (b) Williams, C. M.; de Meijere, A. J. Chem. Soc., Perkin Trans. 1 1998, 3699.
(14) The structure of the by-products could not unambiguously be determined.
(15) (a) The necessity of relatively high temperatures for the rearrangement of $\mathbf{3 b}-\mathbf{d}$ is consistent with the fact that the dimethylamino and the ethenyl group in each of them are cis-oriented with respect to each other. It is known that the direct ring enlargement of a cis-2-donor-substituted ethenylcyclopropane to a cyclopentene is much slower than that of the trans isomer, and the cis to trans isomerization of $\mathbf{3 b}-\mathbf{d}$, which would correspond to an exo to endo isomerization, is retarded due to the bulk of the dimethylamino group. (b) Cf. ref. ${ }^{13}$ and ref. ${ }^{14}$ and see also: McGaffin, G.; Grimm, B.; Heinecke, U.; Michaelsen, H.; de Meijere, A.; Walsh, R. Eur. J. Org. Chem. 2001, 3559.
(16) Pauli, A.; Meier, H. Chem. Ber. 1987, 120, 1617.

