Bioorganic & Medicinal Chemistry Letters 20 (2010) 4602-4606

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

T-type calcium channel blockers: spiro-piperidine azetidines and azetidinones—optimization, design and synthesis

Elizabeth M. Smith^{a,*}, Steve Sorota^{b,*}, Hyunjin M. Kim^a, Brian A. McKittrick^a, Terry L. Nechuta^a, Chad Bennett^a, Chad Knutson^a, Duane A. Burnett^a, Jane Kieselgof^a, Zheng Tan^a, Diane Rindgen^b, Terry Bridal^b, Xiaoping Zhou^b, Yu-Ping Jia^b, Zoe Dong^b, Debbie Mullins^b, Xiaoping Zhang^b, Tony Priestley^b, Craig C. Correll^b, Deen Tulshian^a, Michael Czarniecki^a, William J. Greenlee^a

^a Department of Medicinal Chemistry, Merck Research Laboratory, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA ^b CNS Biology, Merck Research Laboratory, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

ARTICLE INFO

Article history: Received 8 March 2010 Revised 1 June 2010 Accepted 2 June 2010 Available online 8 June 2010

Keywords: T-type calcium channel (Ca_v3.2) Spiro-azetidines Spiro-azetidinones Neuropathic pain

ABSTRACT

A series of spiro-azetidines and azetidinones has been evaluated as novel blockers of the T-type calcium channel ($Ca_V 3.2$) which is a new therapeutic target for the potential treatment of both inflammatory and neuropathic pain. Confirmation and optimization of the potency, selectivity and DMPK properties of leads will be described.

© 2010 Elsevier Ltd. All rights reserved.

A family of integral membrane proteins, collectively referred to as voltage-gated calcium channels, represent major pathways for calcium influx in diverse tissues throughout the body. Based on biophysical properties, pharmacology, and molecular sequences, the family of voltage-gated calcium channels is divided into the following subtypes: L- (Ca_V1.1–Ca_V1.4), P/Q- (Ca_V2.1), N- (Ca_V2.2), R- (Ca_V2.3), and T-type (Ca_V3.1–Ca_V3.3).¹ Control of calcium influx across the plasma membrane is a critical component for spatial and temporal regulation of intracellular calcium levels and also for determining transmembrane potential. Cellular functions regulated by intracellular calcium include muscle contraction, neurotransmitter release, gene expression, and chemotaxis.^{2.3}

T-type calcium channels serve two primary roles in excitable tissues; providing current for rhythmic pacemaking and generation of low level depolarizations from which neuronal burst firing can occur.³ Ca_v3.x channels are widely distributed in excitable tissue but in an isoform-dependent manner.^{4,5}

Among the therapeutic indications proposed for T-type calcium channels are: hypertension, heart failure, insomnia, metabolic syndrome, epilepsy, and neuropathic pain.^{5–7} T-type channels are present in DRG and in regions of the CNS involved in pain processing.^{4,5} Effects of small molecules or intrathecal administration of

* Corresponding authors. Tel.: +1 908 740 3499 (E.M.S.). E-mail address: elizabeth.m.smith@spcorp.com (E.M. Smith). antisense DNA directed against Ca_v3.2 support a role for T-type calcium channels in neuropathic pain models.⁸ Therefore, we sought to identify selective blockers of T-type channels for the treatment of neuropathic pain.

Recently, *spiro*-piperidine azetidinones **1** have been reported as potent TRPV1 antagonists.⁹ From an in-house screening effort, the *spiro*-piperidine azetidines **2–4**, were identified as blockers of Ca_V3.2. These hits, as mixtures of stereoisomers, exhibited good activity in IonWorks HT and manual patch clamp assays.¹⁰ Our initial goal was to separate the mixtures and determine if the T-type calcium channel blocker activity resided solely in one of the stereoisomers, and then evaluate the DMPK profiles of these hits.

The chemistry to synthesize compounds **2–4** is shown in Scheme 1. The enolate of ester **5** was treated with the *N*-alkyl (or *N*-aryl) aldimine **6** to afford the *spiro*-piperidine azetidinone 7.¹³ The azetidinone **7** was reduced to azetidine **8**. Removal of the Boc group of **7** and **8**, and then reaction with a variety of isocyanates affords the respective ureas **9** and **10**.

Accordingly, *spiro*-piperidine azetidine **2** was prepared and subsequently separated by chiral HPLC chromatography to give isomers **2a** and **2b**¹⁴ in a 1:1 ratio. Between the two isomers, **2a** was a more potent blocker of Ca_V3.2 than **2b** in both lonWorks HT and manual voltage clamp assays as shown in Table 1. Compound **2a** was also shown by manual voltage clamp to discriminate between Ca_V3.2 and two other voltage-gated cation channels (70× selective vs hCa_V2.1; >80× selective vs hNa_V1.5).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.06.012

Table 1

Compds	IW (VC) hCa _V 3 2 IC ₅₀ nM	Rapid rat po AUC nM h	TRPV1 ^{a,11}
2 ^{b,12} 3 ¹² 4 ¹² 2a ^b 2b	104 (123) 174 (340) 138 (328) 115 (124) 733 (3197)	0 0	0.70 87.10 64.00 19.10

 $^a\,$ TRPV1 capsaicin activation, % inhibition at 3.3 $\mu g/m L.^{11}$

^b Compound **2** was separated on HPLC Chiralpak AS column to give **2a**, isomer A, faster eluting and **2b** isomer B.

After confirming that the $Ca_V 3.2$ activity resides predominately in **2a** (isomer A), we developed the SAR using the modular synthetic routes shown in Scheme 1 to improve the potency and optimize the DMPK profiles for these compounds.

Using the methodology in Scheme 1, we were able to explore the SAR of the azetidinones **9** and azetidines **10**. First, we investigated azetidine series by varying the azetidine nitrogen substituent (R^2) from methyl, isopropyl, and isobutyl; and also the C4 substituent (R^3) being either 4-chlorophenyl and 4-fluorophenyl (Table 2).

When R³ 4-chlorophenyl azetidine series, the R² isopropyl **2–4** is equipotent with isobutyl **15** and more potent than methyl analogs **11** and **12**. The respective R² methyl azetidinones **13** and **14** are less potent than the azetidines. The R³ 4-chlorophenyl azetidines **2–4**, **11**, **12**, and **15** are more potent than the respective R² methyl and R² isopropyl, R³ 4-fluorophenyl azetidines **16–18**.

To improve the PK profile, we explored introducing a cyclopropyl group¹⁵ in place of isopropyl at R^2 (Table 2). In the azetidine series, this modification was made in both the alkyl **19** and aryl urea **20** analogs which both showed a modest improvement in the PK profile, however, a loss in Ca_V3.2 potency was observed. The respective aryl urea azetidinone **21** showed a significant improvement in the PK profile. However, this modification gave a significant loss in Ca_V3.2 potency.

To remove a potential site of metabolism and improve the PK, the aliphatic groups at R^2 in the azetidinones **9** azetidines **10** were replaced with an aryl group as shown in Table 2. When R^2 equals 3-fluorophenyl, these compounds retain activity provided that the alkyl (isoleucine methyl ester) and aralkyl ureas are used. In this series the branched chain alkyl ureas and aryl ureas are less potent. As seen before, isomer A is still more potent than isomer B. In this case, the azetidinone series **23a** and **23b** is slightly more potent than the corresponding azetidine **22a** and **22b** (Ca_v3.2). Compound **23a** was shown to have >92-fold selectivity for blocking hCa_v3.2 compared to hCa_v2.2 and hNa_v1.5. The R² 3-fluorophenyl series is slightly more potent than 2-fluorophenyl series.¹⁶

In the azetidinone series, the SAR of the isoleucine methyl ester **vas** explored showing that replacement of the methyl ester **23a** with cyano **24a** or isopropyl ester **25a** maintained activity. Methyl amide **26a** resulted in slight loss of activity as did the use of *t*-butylserine **27a**. Replacement of isoleucine with alanine **28a** and serine **29a** resulted in a significant decrease in activity. It was interesting to see that the isoleucine could be replaced with a α -methylbenzyl amine with only a slight decrease in the ability to block the Ca_v3.2 channel. As shown in Table 2 and 4-fluoro- α (*R*)-methylbenzyl urea **32a** was the most potent aralkyl urea against Ca_v3.2. Importantly, we found that this modification provided very good TRPV1 selectivity. In Table 2, for R² aryl series, the aryl ureas are less potent. However, the R² aryl azetidinones **36a** and **36b** are more potent (Ca_v3.2) than the respective azetidines **35a** and **35b**.

Gratifyingly, we found that replacement of the R^3 aryl with a 2-pyridyl group, further improved the potency against the Ca_V3.2 channel (Table 2). As we had demonstrated before, for both azetidines and azetidinones, the Ca_V3.2 potency resides in isomer A for this series as well. As seen before, azetidinones **39a** and **39b** are more potent than azetidines **38a** and **38b**. Incorporation of the 2-pyridyl group provided a dramatic improvement in the rat PK profile with 0–6 h AUC's from 1 to 18 μ M h observed after an oral dose of 10 mpk.

With this overall improvement, we then turned our attention to the in vivo evaluation of these compounds in the rat SNL model of neuropathic pain.¹⁷ Three compounds were selected: (1) best hCa_V3.2 potency: **39a** (isomer A.VC hCa_V3.2 IC₅₀ 42 nM, rat PPB 99.6%); (2) best AUC: **40a** (isomer A; rat AUC (0–6 h, po) @ 10 mpk 18,055 nM h, rat PB 99.6%); and (3) good hCa_V3.2 and AUC: **42a** (isomer A). Compounds **39a** and **42a** were inactive in this model at 100 and 30 mpk, respectively. We speculated that the inactivity of these compounds in the SNL was either due to their poor TRPV1 selectivity or their high protein binding. There was a trend toward efficacy with compound **40a** at 2 h (50% PWT: 9.2 ± 2.6 Gm; vehicle -4.9 ± 2.1 Gm) and 3 h (50% PWT: 8.9 ± 2.8 Gm; vehicle -5.0 ± 1.7 Gm) after dosing 30 mpk but statistical significance was not achieved.

Two isomer B compounds that displayed better selectivity over TRPV1: **41b** (R^1 is 3-trifluoromethylphenyl) with moderate Ca_V3.2 activity, good AUC and clog *P*, and better TRPV1 selectivity; and for **44b** (R^1 is 3,5-difluorophenyl) with moderate Ca_V3.2 activity, good AUC and clog *P* and moderate TRPV1 activity were also tested in the SNL. These compounds were found to be inactive in the rat SNL at 30 mpk, but **44b**, a positive trend was seen at 1 h 50% PWT 7.4 ± 2.6 Gm, vehicle 3.0 ± 1.4 Gm) which suggested that the high protein binding was the problem. In support of this we found that the ability of these compounds to block the Ca_V3.2 channel in the voltage clamp assay was considerably right shifted by 40- to >469-fold **24**, 40, **44**, **46**, and **49** when tested in whole cell patch clamp the presence of 100% rat serum (Table 3). The example of

Table 2

Compds ^a	R ¹ N(H)-	R ²	R ³	Q	IW (VC) hCa _V 3 2 IC ₅₀ nM	clog P	Rapid rat po AUC nM h	r (h) protein binding pct ^b	TRPV1 ^c	Rat SNL, PO
11	Ile-OMe	Me	$4-Cl-C_6H_4-$	CH_2	410	3.86			25.20	
12	$3,5-F_2C_6H_3-N(H)-$	Me	$4-Cl-C_6H_4-$	CH ₂	214	3.72	0		25.00	
13	$35-F_{2}C_{2}H_{2}-N(H)-$	Me	$4-Cl-C_6H_4-$	C=0	800 920	2.42		96.60	3.12 20.68	
15	$3,5-F_2C_6H_3-N(H)-$	<i>i</i> -Bu	4-Cl-C ₆ H ₄ -	CH ₂	177	5.17		50.00	53.00	
16	ILe-OMe	<i>i</i> -Pr	4-F-C ₆ H ₄ -	CH_2	256	4.12			13.38	
17	$3,5-F_2C_6H_3-N(H)-$	<i>i</i> -Pr	$4-F-C_{6}H_{4}-$	CH_2	172 (995)	3.98	0		46.49	
18	3,5-F ₂ C ₆ H ₃ -N(H)-	Me	$4 - F - C_6 H_4 -$	CH ₂	410	3.15	245	95.00	21.78	
19 20	$35-F_{2}C_{2}H_{2}-N(H)-$	Cyclopropyl	$4-Cl-C_6H_4-$	CH ₂	325 (713)	4.35	245 477	99.80		
21	$3,5-F_2C_6H_3-N(H)-$	Cyclopropyl	$4-Cl-C_6H_4-$	C=0	2258	2.76	3070	55166	34.20	
22a	Ile- OMe	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	CH_2	146	5.55			8.50	
22b	Ile- OMe	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	CH ₂	3200	5.55			12.47	
23a 23b	IIe- OMe	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	45 (109) 872	5.06			6.18 8.70	
230 24a	lle-nitrile	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	35 (83)	3.00 4.40			0.79	
25a	Ile-OPr-i	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	45	5.90			18.00	
26a	Ile-NHMe	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	182	4.20			4.80	
27a	Ser(<i>t</i> -Bu)-OMe	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	251	4.61			4.40	
28a 29a	Ala-OMe Ser-OMe	3-F-C ₆ H ₄ - 3-F-C ₆ H ₄ -	$4-CI-C_6H_4-$	C=0	827	3.84 2.75			6.00	
254	AND Enantiomer	5-1-66114	4 CI C6114	C=0	5555	2.75			0.00	
20-	CH3	2 5 6 11		<u>(</u>	120	E 20				
30a	NH-	3-F-C ₆ H ₄ -	4-СІ-С ₆ н ₄ -	C=0	139	5.29				
	AND Enantiomer									
315	CH ₃	3-F-C-H-	4-Cl-CaH	C=0	351	5 29				
51a	NH-	5-1-06114-	4-01-06114-	C=0	331	5.25				
	AND Enantiomer									
	CH ₃									
32a	NH-	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	82 (340)	5.43		99.90	2.40	
	AND Enantiomer									
	H ₃ C									
33a		3-F-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	C=0	224	5.74				
	NH-									
	CH3									
34a	H ₃ C	3-F-C ₆ H ₄ -	$4-Cl-C_6H_4-$	C=0	1251	4.50			5.20	
25.	NH-			CL	2502	5.00			6.22	
35a 35h	$3, 3 - F_2 C_6 H_3 - N(H) - 3 - 5 - F_2 C_6 H_3 - N(H) -$	3-F-C ₆ H ₄ -	4-CI-C ₆ H ₄ -	CH ₂	3200	5.63			6.22 30.08	
36a	$3,5-F_2C_6H_3-N(H)-$	$3 - F - C_6 H_4 -$	$4 - Cl - C_6 H_4 - 4 - Cl - C_6 H_4 - 4$	C=0	586	5.14	0		19.29	
36b	3,5-F ₂ C ₆ H ₃ -N(H)-	3-F-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	C=0	390	5.14	1616		6.79	
37a	3-CNC ₆ H ₃ -N(H)-	3-F-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	C=0	183	4.58	617		4.79	
37b	$3-CNC_6H_3-N(H)-$	$3-F-C_6H_4-$	4-CI-C ₆ H ₄ -	C=0	1060	4.58	485.11	00.00	12.69	
38b	$3, 5 - F_2 C_6 H_3 - N(H) - 3.5 - F_2 C_6 H_3 - N(H) - 0.5$	3-Cl.4-F-C ₆ H ₃ -	2-Pyridyl	CH ₂	291	4.19	4030	99.9		
39a	3,5-F ₂ C ₆ H ₃ -N(H)-	3-Cl,4-F-C ₆ H ₃ -	2-Pyridyl	C=0	4 (42)	3.64	9058	99.6 (99.90)		100 mpk: na ^{d,e}
39b	$3,5-F_2C_6H_3-N(H)-$	3-Cl,4-F-C ₆ H ₃ -	2-Pyridyl	C=0	176	3.64				
40a	$3,4-F_2C_6H_3-N(H)-$	3-Cl,4-F-C ₆ H ₃ -	2-Pyridyl	C=0	41	3.57	18,056	99.6 (99.90)	48.00	10 and 50 mpk: na
400 41a	$3,4-r_2C_6H_3-N(H)-$ $3-F_2CC_6H_3-N(H)-$	3-CI,4-F-C ₆ H ₃ - 3 4-F ₂ -C ₂ H ₂ -	2-Pyridyl 2-Pyridyl	C=0	402 17	3.57 3.72			39.00	
411b	$3 - F_3 C C_6 H_3 - N(H) -$	3,4-F ₂ -C ₆ H ₃ -	2-Pyridyl	C=0	176 (283)	3.72	3686	99.50		30 mpk: na ^f
42a	3,4-F ₂ C ₆ H ₃ -N(H)-	3-Cl-C ₆ H ₄ -	2-Pyridyl	C=0	116 (118)	3.43	1488	98.8 (99.90)	82.68	30 mpk: na
42b	$3,4-F_2C_6H_3-N(H)-$	3-Cl-C ₆ H ₄ -	2-Pyridyl	C=0	652	3.43	6445	00.0 (00	88.96	
43a 42b	$3-NCC_6H_4-N(H)-$	3-CI-C ₆ H ₄ -	2-Pyridyl	C=0	57	2.94	2036	99.2 (98.70)	30.00	20 mpk: pp
430 44a	$3.5 - F_2C_6H_3 - N(H) -$	$3-Cl-C_6H_4-$	2-Pyridyl	C=0	855 18 (29)	2.94	1153	98.9 (99.70)	38.00	зо шрк. на
44b	3,5-F ₂ C ₆ H ₃ -N(H)-	3-Cl-C ₆ H ₄ -	2-Pyridyl	C=0	200	3.50		99.50	36.00	30 and 60 mpk: na
			-							-

Table 2 (continued)

Compds ^a	R ¹ N(H)-	R ²	R ³	Q	IW (VC) hCa _V 3 2 IC ₅₀ nM	clog P	Rapid rat po AUC nM h	r (h) protein binding pct ^b	TRPV1 ^c	Rat SNL, PO
45a <i>N</i> -oxide 45b <i>N</i> -oxide	3,4-F ₂ C ₆ H ₃ -N(H)- 3,4-F ₂ C ₆ H ₃ -N(H)-	3-Cl-C ₆ H ₄ - 3-Cl-C ₆ H ₄ -	2-Pyridyl 2-Pyridyl	C=0 C=0	698 1498	1.55 1.55		93.40		
46a	3,5-F ₂ C ₆ H ₃ -N(H)-	3-NC-C ₆ H ₄ -	2-Pyridyl	C=0	247 (478)	2.20				
46b	$3,5-F_2C_6H_3-N(H)-$	3-NC-C ₆ H ₄ -	2-Pyridyl	C=0	732	2.20				
47	$3,5-F_2C_6H_3-N(H)-$	5-Cl-pyrid-3-yl	2-Pyridyl	C=0	519	2.1			6.7	
48	$3,5-F_2C_6H_3-N(H)-$	5-CN-pyrid-3-yl	2-Pyridyl	C=0	2377	0.92			8.8	

^a **a** is isomer A; **b** is isomer B: otherwise racemic.

^b rPB: rat protein binding; (h): human protein binding.

^c TRPV1 capsaicin activation, % inhibition at 3.3 µg/mL.

^d na: not active.

^e Plasma concn. 3.4 µM at 100 mpk at 3 h.

^f Plasma concn. 10 mpk, 2.1 µM at 2 h.

Table 3

Compds ^a	VC hCa _v 3.2 rSerum IC ₅₀ nM	Serum shift
44a	3490	120
40a	17,700	246
24a	17,000	205
46a	19,300	40
49a	>30,000	>469

^a **a** is isomer A; **b** is isomer B.

compound **46a** suggested that serum binding could be reduced considerably by decreasing the *clog P*. We turned our attention to lowering the *clog P* in the hope that this would lower protein binding and provide activity in the SNL. The *clog P* was reduced to 2.94 when R^1 was replaced by 3-cyanophenyl **43a** (Table 2). This modification lowered Ca_v3.2 potency, lowered *clog P*, while maintaining moderate TRPV1 selectivity, however, this compound still had high protein binding.

The clog *P* of **42a** and **42b** was further reduced to 1.55 by formation of their *N*-oxides **45a** and **45b** which resulted in a significant loss of $Ca_V 3.2$ activity and was not evaluated further.

To further lower the clog *P* and have good TRPV1 selectivity, a series of R³ 2-pyridyl, R² heterocyclic compounds were evaluated

Table 4

Compds ^a	R ⁴	R ⁵	R ⁶	IW (VC) hCa _V 3 2 IC ₅₀ nM	clog P	Rapid rat po AUC nM h	r (h) protein binding% ^b	r trpv cap activation ^c	Rat SNL, PO
50a	F	CF ₃	Н	44 (63)	5.1			37.9	
51a	Н	Cl	F	78 (71)	4.8	41,161	100	86.2	
51b	F	Cl	F	60 (84)	5		99.8	8.6	
52a	F	CF ₃	F	29	5.24	8014		92.00	10 mpk: na ^{d,e}
52b	F	CF ₃	F	31 (106)	5.24			59.80	10 mpk: na ^{d,e}

^a **a** is isomer A; **b** is isomer B: otherwise racemic.

^b rPB: rat protein binding; (h): human protein binding.

^c TRPV1 capsaicin activation, % inhibition at 3.3 µg/mL.

^d na: not active.

 $^{e}\,$ Plasma concn. 1.75 μM at 2.5 h.

(Table 2, **47** and **48**).¹⁸These compounds showed very low $c\log P$ and good TRPV1 selectivity, however, their Ca_V3.2 activity was sig-

nificantly reduced. Finally, modification of the urea moiety by replacement with a benzimidazole group (Table 4)¹⁹ provided compounds that were equipotent against Ca_V3.2. Two compounds had very good rat PK. Compound **52b** was evaluated in the SNL, but it was found to be inactive at 10 mpk which again may be a result of the very high protein binding.

By structural modifications of the azetidine and azetidinone hits, we succeeded in obtaining compounds having low nM $Ca_V3.2$ potency, good rat PK, and improved TRPV1 selectivity. We demonstrated that the isoleucine moiety in the initial screening hit could be replaced by a α -methylbenzyl group while maintaining the activity against the $Ca_V3.2$ channel. Further modification replaced the urea moiety with the benzimidazole group. Together these modifications provided compounds with significant improvements in both the activity against $Ca_V3.2$ and the oral PK in the rat. Nevertheless, none of the compounds produced statistically significant effects in the rat SNL model. We attribute the low efficacy in this series to the high protein binding and the resulting increases the in vivo exposures required to block $Ca_V3.2$. Efforts to lower the clog *P* and protein binding met with limited success and did not improve the SNL activity for this series.

Acknowledgments

We thank Drs John J. Piwinski and John C. Hunter for supporting this research and for helpful discussions.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2010.06.012.

References and notes

- 1. Catterall, W. A.; Striessnig, J.; Snutch, T. P.; Perez-Reyes, E. Pharmacol. Rev. 2003, 55, 579.
- Bootman, M. D.; Collins, T. J.; Peppiatt, C. M.; Prothero, L. S.; MacKenzie, L.; De Smet, P.; Travers, M.; Tovey, S. C.; Seo, J. T.; Berridge, M. J.; Ciccolini, F.; Lipp, P. Semin. Cell Dev. Biol. 2001, 12, 3.
- 3. Perez-Reyes, E. Physiol. Rev. 2003, 83, 117.
- Talley, E. M.; Cribbs, L. L.; Lee, J. H.; Daud, A.; Perez-Reyes, E.; Bayliss, D. A. J. Neurosci. 1999, 19, 1895.
- 5. Perez-Reyes, E.; Lory, P. CNS Neurol. Disord. Drug Targets 2006, 5, 605.
- 6. McGivern, J. G. CNS Neurol. Disord. Drug Targets 2006, 5, 587.

- Uebele, V. N.; Gotter, A. L.; Nuss, C. E.; Kraus, R. L.; Doran, S. M.; Garson, S. L.; Reiss, D. R.; Li, Y.; Barrow, J. C.; Reger, T. S.; Yang, Z. Q.; Ballard, J. E.; Tang, C.; Metzger, J. M.; Wang, S. P.; Koblan, K. S.; Renger, J. J. *J. Clin. Invest.* **2009**, *119*, 1659.
- 8. McGivern, J. G. Drug Discovery Today 2006, 11, 245.
- Xiao, D.; Palani, A.; Aslanian, R.; McKittrick, B. A.; McPhail, A. T.; Correll, C.; Phelps, P. T.; Anthens, J. C. Bioorg. Med. Chem. 2009, 19, 783.
- 10. (a) IonWorks Screen for hCaV3.2.; (b) Manual Whole Cell Patch Clamp experimental, see Supplementary data.
- 11. (a) TRPV1 assay.; (b) Mouse TRPV1: NL version experimental, see Supplementary data.
- 12. DMPK for compounds 2, 3, and 4.
- Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis, H. R.; Yumube, N.; Clader, J. W.; Burnett, D. A. J. Med. Chem. 1988, 41, 973.
- 14. For example, **2** refers to racemic mixture; **2a** refers to isomer A, faster eluting; and **2b** refers to isomer B.
- 15. Procedure for preparation of compounds 20 and 21.
- Azetidine R¹ is isoleucine methyl ester; R² is 2-fluorophenyl, R³ is 4-chlorophenyl: IW hCav3.2 IC₅₀: isomer A, 262; isomer B, 3200 nM. Azetidinone R¹ is isoleucine methyl ester, R² is 2-fluorophenyl, R³ is 4-chlorophenyl: IW hCav3.2 IC₅₀: isomer A, 125 nM; isomer B, 1626 nM.
- 17. Rat spinal nerve ligation model experimental, see Supplementary data.
- Preparation of *tert*-butyl 2-(5-chloropyridin-3-yl)-1-oxo-3-(pyridin-2-yl)-2,7diazaspiro[3.5]nonane-7-carboxylate, see Supplementary data.
- Preparation of 2-(3-chloro-4-fluorophenyl)-3-(pyridin-2-yl)-2,7-diazaspiro-[3.5]nonan-1-one experimental, see Supplementary data.