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The catalytic asymmetric total syntheses of the biologically important and therapeutically valuable 

Amaryllidaceae alkaloids (‒)-galanthamine and (‒)-lycoramine have been divergently achieved from 

commercially available 3-butyn-1-ol. A newly developed spirocyclic pyrrolidine (SPD) catalyzed 

enantioselective Robinson annulation rapidly constructs the key cis-hydrodibenzofuran core bearing an 

all-carbon quaternary stereocenter of the target molecules with excellent stereoselective control. 

Additionally, the current asymmetric synthetic strategy provides an alternative approach toward the 

syntheses of (‒)-galanthamine and its analogues.

Galanthamine (1a), an Amaryllidaceae alkaloid isolated by Proskurnina from the Caucasian snowdrop in 

1952, exhibits unique biological and pharmacological characterization1. As a competitive and reversible 

acetylcholinesterase inhibitor, (‒)-galanthamine can effectively regulate the expression of nicotinic 

acetylcholine receptor, so as to achieve the goal of significantly improving memory and cognitive functions 

of the patients2. Consequently, (‒)-galanthamine has been approved by the Federal Drug Administration in 

the USA for the early clinical treatment of Alzheimer’s disease (AD) in 20013. Structurally, 
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galanthamine-type alkaloids contain a strained tetracyclic framework bearing a highly functionalized 

cis-hydrodibenzofuran nucleus which includes a sterically congested all-carbon quaternary stereocenter 

(Figure 1). As a key structural unit commonly existing in these alkaloids, how to rapidly and efficiently 

construct such an ABC tricyclic skeleton is a major challenge. Over the past 50 years, extensive synthetic 

studies towards galanthamine and its analogues1,4,5 have been carried out, and thus a variety of synthetic 

strategies6-11 have also been developed to address the conflict between the increasing clinical demand for 

(‒)-galanthamine and its limited supplies from natural sources. However, catalytic asymmetric total 

syntheses of (‒)-galanthamine are still rather scarce9-10. Furthermore, to our best knowledge, no direct and 

catalytic enantioselective approach to efficiently assemble the crucial cis-hydrodibenzofuran core bearing 

all-carbon quaternary carbon from the racemic precursor in the asymmetric syntheses of (‒)-galanthamine 

has been reported. Therefore, it remains important and challenging to develop an effective and asymmetric 

synthetic strategy towards the Amaryllidaceae alkaloid (‒)-galanthamine.
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Figure 1.  Representative galanthamine-type Amaryllidaceae alkaloids

During the past two decades, electrophile-induced semipinacol rearrangement has been extensively 

investigated in our group12 for the efficient construction of the quaternary carbon centers and wide 

application in the total syntheses of bioactive natural products13. Particularly, we have accomplished the 

total syntheses of (±)-galanthamine and (±)-lycoramine using an NBS-mediated semipinacol rearrangement8 

as the key step (Scheme 1a); however, no satisfactory results were obtained in the asymmetric synthesis of 

(‒)-galanthamine based on the enantioselective Michael addition14. As a continuation of our ongoing project 

centered on the exploration of novel chiral ligands or catalysts based on SPD (spirocyclic pyrrolidine) and 
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SPA (spirocyclic amide) backbones15, very recently, we developed a novel SPD-catalyzed enantioselective 

Robinson annulation to rapidly construct a cis-hydrodibenzofuran skeleton and achieved the asymmetric 

total syntheses of (‒)-codeine and (‒)-morphine16 with high efficiency (Scheme 1b). Considering the 

existence of the common cis-hydrodibenzofuran core in these two categories of alkaloids, together with 

further investigation of the diversity-oriented synthetic application of the SPD-catalyzed Robinson 

annulation, herein, we present our research results of the asymmetric total syntheses of (‒)-galanthamine (1a) 

and (‒)-lycoramine (1b) (Scheme 1c).
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Scheme 1.  Studies on the total syntheses of galanthamine and morphine in our group

Our retrosynthetic analysis toward (‒)-galanthamine and (‒)-lycoramine is outlined in Scheme 2. The D ring 

of target molecules 1a and 1b could be installed by an intramolecular Pictet-Spengler cyclization of 

intermediate I, whereas the amide moiety in I would be introduced from the common advanced building 

block II by a subsequent selective debenzylation/oxidation/radical-induced amidation procedure. We 

expected that intermediate II could be prepared via a series of functional group conversions from 

α,β-unsaturated ketone 2, which can be easily accessible from compound 3 via our newly developed 

Page 3 of 18

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



SPD-catalyzed asymmetric Robinson annulation16 with excellent enantioselectivity (>99% ee). Similarly, 

following the above-mentioned research results, the enone precursor 3 can also be efficiently synthetized 

from commercially available 4 and 5 at a gram scale in just four steps.

N

O
MeO

OH

(–)-Galanthamine (1a)
or (–)-Lycoramine (1b)

O
MeO

O

BnO

O
MeO

BnO

OR

O
MeO

MeHN

OR

O

A B C

D

I II

O

OBn

OMe

O

O

Br

OH
OMeOH

5 4

+

23

Pictet-Spengler
cyclization Amidation

Catalytic asymmetric
Robinson annulationRef. 16

Enone
functionalization

4 steps

1
2

3
4

5
6

7

8

9

10

11
12

Scheme 2.  Retrosynthetic analysis of (‒)-galanthamine and (‒)-lycoramine

Our synthetic route commenced with the preparation of 9 on a gram scale from the optically pure tricyclic 

compound 2 (>99% ee), which was readily available from 3-butyn-1-ol 5 through our recently reported 

six-step protocol featuring a Pd-catalyzed Suzuki coupling reaction and an SPD-catalyzed asymmetric 

Robinson annulation16 (Scheme 3). To this end, the first key issue that needed to be addressed was the 

construction of C2 stereocenter and adjustments of the enone group in compound 2. According to the 

classical Rubottom oxidation reaction17, we successfully achieved the introduction of C2 hydroxyl group 

through a three-step procedure in high yield. Starting from compound 2, selective conjugate reduction of the 

enone with L-selectride afforded ketone 6, which was able to be efficiently converted into silyl enol ether 

with TMSOTf and Et3N in excellent regioselectivity17c. In this reaction, attempts to trap the  enolate 

intermediate generated in situ by one-pot conjugate reduction/silylation proved to be difficult and 

no satisfying outcome was achieved. Subsequently, the above crude silylether intermediate was directly 

treated with dimethyl dioxirane18 (DMDO), followed by an acid-mediated epoxide cleavage to furnish the 

α-hydroxy ketone 7 in high diastereoselectivity, whose stereochemical structure was confirmed by NOESY 

experiments. It is presumed that the epoxidation of the double bond of silyl enol ether could highly 

selectively proceed on the less-hindered face, leading to deliver the α-hydroxy ketone 7 as a single isomer. 

Then, under the standard conditions, the protection of the hydroxy group of 7 with TBSOTf produced the 
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silylether 8 in 96% yield, which was treated with NaHMDS and Tf2NPh, followed by a Pd-catalyzed 

reduction reaction19, giving the desired key building block 9 in 90% yield over two steps. Notably, all of the 

above-mentioned chemical transformations performed well even on the gram scale. 
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Scheme 3.  Preparation of compound 9 on a gram scale

With ample amounts of key intermediate 9 on hand, then we focused our attentions on the asymmetric 

total synthesis of the important clinical drug (‒)-galanthamine (1a) (Scheme 4). Selective debenzylation of 9 

with DDQ, followed by Dess-Martin oxidation of the resulting primary alcohol, furnished the aldehyde 10. 

The structure of 10 was similar to that of the key intermediate in our previously reported synthesis of 

(±)-galanthamine8b. Therefore, these practical protocols guided our late-stage synthetic steps in the current 

asymmetric synthesis. The free radical-induced oxidation reaction8,20 of 10 in the presence of NBS and a 

catalytic amount of AIBN furnished acyl bromide, without further purification, which was directly reacted 

with an excess of dry methylamine gas to deliver the desired amide 11 in 72% yield. Subsequently, in order 

to build the seven-membered N-containing heterocycle of 1a, the Pictet-Spengler reaction8,21 of 11 with 

paraformaldehyde and TFA was conducted to readily afford the lactam 12 in 81% yield, in which the TBS 

protecting group was simultaneously removed under acidic conditions. At this stage, the inversion of the 

configuration of C2-OH and selective reduction of amide group could furnish the asymmetric total synthesis 

of (‒)-galanthamine. To this end, allylic alcohol 12 was first oxidized with Dess-Martin periodinane to 

produce enone 13 (Zhou’s intermediate9d,22), which was then treated subsequently with L-selectride and 

LiAlH4 in a one-pot procedure to efficiently afford the target molecule (‒)-galanthamine (1a). All 

spectroscopic data of our synthetic (‒)-galanthamine were in agreement with the ones reported in the 

literatures10.
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Scheme 4.  Catalytic asymmetric total syntheses of (‒)-galanthamine (1a) and (‒)-lycoramine (1b) 

To further explore the synthetic diversity, our efforts toward the total synthesis of (‒)-lycoramine were 

continued. Starting from the common building block 9, catalytic hydrogenolysis in the presence of Pd/C 

resulted in the reduction reaction of the double bond as well as the removal of the benzyl group to provide a 

primary alcohol, which was directly treated with Dess-Martin periodinane to afford aldehyde 14 in 81% 

yield. Subsequently, according to the above-mentioned similar synthetic approach toward (‒)-galanthamine, 

a four-step protocol involving radical-mediated amidation8,20, Pictet-Spengler reaction8,21, Dess-Martin 

oxidation, and one-pot reduction reaction smoothly proceeded and afforded (‒)-lycoramine (1b) with high 

efficiency. In addition, the spectral data of synthetic (‒)-lycoramine were identical to those of the previous 

reports10.

In summary, we have developed a highly efficient and catalytic asymmetric synthetic approach toward 

(‒)-galanthamine and (‒)-lycoramine based on an SPD-catalyzed enantioselective Robinson annulation as a 

key step. Significantly, these results described here not only further exhibit the distinctive superiorities of 

our SPD catalyst in the construction of the all-carbon quaternary stereocenter but also explore an alternative 

synthetic methodology for the preparation of the other galanthamine-type alkaloids and their analogues, 

which could be potentially used for syntheses of a series of lead compounds for pharmaceutical screening. 
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Additionally, the current study represents the first example of the syntheses of (‒)-galanthamine and 

(‒)-lycoramine through direct and catalytic enantioselective construction of the key ABC ring system from 

the racemic precursor. Efforts toward the asymmetric syntheses of other biologically important natural 

products based on SPD-catalyzed tandem reactions are currently underway in our laboratory. 

EXPERIMENTAL SECTION

General Information. All moisture or oxygen-sensitive reactions were carried out under argon atmosphere with dry and 

freshly distilled solvents in oven-dried flasks. Unless otherwise noted, all reagents were analytically pure and used without 

further purification. All reactions were monitored by thin-layer chromatography (TLC), and the products were purified by 

flash column chromatography on silica gel (200−300 mesh). NMR spectra were recorded in CDCl3 solution on Bruker 

AM-400 MHz or Varian Mercury-600 MHz instruments. Chemical shifts (δ) were calibrated by using residual undeuterated 

solvent CHCl3 (7.26 ppm) or tetramethylsilane (0.00 ppm) as internal references for 1H NMR and the deuterated solvent 

CDCl3 (77.0 ppm) as internal standard for 13C NMR. High-resolution mass spectra (HRMS) were measured by the 

electrospray ionization (ESI) technique on a Fourier-transform ion cyclotron resonance mass analyzer. IR spectra were 

recorded on a Nicolet FT-170SX spectrometer. Optical rotations were measured with a RUDOLPH A21202-J APTV/GW 

polarimeter. The compound 2 was readily prepared from commercially available 3-butyn-1-ol 6 through our recently 

reported six-step protocol16, and for the more synthetic details, also please see the supporting information.

(4aS,9bS)-9b-(2-(benzyloxy)ethyl)-6-methoxy-3,4,4a,9b-tetrahydrodibenzo[b,d]furan-2(1H)-one (6). To a stirred solution 

of 2 (1.00 g, 2.86 mmol, 1 equiv) in dry THF (50 mL) at −78 ºC, L-selectride (2.71 mL, 2.71 mmol, 1 mol/L, 0.95 equiv) 

was slowly added. After stirring at 78 ºC for 10 min, the reaction mixture was quenched with saturated NH4Cl solution, 

and extracted with EtOAc. The combined organic extract was washed with saturated NH4Cl solution and brine, dried with 

Na2SO4, and concentrated in vacuum. The crude product was purified by column chromatography on silica gel (petroleum 

ether : EtOAc = 8:1) to afford product 6 (916 mg, 91%) as a colorless oil. [α]D
25 = +40 (c = 0.20, CHCl3); 1H NMR (400 

MHz, CDCl3) δ 7.35–7.26 (m, 5H), 6.81 (t, J = 7.8 Hz, 1H), 6.73 (d, J = 7.3 Hz, 1H), 6.60 (dd, J = 7.5, 1.0 Hz, 1H), 5.17 (t, 

J = 3.5 Hz, 1H), 4.41 (s, 2H), 3.87 (s, 3H), 3.56–3.44 (m, 2H), 2.74 (d, J = 15.5 Hz, 1H), 2.64 (d, J = 15.5 Hz, 1H), 2.37–

2.32 (m, 1H), 2.26–2.22 (m, 2H), 2.19–2.06 (m, 2H), 2.04–1.95 (m, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 210.6, 147.4, 

144.0, 137.9, 132.5, 128.4, 127.7, 127.6, 121.7, 115.3, 111.5, 85.8, 73.2, 66.6, 55.8, 48.4, 48.2, 40.8, 33.1, 26.4; HRMS 

(ESI) calcd for C22H24O4Na [M+Na]+: 375.1567, found: 375.1561; IR (neat): 2926, 1716, 1619, 1592, 1493, 1460, 1276, 

1203, 1094, 734, 700 cm-1; EI MS m/z (%): 91 (100), 161 (20), 217 (38), 261 (9), 352 (64).
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(3S,4aS,9bS)-9b-(2-(benzyloxy)ethyl)-3-hydroxy-6-methoxy-3,4,4a,9b-tetrahydrodibenzo[b,d]furan-2(1H)-one (7). To a 

stirred solution of 6 (1.75 g, 4.97 mmol, 1 equiv) in dry DCM (40 mL) at 0 ºC, Et3N (2.77 mL, 19.88 mmol, 4 equiv) and 

TMSOTf (1.62 mL, 8.95 mmol, 1.8 equiv) were added sequentially. The reaction mixture was slowly warmed to room 

temperature and stirred for 0.5 h. Then, the reaction mixture was quenched with saturated NaHCO3 solution, and extracted 

with EtOAc. The combined organic layer was washed with saturated NaHCO3 solution and brine, dried with Na2SO4, and 

concentrated in vacuum. Without purification, the above crude product was dissolved in dry DCM (70 mL) at 0 ºC and the 

fresh-made DMDO (75 mL, 0.08 mol/L, 5.96 mmol, 1.2 equiv) was added slowly. After stirring at 0 ºC for 15 min, the 

mixture was quenched with NaHSO3 (783 mg, 7.45 mmol, 1.5 equiv) and HOAc (426 uL, 7.45 mmol, 1.5 equiv). After 

stirring at 0 ºC for an additional 10 min, the reaction was extracted with EtOAc. The combined organic layer was washed 

with brine, dried with Na2SO4, and concentrated in vacuum. The crude product was purified by column chromatography on 

silica gel (petroleum ether : EtOAc = 3:1) to afford product 7 (1.39 g, 76% yield) as a colorless oil. [α]D
25 = ‒5 (c = 0.20, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.35–7.25 (m, 5H), 6.86 (t, J = 8.0 Hz, 1H), 6.79 (dd, J = 8.1, 0.9 Hz, 1H), 6.62 (dd, 

J = 7.4, 1.1 Hz, 1H), 4.97 (t, J = 2.8 Hz, 1H), 4.39 (s, 2H), 4.27 (ddd, J = 12.8, 6.0, 2.9 Hz, 1H), 3.90 (s, 3H), 3.53–3.45 (m, 

2H), 3.26 (d, J = 3.0 Hz, 1H), 2.85 (ddd, J = 14.7, 6.1, 2.3 Hz, 1H), 2.78 (d, J = 16.5 Hz, 1H), 2.68 (d, J = 16.4 Hz, 1H), 

2.12–1.98 (m, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 210.0, 146.9, 144.6, 137.7, 134.6, 128.4, 127.7, 127.6, 122.0, 

114.4, 111.8, 86.1, 73.1, 69.8, 66.2, 55.9, 49.9, 46.7, 38.2, 35.6; HRMS (ESI) calcd for C22H24O5Na [M+Na]+: 391.1516, 

found: 391.1513; IR (neat): 3500, 2851, 1715, 1620, 1592, 1493, 1459, 1365, 1267, 1204, 1100, 943, 750, 733 cm-1; EI MS 

m/z (%): 57 (100), 97 (82), 236 (35), 313 (23), 353 (13), 368 (85).

(3S,4aS,9bS)-9b-(2-(benzyloxy)ethyl)-3-((tert-butyldimethylsilyl)oxy)-6-methoxy-3,4,4a,9b-tetrahydrodibenzo[b,d]furan-

2(1H)-one (8). To a stirred solution of 7 (1.38 g, 3.75 mmol, 1 equiv) in dry DCM (35 mL) at −10 ºC, Et3N (2.09 mL, 15 

mmol, 4 equiv) and TBSOTf (1.29 mL, 5.63 mmol, 1.5 equiv) were added sequentially. The reaction mixture was slowly 

warmed to room temperature and stirred for 0.5 h. Then, the reaction was quenched with saturated NaHCO3 solution, and 

extracted with EtOAc. The combined organic layer was washed with brine, dried with Na2SO4, and concentrated in vacuum. 

The crude product was purified by column chromatography on silica gel (petroleum ether : EtOAc = 20:1) to afford product 

8 (1.73 g, 96% yield) as a colorless oil. [α]D
25 = ‒28 (c = 0.60, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.34–7.25 (m, 5H), 

6.85 (t, J = 8.0 Hz, 1H), 6.78 (d, J = 7.3 Hz, 1H), 6.63 (dd, J = 7.4, 1.0 Hz, 1H), 4.99 (t, J = 3.5 Hz, 1H), 4.39 (s, 2H), 4.23 

(dd, J = 11.7, 5.5 Hz, 1H), 3.90 (s, 3H), 3.53–3.44 (m, 2H), 2.68 (s, 2H), 2.60 (ddd, J = 14.7, 5.5, 3.1 Hz, 1H), 2.31–2.23 (m, 

1H), 2.11–1.99 (m, 2H), 0.86 (s, 9H), 0.08 (s, 3H), -0.02 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 207.8, 146.9, 144.5, 

137.9, 134.4, 128.4, 127.6, 121.9, 114.7, 111.7, 86.3, 73.1, 71.1, 66.4, 55.9, 49.8, 47.5, 38.3, 36.7, 25.7, 18.3, -4.7, -5.5; 
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HRMS (ESI) calcd for C28H38O5SiNa [M+Na]+: 505.2381, found: 505.2373; IR (neat): 2929, 2856, 1732, 1492, 1459, 1257, 

1202, 1127, 838, 780, 735 cm-1; EI MS m/z (%): 91 (100), 129 (28), 143 (22), 205 (10), 295 (74), 334 (5), 425 (18).

(((3S,4aS,9bS)-9b-(2-(benzyloxy)ethyl)-6-methoxy-3,4,4a,9b-tetrahydrodibenzo[b,d]furan-3-yl)oxy)(tert-butyl)dimethylsil

ane (9). Under argon atmosphere, to a stirred solution of 8 (1.60 g, 3.32 mmol, 1 equiv) in dry THF (90 mL) at −78 ºC, 

NaHMDS (2.27 mL, 4.32 mmol, 1.9 mol/L, 1.3 equiv) was slowly added. After stirring at −78 ºC for 50 min, PhNTf2 (1.66 

g, 4.65 mmol, 1.4 equiv) was added. Then, the reaction was warmed to room temperature (about 10 min) under argon and 

stirred for an additional 1 h. The mixture was quenched with saturated NH4Cl solution, and extracted with EtOAc. The 

combined organic layer was washed with brine, dried with Na2SO4, and concentrated in vacuum. Without purification, the 

resulting crude product was dissolved in dry DMF (35 mL), and Pd(OAc)2 (74 mg, 0.33 mmol, 0.1 equiv), 

1,3-bis(diphenylphosphino)propane (dppp, 165 mg, 0.40 mmol, 0.12 equiv), Et3N (1.39 mL, 9.96 mmol, 3 equiv) and 

HCOOH (250 μL, 6.64 mmol, 2 equiv) were added sequentially. After stirring at 60 °C for 1 h, the mixture was quenched 

with H2O (1 mL), and extracted with EtOAc. The combined organic layer was washed with brine, dried with Na2SO4, and 

concentrated in vacuum. The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc = 20:1) 

to afford product 9 (1.36 g, 88% yield) as a colorless oil. [α]D
25 = ‒60 (c = 0.40, CHCl3); 1H NMR (400 MHz, CDCl3) δ 

7.34–7.25 (m, 5H), 6.82 (t, J = 8.0 Hz, 1H), 6.72 (dd, J = 11.5, 7.4 Hz, 2H), 5.74 (d, J = 10.2 Hz, 1H), 5.46 (d, J = 10.2 Hz, 

1H), 4.93 (brs, 1H), 4.49–4.47 (m, 1H), 4.45 (d, J = 1.0 Hz, 2H), 3.86 (s, 3H), 3.60–3.52 (m, 2H), 2.60–2.53 (m, 1H), 2.17–

2.08 (m, 2H), 1.85–1.78 (m, 1H), 0.89 (s, 9H), 0.07 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 146.9, 144.6, 138.1, 134.8, 

132.8, 130.3, 128.3, 127.54, 127.52, 121.3, 115.3, 111.1, 85.8, 73.0, 67.0, 63.0, 55.8, 47.3, 37.5, 33.7, 25.8, 18.1, -4.55, 

-4.63; HRMS (ESI) calcd for C28H38O4SiNa [M+Na]+: 489.2432, found: 489.2434; IR (neat): 2929, 2856, 1493, 1459, 1281, 

1203, 1090, 876, 837, 776, 733 cm-1; EI MS m/z (%): 91 (100), 199 (20), 331 (6), 466 (16).

2-((5aS,7S,9aS)-7-((tert-butyldimethylsilyl)oxy)-4-methoxy-6,7-dihydrodibenzo[b,d]furan-9a(5aH)-yl)ethan-1-ol (9-1). 

To a stirred solution of 9 (470 mg, 1.01 mmol, 1 equiv) in chlorobenzene (45 mL, about 10 mg/mL) at room temperature, 

DDQ (688 mg, 3.03 mmol, 3 equiv) and H2O (4.5 mL) were added. Then, the reaction was sealed in argon and stirred at 

45 °C for 15 h. After being cooled to room temperature, the reaction mixture was diluted with DCM, quenched with 

saturated NaHCO3 solution, and extracted with DCM. The combined organic layer was washed with saturated NaHCO3 

solution, dried with Na2SO4, and concentrated in vacuum. The residue was purified by column chromatography on silica gel 

(petroleum ether : EtOAc = 5:1) to afford product 9-1 (152 mg, 40%) as a colorless oil, together with recovered starting 

material 9 (255 mg, 54%). [α]D
25 = ‒90 (c = 0.20, CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.86–6.82 (m, 1H), 6.75–6.71 (m, 

2H), 5.81 (dd, J = 10.1, 2.4 Hz, 1H), 5.60 (d, J = 10.1 Hz, 1H), 5.02 (t, J = 4.4 Hz, 1H), 4.46–4.42 (m, 1H), 3.87 (s, 3H), 

3.76 (t, J = 6.6 Hz, 2H), 2.41 (dt, J = 10.5, 5.0 Hz, 1H), 2.08–2.00 (m, 2H), 1.95–1.90 (m, 1H), 1.88 (brs, 1H), 0.90 (s, 9H), 
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0.09 (s, 3H), 0.08 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 146.7, 144.8, 134.7, 131.9, 130.7, 121.4, 115.2, 111.3, 85.3, 

63.3, 59.4, 55.9, 47.6, 40.9, 34.2, 25.8, 18.1, -4.66, -4.71; HRMS (ESI) calcd for C21H32O4SiNa [M+Na]+: 399.1962, found: 

399.1955; IR (neat): 3427, 2927, 2855, 2376, 1619, 1510, 1460, 1281, 1252, 1203, 1088, 875, 837, 776, 733 cm-1; EI MS 

m/z (%): 199 (11), 214 (29), 244 (64), 331 (8), 376 (3).

2-((5aS,7S,9aS)-7-((tert-butyldimethylsilyl)oxy)-4-methoxy-6,7-dihydrodibenzo[b,d]furan-9a(5aH)-yl)acetaldehyde (10). 

To a stirred solution of alcohol 9-1 (175 mg, 0.465 mmol, 1 equiv) in dry DCM (20 mL) at 0 ºC, NaHCO3 (195 mg, 2.325 

mmol, 5 equiv) and DMP (296 mg, 0.698 mmol, 1.5 equiv) were added. The reaction mixture was slowly warmed to room 

temperature and stirred for 1 h. Then, the reaction was quenched with saturated NaS2O3 solution, and extracted with EtOAc. 

The combined organic layer was washed with brine, dried with Na2SO4, and concentrated in vacuum. The crude product 

was purified by column chromatography on silica gel (petroleum ether : EtOAc = 6:1) to afford product 10 (150 mg, 86% 

yield) as a colorless oil. [α]D
25 = ‒160 (c = 0.20, CHCl3); 1H NMR (600 MHz, CDCl3) δ 9.78 (t, J = 2.6 Hz, 1H), 6.86 (t, J = 

7.8 Hz, 1H), 6.77 (d, J = 7.7 Hz, 2H), 5.80 (dd, J = 10.1, 2.2 Hz, 1H), 5.66 (d, J = 10.1 Hz, 1H), 4.88 (t, J = 3.8 Hz, 1H), 

4.49–4.47 (m, 1H), 3.87 (s, 3H), 2.81 (d, J = 2.6 Hz, 2H), 2.53 (dt, J = 14.0, 5.0 Hz, 1H), 1.86 (ddd, J = 13.9, 9.0, 3.2 Hz, 

1H), 0.89 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3) δ 200.4, 146.9, 145.0, 133.0, 128.8, 121.9, 

115.2, 111.9, 85.3, 62.8, 55.9, 50.9, 46.5, 33.3, 25.8, 18.0, -4.61, -4.65; HRMS (ESI) calcd for C21H30O4SiNa [M+Na]+: 

397.1806, found: 397.1801; IR (neat): 2928, 2855, 2372, 1722, 1492, 1460, 1286, 1252, 1202, 1092, 875, 837, 776 cm-1; EI 

MS m/z (%): 75 (100), 199 (85), 225 (6), 273 (7), 317 (8), 374 (2).

2-((5aS,7S,9aS)-7-((tert-butyldimethylsilyl)oxy)-4-methoxy-6,7-dihydrodibenzo[b,d]furan-9a(5aH)-yl)-N-methylacetamid

e (11). To a stirred solution of 10 (148 mg, 0.396 mmol, 1 equiv) in dry CCl4 (15 mL), AIBN (3.2 mg, 0.02 mmol, 0.05 

equiv) and NBS (85 mg, 0.475 mmol, 1.2 equiv) were added sequentially. The flask was then placed in an oil-bath 

preheated at 95 °C, and the heterogeneous mixture was stirred for about 10 min. Then the crude reaction mixture was cooled 

to 0 °C and bubbled by CH3NH2 gas, which was freshly prepared in situ from MeNH2•HCl and NaOH solid and dried by a 

basic NaOH drying tower. Keeping on the continuous MeNH2 bubble, the suspension was stirred at room temperature for an 

additional 10 min. After removal of CCl4 in vacuum at ambient temperature, the residue was rapidly purified by column 

chromatography on silica gel (petroleum ether : EtOAc = 1:1) to afford the amide 11 (114 mg, 72%) as a white foam. [α]D
25 

= ‒117 (c = 0.30, CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.84–6.77 (m, 2H), 6.73 (dd, J = 7.7, 1.6 Hz, 1H), 5.73 (dd, J = 

10.2, 0.9 Hz, 1H), 5.61–5.57 (m, 1H), 5.53 (brs, 1H), 4.98 (t, J = 3.2 Hz, 1H), 4.66–4.43 (m, 1H), 3.84 (s, 3H), 2.72 (d, J = 

4.8 Hz, 3H), 2.65 (d, J = 14.1 Hz, 1H), 2.60 (d, J = 14.1 Hz, 1H), 2.58–2.50 (m, 1H), 1.82 (ddd, J = 14.1, 9.4, 3.0 Hz, 1H), 

0.86 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.8, 146.8, 144.8, 133.9, 133.1, 129.1, 121.6, 

115.2, 111.6, 85.4, 63.0, 55.8, 46.8, 44.8, 33.1, 26.3, 25.8, 18.0, -4.6, -4.7; HRMS (ESI) calcd for C22H33NO4SiNa [M+Na]+: 
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426.2071, found: 426.2075; IR (neat): 3311, 2954, 2930, 2857, 1739, 1648, 1561, 1493, 1461, 1254, 1204, 1092, 877, 838, 

777 cm-1; EI MS m/z (%): 130 (35), 148 (45), 199 (47), 272 (35), 346 (28), 403 (2).

(4aS,6S,8aS)-6-hydroxy-3-methoxy-11-methyl-4a,5,11,12-tetrahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-10(9H)-one 

(12). To a stirred solution of 11 (102 mg, 0.253 mmol, 1 equiv) in dry DCE (15 mL) at room temperature, 

paraformaldehyde (30 mg, 1.55 mmol, 4 equiv) and CF3CO2H (283 μL, 3.80 mmol, 15 equiv) were added sequentially. The 

reaction mixture was stirred for 1.5 h. Then, the mixture was quenched with saturated aqueous NaHCO3 (10 mL), and 

extracted with DCM. The combined organic phase was washed with brine, and dried with Na2SO4. After removal of the 

solvent under reduced pressure, the residue was purified by column chromatography on silica gel (DCM : MeOH = 20:1) to 

afford the product 12 (62 mg, 81%) as a white foam. [α]D
25 = ‒117 (c = 0.20, CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.69 

(d, J = 8.2 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 5.84 (d, J = 10.2 Hz, 1H), 5.45 (dt, J = 10.2, 1.8 Hz, 1H), 4.71–4.66 (m, 2H), 

4.50 (d, J = 15.9 Hz, 1H), 4.23 (d, J = 15.9 Hz, 1H), 3.85 (s, 3H), 2.98 (s, 3H), 2.85 (s, 2H), 2.83–2.77 (m, 1H), 2.09 (d, J = 

6.7 Hz, 1H), 1.84–1.77 (m, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 171.1, 147.7, 144.6, 131.8, 131.6, 128.9, 125.4, 119.4, 

111.7, 87.6, 62.6, 56.1, 52.0, 43.4, 42.8, 35.7, 31.0; HRMS (ESI) calcd for C17H19NO4Na [M+Na]+: 324.1206, found: 

324.1201; IR (neat): 3404, 2922, 1631, 1618, 1433, 1278, 1050, 803, 734 cm-1; EI MS m/z (%): 115 (33), 197 (32), 229 

(25), 258 (9), 282 (12), 301 (100).

 (4aS,8aS)-3-methoxy-11-methyl-4a,5,11,12-tetrahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepine-6,10(9H)-dione (13). 

To a stirred solution of alcohol 12 (31 mg, 0.103 mmol, 1 equiv) in dry DCM (10 mL) at 0 ºC, NaHCO3 (43 mg, 0.515 

mmol, 5 equiv) and DMP (65 mg, 0.155 mmol, 1.5 equiv) were added. The reaction mixture was slowly warmed to room 

temperature and stirred for 2 h. Then the reaction was quenched with saturated NaS2O3 solution and extracted with EtOAc. 

The combined organic layer was washed with brine, dried with Na2SO4, and concentrated in vacuum. The crude product 

was purified by column chromatography on silica gel (petroleum ether : EtOAc = 1:2) to afford product 13 (28.5 mg, 93% 

yield) as a colorless oil. (All spectroscopic data of our synthetic compound 13 were in agreement with the ones reported in 

the literature9d.) [α]D
25 = ‒106 (c = 0.30, CHCl3); 1H NMR (600 MHz, CDCl3) δ 6.76–6.73 (m, 2H), 6.39 (dd, J = 10.2, 2.3 

Hz, 1H), 6.06 (d, J = 10.2 Hz, 1H), 4.85 (q, J = 2.8 Hz, 1H), 4.50 (d, J = 16.2 Hz, 1H), 4.41 (d, J = 16.2 Hz, 1H), 3.86 (s, 

3H), 3.17 (dd, J = 17.9, 2.9 Hz, 1H), 3.06 (s, 3H), 3.02 (d, J = 13.9 Hz, 1H), 2.96 (d, J = 13.8 Hz, 1H), 2.82 (dd, J = 17.9, 

3.2 Hz, 1H); 13C{1H} NMR (150 MHz, CDCl3) δ 193.5, 170.0, 147.8, 145.0, 144.6, 129.9, 127.8, 124.9, 120.2, 112.9, 87.1, 

56.3, 52.0, 43.9, 40.7, 36.4, 36.0; HRMS (ESI) calcd for C17H17NO4Na [M+Na]+: 322.1050, found: 322.1053; IR (neat): 

3404, 2924, 2368, 1686, 1639, 1439, 1284, 1164, 1119, 1069, 738 cm-1; EI MS m/z (%): 115 (29), 214 (21), 227 (50), 271 

(29), 299 (100).
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(‒)-galanthamine (1a). To a stirred solution of 13 (25 mg, 0.084 mmol, 1 equiv) in dry THF (6 mL) at −78 ºC, 

L-selectride (168 μL, 0.168 mmol, 1 mol/L, 2 equiv) was slowly added. After stirring for 10 min, LiAlH4 (29 mg, 0.756 

mmol, 9 equiv) at –78 ºC was added slowly. Then, the reaction mixture was stirred at 60 ºC for 2 h. After being cooled to 

room temperature, the reaction was carefully quenched with NaOH aqueous solution (3mol/L, 4 mL), and extracted with 

EtOAc. The combined extracts was dried over K2CO3, and concentrated in vacuum. The residue was purified by column 

chromatography on silica gel (DCM : MeOH = 15:1) to afford (‒)-galanthamine (1a) (17 mg, 71%). [α]D
25 = ‒93 (c = 0.30, 

CHCl3); (lit.10a: []D
25 = –91.3 (c = 1.0, CHCl3)); 1H NMR (400 MHz, CDCl3) δ 6.67 (d, J = 8.2 Hz, 1H), 6.63 (d, J = 8.2 

Hz, 1H), 6.07–5.99 (m, 2H), 4.62 (s, 1H), 4.15–4.11 (m, 2H), 3.84 (s, 3H), 3.72 (d, J = 15.1 Hz, 1H), 3.31 (t, J = 13.1 Hz, 

1H), 3.08 (d, J = 14.6 Hz, 1H), 2.69 (dd, J = 15.7, 3.4 Hz, 1H), 2.43 (s, 3H), 2.10 (td, J = 13.5, 3.1 Hz, 1H), 2.01 (ddd, J = 

15.7, 5.0, 2.4 Hz, 1H), 1.61 (dd, J = 13.8, 2.3 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 145.9, 144.3, 133.0, 127.8, 

126.6, 122.2, 111.3, 88.7, 62.0, 60.4, 55.9, 53.7, 48.1, 41.7, 33.5, 29.9; HRMS (ESI) calcd for C17H22NO3 [M+H]+: 

288.1594, found: 288.1595; IR (neat): 3369, 2924, 1624, 1593, 1508, 1439, 1282, 1167, 1068, 1047, 921, 731 cm-1; EI MS 

m/z (%): 115 (53), 128 (31), 174 (40), 216 (41), 244 (31), 270 (15), 286 (100), 287 (81).

2-((5aS,7R,9aR)-7-((tert-butyldimethylsilyl)oxy)-4-methoxy-6,7,8,9-tetrahydrodibenzo[b,d]furan-9a(5aH)-yl)acetaldehyd

e (14). To a stirred solution of 9 (300 mg, 0.64 mmol, 1 equiv) in MeOH (15 mL), Pd/C (30 mg) was added. The reaction 

was stirred at 35 °C under H2 atmosphere (1 atm) for 5 h. Then, the reaction mixture was concentrated in vacuum, and the 

dry DCM (20 mL), NaHCO3 (188 mg, 2.24 mmol, 3.5 equiv), and DMP (407 mg, 0.96 mmol, 1.5 equiv) were added 

sequentially at 0 °C. After stirring at room temperature for 1 h, the mixture was quenched with saturated Na2S2O3 solution, 

and extracted with EtOAc. The combined organic layer was dried with Na2SO4, and concentrated under reduced pressure. 

The residue was purified by column chromatography on silica gel (petroleum ether : EtOAc = 10:1) to afford product 14 

(195 mg, 81% yield) as a colorless oil. [α]D
25 = ‒33 (c = 0.30, CHCl3); 1H NMR (600 MHz, CDCl3) δ 9.71 (s, 1H), 6.88 (t, J 

= 7.8 Hz, 1H), 6.79 (t, J = 6.6 Hz, 2H), 4.72 (t, J = 5.6 Hz, 1H), 4.01 (brs, 1H), 3.87 (s, 3H), 2.71 (dd, J = 15.4, 2.7 Hz, 1H), 

2.63 (dd, J = 15.4, 2.0 Hz, 1H), 2.04–1.93 (m, 3H), 1.89–1.85 (m, 1H), 1.55–1.47 (m, 2H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 

3H); 13C{1H} NMR (150 MHz, CDCl3) δ 201.1, 146.5, 145.4, 134.4, 121.7, 115.1, 111.9, 87.0, 65.9, 55.9, 51.2, 45.9, 35.2, 

29.5, 29.3, 25.8, 18.0, -4.8; HRMS (ESI) calcd for C21H32O4SiNa [M+Na]+: 399.1962, found: 399.1958; IR (neat): 2929, 

2856, 1721, 1491, 1456, 1289, 1255, 1098, 1064, 1043, 872, 837, 775 cm-1; EI MS m/z (%): 201 (100), 275 (61), 319 (5), 

376 (5).

2-((5aS,7R,9aR)-7-((tert-butyldimethylsilyl)oxy)-4-methoxy-6,7,8,9-tetrahydrodibenzo[b,d]furan-9a(5aH)-yl)-N-methylac

etamide (15). To a stirred solution of 14 (181 mg, 0.48 mmol, 1 equiv) in dry CCl4 (18 mL), AIBN (3.9 mg, 0.024 mmol, 

0.05 equiv) and NBS (103 mg, 0.58 mmol, 1.2 equiv) were added sequentially. The flask was placed in an oil-bath 
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preheated at 95 °C, and the heterogeneous mixture was stirred for about 10 min. Then, the reaction mixture was cooled to 

0 °C and bubbled with dry CH3NH2 gas for 5 min, which was freshly prepared in situ from MeNH2•HCl and NaOH solid, 

and dried with a basic NaOH drying tower. After removal of CCl4 in vacuum, the residue was rapidly purified by column 

chromatography on silica gel (petroleum ether : EtOAc = 1:1) to afford the product amide 15 (157 mg, 81%) as a white 

foam. [α]D
25 = ‒23 (c = 0.30, CHCl3); 1H NMR (600 MHz, CDCl3) δ 6.85–6.82 (m, 1H), 6.79–6.77 (m, 1H), 6.77–6.75 (m, 

1H), 5.35 (m, 1H), 4.73 (t, J = 5.3 Hz, 1H), 3.98–3.95 (m, 1H), 3.85 (d, J = 2.5 Hz, 3H), 2.65 (dd, J = 4.8, 2.2 Hz, 3H), 

2.51–2.46 (m, 2H), 2.08–2.00 (m, 2H), 1.92–1.91 (m, 1H), 1.82–1.78 (m, 1H), 1.51–1.44 (m, 2H), 0.86 (s, 9H), 0.03 (s, 3H), 

0.02 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3) δ 170.4, 146.6, 145.2, 135.4, 121.3, 115.2, 111.7, 87.4, 66.0, 55.9, 46.4, 

44.4, 35.3, 29.8, 29.3, 26.1, 25.8, 18.0, -4.77, -4.78; HRMS (ESI) calcd for C22H35NO4SiNa [M+Na]+: 428.2228, found: 

428.2223; IR (neat): 3312, 2932, 2857, 1740, 1647, 1491, 1458, 1255, 1096, 1067, 873, 836, 776, 734 cm-1; EI MS m/z (%): 

201 (28), 260 (11), 275 (100), 333 (9), 348 (20), 405 (3).

(4aS,6R,8aR)-6-hydroxy-3-methoxy-11-methyl-4a,5,7,8,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-10(9H)

-one (16). To a stirred solution of 15 (157 mg, 0.388 mmol, 1 equiv) in dry DCE (15 mL), paraformaldehyde (47 mg, 1.55 

mmol, 4 equiv) and CF3CO2H (434 μL, 5.82 mmol, 15 equiv) were added sequentially at room temperature. The reaction 

mixture was stirred at ambient temperature for 1.5 h. Then the reaction was quenched with saturated aqueous NaHCO3 (10 

mL), and extracted with DCM. The combined organic phase was washed with brine, and dried with Na2SO4. After removal 

of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (DCM : MeOH = 

20:1) to afford the product 16 (97 mg, 83%) as a white amorphous solid. [α]D
25 = ‒70 (c = 0.30, CHCl3); 1H NMR (600 

MHz, CDCl3) δ 6.66 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 4.46 (brs, 1H), 4.38 (d, J = 16.1 Hz, 1H), 4.30 (d, J = 

16.1 Hz, 1H), 4.10–4.02 (m, 1H), 3.86 (s, 3H), 3.01 (s, 3H), 2.89 (d, J = 14.1 Hz, 1H), 2.86 (d, J = 14.0 Hz, 1H), 2.68–2.65 

(m, 1H), 1.86 (d, J = 12.5 Hz, 1H), 1.77 (d, J = 14.2 Hz, 1H), 1.70 (ddd, J = 14.8, 11.2, 3.6 Hz, 1H), 1.60 (t, J = 14.2 Hz, 

1H), 1.46 (dd, J = 25.2, 12.5 Hz, 1H); 13C{1H} NMR (150 MHz, CDCl3) δ 171.9, 146.3, 144.7, 136.3, 124.7, 119.1, 111.5, 

90.9, 66.4, 56.1, 52.0, 41.5, 40.2, 36.1, 34.3, 33.4, 30.1; HRMS (ESI) calcd for C17H22NO4 [M+H]+: 304.1543, found: 

304.1548; IR (neat): 3394, 2924, 2853, 1738, 1627, 1460, 1377, 1245, 1187, 1081, 970, 739 cm-1; EI MS m/z (%): 70 (100), 

188 (36), 230 (43), 231 (35), 303 (79).

(4aS,8aR)-3-methoxy-11-methyl-4a,5,7,8,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepine-6,10(9H)-dione (17). 

To a stirred solution of alcohol 16 (97 mg, 0.32 mmol, 1 equiv) in dry DCM (10 mL) at 0 ºC, NaHCO3 (134 mg, 1.60 mmol, 

5 equiv) and Dess-Martin periodinane (203 mg, 0.48 mmol, 1.5 equiv) were added. The reaction mixture was slowly 

warmed to room temperature and stirred for 2 h. Then, the reaction was quenched with saturated NaS2O3 solution, and 

extracted with EtOAc. The combined organic layer was washed brine, dried with Na2SO4, and concentrated in vacuum. The 
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crude product was purified by column chromatography on silica gel (petroleum ether : EtOAc = 1:2) to afford product 17 

(85 mg, 88% yield) as a colorless oil. (At this point, we had completed the asymmetric formal synthesis of (‒)-lycoramine 

and all spectroscopic data of our synthetic compound 17 were in agreement with the ones reported in the literature9d.) [α]D
25 

= ‒120 (c = 0.25, CHCl3); 1H NMR (600 MHz, CDCl3) δ 6.70 (dd, J = 18.4, 8.2 Hz, 2H), 4.83 (t, J = 3.0 Hz, 1H), 4.42 (dd, 

J = 25.2, 16.8 Hz, 2H), 3.85 (s, 3H), 3.06–3.02 (m, 1H), 3.02 (s, 3H), 2.99 (d, J = 13.8 Hz, 1H), 2.85 (d, J = 13.8 Hz, 1H), 

2.73 (dd, J = 17.6, 2.9 Hz, 1H), 2.39–2.34 (m, 1H), 2.30–2.24 (m, 1H), 2.04–2.01 (m, 2H); 13C{1H} NMR (150 MHz, 

CDCl3) δ 207.3, 171.3, 146.9, 144.5, 132.6, 124.9, 120.0, 112.5, 88.4, 56.3, 52.1, 43.6, 42.3, 39.4, 36.2, 35.8, 32.7; HRMS 

(ESI) calcd for C17H19NO4Na [M+Na]+: 324.1206, found: 324.1206; IR (neat): 3399, 2956, 2919, 2851, 1721, 1639, 1509, 

1460, 1439, 1285, 1186, 1075, 969 cm-1; EI MS m/z (%): 115 (18), 188 (23), 204 (28), 229 (29), 245 (21), 301 (100).

(‒)-lycoramine (1b). To a stirred solution of 17 (23 mg, 0.076 mmol, 1 equiv) in dry THF (6 mL) at −78 ºC, L-selectride 

(152 μL, 0.152 mmol, 1 mol/L, 2 equiv) was added slowly. After stirring for 10 min, LiAlH4 (26 mg, 0.684 mmol, 9 equiv) 

at –78 ºC was added slowly. The reaction mixture was stirred at 60 ºC for 2 h. After being cooled to room temperature, the 

reaction was carefully quenched with NaOH aqueous solution (3 mol/L, 4 mL), and extracted with EtOAc. The combined 

extract was dried with K2CO3, and concentrated in vacuum. The residue was purified by column chromatography on silica 

gel (DCM : MeOH = 15:1) to afford (‒)-lycoramine (1b) (16 mg, 73%). [α]D
25 = ‒83 (c = 0.35, EtOH) (lit.10b: []D

22 = –

89.3 (c = 0.35, EtOH)); 1H NMR (600 MHz, CDCl3) δ 6.66 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 4.38 (s, 1H), 4.09 

(s, 1H), 4.05 (d, J = 15.0 Hz, 1H), 3.86 (s, 3H), 3.67 (d, J = 15.0 Hz, 1H), 3.26 (t, J = 13.5 Hz, 1H), 3.08 (d, J = 14.3 Hz, 

1H), 2.51 (d, J = 16.1 Hz, 1H), 2.40 (s, 3H), 2.01–1.95 (m, 1H), 1.93–1.88 (m, 1H), 1.87–1.80 (m, 1H), 1.79–1.75 (m, 1H), 

1.74–1.67 (m, 2H), 1.60–1.54 (m, 1H); 13C{1H} NMR (150 MHz, CDCl3) δ 146.1, 144.3, 136.2, 127.9, 122.0, 111.0, 89.9, 

65.4, 60.2, 55.9, 54.0, 46.7, 41.5, 31.6, 31.1, 27.7, 23.8; HRMS (ESI) calcd for C17H24NO3 [M+H]+: 290.1751, found: 

290.1752; IR (neat): 3360, 2955, 2922, 2851, 1743, 1460, 1377, 1240, 1188, 1082, 969 cm-1; EI MS m/z (%): 115 (14), 187 

(8), 202 (10), 232 (8), 288 (100), 289 (67).
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