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Abstract: In the presence of a catalyst system consisting of
Pd(OAc)2, PCy3, and Zn(OAc)2, the reaction of alkynyl aryl
ethers with bicycloalkenes, a,ß-unsaturated esters, or hetero-
arenes results in the site-selective cleavage of two C¢H bonds
followed by the formation of C¢C bonds. In all cases, the
alkynyloxy group acts as a directing group for the activation of
an ortho C¢H bond and as a hydrogen acceptor, thus rendering
the use of additives such as an oxidant or base unnecessary.

Cross-dehydrogenative bond-forming reactions are highly
attractive methods in the toolbox of synthetic organic
chemistry, especially considering their potential in terms of
atom and step economy. Representative examples are the
cross-dehydrogenative formation of carbon–carbon, carbon–
boron, and carbon-silicon bonds.[1–3] This concept also enables
the custom-tailored construction of a variety of highly
functionalized compounds, and the site-selective cleavage of
two C¢H bonds and the subsequent removal of the eliminated
hydrogen atoms are key factors in this context. To trap the
emitted hydrogen, several additives, such as olefins or
oxidants, have been successfully used, as the release of
dihydrogen only meets with difficulty. However, the use of
such additives may be problematic from a practical perspec-
tive, as they potentially interfere with the dehydrogenative
reaction.

Directing groups have been successfully employed for
effective site- and regioselective C¢H functionalization.[4] In
one of our previous studies, we demonstrated that alkynyloxy
groups (¢OC�CR) are able to act as directing groups for the
activation of adjacent C¢H bonds, and subsequently engage
in addition reactions.[5] For example, the reaction with alkynes
furnishes chromene derivatives by sequential insertions into
ortho C¢H bonds.[5a] On the basis of these results, we expected
that the alkynyloxy group might also be able to act as
a hydrogen acceptor and enable the cleavage of two C¢H
bonds, thus facilitating a dehydrogenative carbon–carbon
bond-forming reaction. Moreover, this synthetic approach
would avoid the use of additives, such as oxidants (e.g.,

benzoquinone) or bases, and the vinyloxy groups resulting
from dihydrogenation of the alkynyloxy groups are highly
useful functional groups.[6] Herein, we report a series of
dehydrogenative reactions between alkynyl aryl ethers and
bicycloalkenes, a,ß-unsaturated esters, or heteroarenes. This
approach represents a convenient strategy for additive-free
catalytic cross-dehydrogenative C¢C bond-forming reactions.

Recently, we reported that the reaction between triiso-
propylsilyl (TIPS)-substituted para-methoxyphenyl ether 1a
and norbornene (2a) in the presence of [Pd(PCy3)2] (5 mol%)
and Zn (5 mol%) proceeds by ortho C¢H insertion/annula-
tion to afford 4a.[5f] However, when the reaction between 1a
and 2a was carried out in the presence of Pd(OAc)2

(5 mol%), PCy3 (10 mol%), and Zn(OAc)2 (20 mol%) at
100 88C for 24 h, benzocyclobutene 3a with a Z-configured
silylethenoxy moiety was obtained in 75% yield, most likely
by the cleavage of the ortho and meta C¢H bonds (Table 1,
entry 1).[7–10] When the amount of 2a (1.5 equiv) was reduced,
3a was generated in a similar yield, albeit more slowly with
concomitant formation of the E isomer 3’’a (entry 2). We also
examined other phosphine ligands, such as PBuAd2 and
XPhos, which also proved to be effective in this reaction. The
use of PBuAd2 afforded 3a and 3’’a (91:9) in a combined yield
of 80%, whereas the use of XPhos provided 3a in 86 % yield
(entries 3 and 4). The absence of Zn(OAc)2 resulted in the
formation of 3a in 49% yield, whereas the increased
formation of 4a (27 %) suggested that the co-catalyst
Zn(OAc)2 promotes the generation of 3. It should be noted
that no traces of the corresponding dihydrogenated adduct 5
or ethynyloxy-substituted benzocyclobutene 6 were observed.
This observation is consistent with the formation of a four-
membered cycle and subsequent dihydrogenation.

Next, the scope of the twofold C¢H cleavage reaction
with 2a using a suitable ligand, namely PCy3, PBuAd2, or
XPhos, was examined, and the results are also summarized in
Table 1. In the presence of PBuAd2 at a lower concentration
of 0.1m, tert-butyldiphenylsilyl (TBDPS)-substituted ethynyl
ether 1b furnished cyclization product 3b in 82 % yield
(entry 5).[11] Using XPhos, the substrate with a less bulky tert-
butyldimethylsilyl (TBDMS) group afforded 3c in lower yield
(entry 6). Aryl tert-butylalkynyl ether 1d could also be
converted into 3d in 51% yield in the presence of the
XPhos ligand (entry 7). Substrates with a cyclohexyl, methyl,
or phenyl group instead of the tert-butyl group attached to the
ethynyl moiety were not suitable for this reaction.[12] These
results suggest that a bulky substituent on the ethynyl carbon
atom is necessary for effective double C¢H cleavage. The
presence of para-, meta-, and ortho-substituted aryl groups in
the TIPS ethynyloxy moiety did not hamper the reaction
(entries 8–12). Silylethynyl 4-biphenyl ether 1 i afforded 3 i in
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78% yield (entry 12); the molecular structure of 3 i was
confirmed by single-crystal X-ray diffraction.[13] The 2- and 1-
naphthyl-substituted TIPS-protected ethynyl ethers 1j and 1k
provided the corresponding cyclic products 3 j and 3k
(entries 13 and 14). Substrates 1h and 1k, with an unsub-
stituted 4-position, also generated the side products 7 h and
7k.

Subsequently, a variety of bicyclic alkenes were
subjected to the double C¢H functionalization reaction
with 1j (Table 2). In these cases, only the PCy3 ligand
was effective, whereas XPhos afforded the desired
products in reduced yields or not at all. The reaction
with norbornadiene (2b) provided monoannulated 3 l
in 56% yield, whereas the cyclopentadiene dimer 2c
afforded 3m in 78 % yield. The presence of functional
groups, such as esters or acid anhydrides, or benzannu-
lated systems did not interfere with the reaction, and
the desired products 3n–3p were obtained in good
yields.

Representative synthetic applications for com-
pounds such as 3j are shown in Scheme 1. For example,
acid hydrolysis of 3j with a catalytic amount of HCl
furnished 2-naphthol derivative 8 in 72% yield.[14]

When a stoichiometric amount of HCl was used,
sequential deprotection and cyclization of 8 with an
in situ generated aldehyde furnished 18H-dibenzo-
[a,j]xanthene 9.[15]

To elucidate the mechanism for the formation of 3,
deuterium-labeling experiments were carried out. As
evident from 1H NMR analysis, the reaction between
deuterated [D5]-1h and 2a in toluene in the presence of
Pd(OAc)2/PCy3/Zn(OAc)2 resulted in the formation of
[D5]-3h, demonstrating that the deuterium atoms
originally located at the ortho and meta positions
selectively shifted to the silylethynyl group [Eq. (1)].[16]

The reaction between [D1]-1 l, which is deuterated only
at the ortho position, provided [D2]-3q, with the
deuterium atoms equally distributed over both vinyl
carbon atoms [Eq. (2)]. A competition experiment
between [D5]-1h and 1a revealed that the three
deuterium atoms from the 2-, 3-, and 6-positions in
[D5]-1h migrated to the vinyl moieties and the 6-
position in both [D5]-3h and [D1]-3a. Furthermore, H/
D scrambling was observed at the ortho positions in the
two recovered substrates [Eq. (3)].[17] These results
suggest that cleavage of the ortho C¢H bond should be
reversible at an early stage and be followed by an
irreversible meta C¢H bond cleavage by a concerted
metalation/deprotonation (CMD) pathway to form the
aryl palladium complexes and acetic acid,[10, 18] deliver-
ing the hydrogen atoms to each alkynyl carbon atom
(for a proposed reaction mechanism, see the Support-
ing Information).

Having successfully established a dehydrogenative
reaction system, we applied it to cross-dehydrogenative
reactions involving other alkenes and heteroarenes.
The reaction between 1j and 1,4-epoxy-1,4-dihydro-
naphthalene (10)[19] using catalytic amounts of Pd-
(OAc)2, PCy3, and Zn(OAc)2 at 100 88C for 5 h afforded

Table 1: Pd-catalyzed dehydrogenative cleavage of two C¢H bonds.[a]

Entry Ligand 1 (R1, R2) Time
[h]

3 (R1, R2) Yield
[%][b]

1 PCy3 1a (OMe, TIPS) 24 3a (OMe, TIPS) 75
2[c] PCy3 1a 60 3a (69)[d]

3 PBuAd2 1a 24 3a (80)[e]

4 XPhos 1a 24 3a 86
5 PBuAd2 1b (OMe, TBDPS) 15 3b (OMe, TBDPS) 82
6 XPhos 1c (OMe, TBDMS) 13 3c (OMe, TBDMS) 40
7 XPhos 1d (Me, tBu) 46 3d (Me, tBu) 51

8 XPhos 1e (4-Me) 21 3e (4-Me) 82
9 PCy3 1 f, (3-Me) 11 3 f (5-Me) 71

10 XPhos 1g (2-Me) 11 3g (6-Me) 40
11 XPhos 1h (H) 8 3h (H) 47[f ]

12 XPhos 1I (4-Ph) 11 3 I (4-Ph) 78

13 PCy3 12 79

14 XPhos 17 70[g]

[a] Unless otherwise noted, a mixture of 1 (1 equiv), 2a (5 equiv), Pd(OAc)2

(5 mol%), ligand (10 mol%), Zn(OAc)2 (20 mol%), and toluene (1m for
entries 1–4 and 8–14, 0.1m for entries 5–7) was heated to 100 88C. [b] Yield of
isolated product. [c] 2a (1.5 equiv). [d] Combined NMR yield of 3a and 3’’a
(67:33). [e] Combined NMR yield of 3a and 3’’a (85:15). [f ] 7h was formed in
32% yield. [g] 7k was formed in 10% yield. PBuAd2 =n-butyldi-1-adamantyl-
phosphine, XPhos = 2-dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl.
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the desired product 11 in 39 % yield [Eq. (4)].[20] Conversely,
when the reaction was carried out at 140 88C for 11 h, seven-
membered dioxepin 12 was formed in 45 % yield.[21] Sub-
sequently, we examined the reaction with tert-butyl acrylate
(13) and successfully obtained ortho-alkenylated Z-alkenoxy
arene 14 in 66% yield [E/Z = 95:5;[22] Eq. (5)]. The bulky tert-
butyl group in 13 was an important factor for the success of
the alkenylation; n-butyl acrylate, acrylonitrile, or styrene
only afforded traces of the corresponding ortho-alkenylated
products under these conditions. Finally, we focused on the
development of dehydrogenative cross-coupling reactions
between two aromatic compounds to establish aryl–aryl
bond-forming reactions. Therefore, we examined the reaction
of 1 a and benzothiophene dioxide (15), which resulted in the

formation of ortho-arylated Z-alkenoxy arene 16 in 77%
yield, together with the C¢H anti addition product 17 in 22%
yield in the presence of Pd(OAc)2 and PCy3 [Eq. (6)]. In this
case, the absence of Zn(OAc)2 was beneficial for the
formation of 16. However, the mechanistic details of the
formation of both 16 and 17 still remain unclear at present.

In conclusion, we have described a series of dehydrogen-
ative C¢C bond-forming reactions involving alkynyloxy
groups. In the presence of Pd(OAc)2, a suitable phosphine
ligand, and Zn(OAc)2, the reaction between alkynyl aryl
ethers and bicycloalkenes resulted in the formation of vinyl-
oxy benzocyclobutenes. Deuterium-labeling experiments
demonstrated that the hydrogen atoms originally attached
to the ortho and meta positions of the alkynyl aryl ethers are
cleaved and transferred onto the vinyl carbon atoms. This
catalytic reaction system can be applied to a variety of
dehydrogenative reactions, for example, with 1,4-epoxy-1,4-
dihydronaphthalene, tert-butyl acrylate, and benzothiophene
dioxide, to form the corresponding products after C¢C bond
formation. The present reaction system, which induces a site-
selective C¢H bond cleavage, allows an additive-free dehy-
drogenative process, which is applicable to various alkenes
and heteroarenes and generates desirable vinyloxy groups.
Our current efforts are directed towards the further develop-
ment of such dehydrogenative bond-forming reactions and
towards a better understanding of the underlying reaction
mechanisms.
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Table 2: Variation of the bicycloalkene.[a]

[a] Unless otherwise noted, a mixture of 1 j (1 equiv), 2 (1.5 equiv),
Pd(OAc)2 (5 mol%), PCy3 (10 mol%), Zn(OAc)2 (20 mol%), and toluene
(1m) was heated to 100 88C. Yields of isolated products are given. [b] Z/E
ratio. [c] 140 88C. [d] Yield determined by NMR spectroscopy.

Scheme 1. Acid hydrolysis of 3 j with HCl.
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