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MW ArF laser irradiation of gaseous cis-dichloroethene results in fast decomposition of this
compound and in deposition of solid ultrafine Cl- and H-containing carbonaceous powder which
is of interest due to its sub-microscopic structure and possible reactive modification of the C—Cl
bonds. The product was characterized by electron microscopy, and FTIR and Raman spectra and
it was revealed that HCl, H2, and C/H fragments are lost and graphitic features are adopted upon
heating to 700◦C.
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Introduction

There is great interest in laser-induced chemi-
cal vapor deposition of nanoscopic materials due to
many unique properties which they can offer. Vari-
ous carbon-based particles or coatings like amorphous
hydrogenated (e.g. Pola et al., 1996; Lindstam et al.,
2001), graphitic (e.g. Kitahama, 1988), highly Csp3-
based (Dischler & Bayer, 1990), or H-rich unsaturated
(e.g. Stenberg et al., 1997) carbon films, graphitic car-
bon nanopowders (e.g. Morjan et al., 2003; Galvez et
al., 2002), shell-shaped carbon nanoparticles (Choi et
al., 2004), carbon clusters and soot particles (Ehbrecht
et al., 1993) were obtained by laser-induced photolysis
and thermolysis of a number of gaseous hydrocarbon
precursors.
We have recently reported on chemical vapor depo-

sition of carbonaceous and silica-poly(oxocarbosilane)-
and chaoite-containing carbonaceous materials and
shown that these nanostructured materials can be pre-

pared by highly intense (MW) irradiation of gaseous
aromatic hydrocarbons from excimer lasers (Pola et
al., 2007, 2008a, 2008b).
To explore the possibilities of laser photolytic for-

mation of carbon-based materials from chlorinated
alkenes became of interest. These compounds are con-
sidered to belong to hazardous materials and their car-
bonization to a variety of cokes (Mochida et al., 1996)
also mechanistic studies of their thermal decomposi-
tion (Wu & Won, 2003) have attracted only limited
attention. There are numerous photolytic studies on
these compounds aimed at the recognition of the pri-
mary steps (cleavage of HCl, Cl2, and H2 (e.g. Berry,
1974; Umemoto et al., 1985; He et al., 1995; Chan-
dra et al., 2006; Hua et al., 2010)) and of the initial
volatile products, but there have been no attempts to
elucidate these photolyses as for structure and com-
position of the final solid products.
In this paper we report on the formation of

solid Cl- and H-substituted carbonaceous product
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obtained from MW ArF laser photolysis of cis-1,2-
dichloroethene. We assumed that this high-molecular
material is formed through the recombination of ear-
lier assumed but unspecified intermediary C/H/Cl
fragments. We also revealed that this carbonaceous
solid undergoes cleavage of C—Cl and C—H bonds
and C/H fragments upon heating to 700◦C and trans-
forms to graphitic carbon.

Experimental

Laser irradiation experiments were carried out us-
ing gaseous cis-1,2-dichloroethene (20 kPa) in ar-
gon (total pressure 100 kPa) introduced to a re-
actor described previously (Pola et al., 2007). The
dichloroethene sample was irradiated with an LPX
210i excimer (ArF) laser (Coherent, USA) operating
at a repetition frequency of 10 Hz. The laser pulses
(fwhm 23 ns, 280 mJ) were focused to an incident area
of 0.5 cm × 1.0 cm (fluence of 560 J cm−2). Progress
of the dichlorethene photolysis was monitored directly
in the reactor by FTIR spectroscopy (Shimadzu FTIR
IR Prestige-21 spectrometer, Japan) using the diag-
nostic absorption band at 580 cm−1. Aliquots of the
irradiated reactor content were sampled by a gastight
syringe (Dynatech Precision Sampling, USA) and ana-
lyzed by gas-chromatography-mass spectroscopy (Shi-
madzu QP 5050 mass spectrometer, Japan), a 60 m
capillary column Neutrabond-1, programmed temper-
ature of 30–200◦C. The deposited ultrafine material
was analyzed by FTIR spectroscopy and electron mi-
croscopy and thermal properties were determined by
thermogravimetric analysis (TGA).
FTIR spectra were obtained on thin layers of the

deposited powders accommodated between KBr plates
using a Nicolet Impact 400 spectrometer (USA).
SEM analyses were conducted using a Philips XL

30 CP scanning electron microscope (The Nether-
lands) equipped with an energy dispersive analyzer
EDAX DX 4 with a PV 9760/77 detector of X-ray
radiation (USA). Quantitative determination of C, O,
and Cl elements was performed using this assembly.
For image acquisition, a Robinson detector of BS elec-

trons able to work in low vacuum mode (65 Pa) was
used.
Thermogravimetric analysis of the solid deposit

(sample mass 0.5 mg) was conducted by heating the
sample up to 700◦C at the rate of 4◦C min−1 in a
stream of argon using digital recording balances Cahn
D-200 (CAHN Instruments, INC, Cerritos, USA).
Composition of the outgoing gases was analyzed by
a quadrupole mass spectrometer (VG Gas Analy-
sis LTD, Middlewich, England) enabling multiple (16
channel) ion monitoring as a time-dependent plot.
cis-1,2-Dichloroethene (Tokyo Chemical Industry,

Japan, purity higher than 99 %) was distilled prior to
use.

Results and discussion

ArF laser irradiation of gaseous cis-1,2-dichloro-
ethene (20 kPa) leads to visible luminescence, de-
pletion of dichloroethene, efficient formation of HCl
and a number of volatile products, and to a dark fog
that fills the reactor and deposits on its surface as
ultrafine powder. The observed visible luminescence
in the pulse spark is consistent with multiple pho-
ton dissociation and plasma formation. Volatile prod-
ucts are HCl, chloroethyne, 1,1-dichloroethene, trans-
1,2-dichloroethene, trichloroethene, trichloromethane,
1,1,2,2-tetrachloroethane, 1,1,1,3,-tetrachloropropene,
and 1,2,3,3-tetrachloro-1-propene (Fig. 1).
These compounds confirm that photolysis is a

complex process involving isomerization of the ini-
tial cis-1,2-dichloroethene to trans-1,2-dichloroethene,
HCl elimination to chloroethyne, and cleavage and
addition (or rearrangement) of H and Cl leading
to 1,1-dichloroethene. Other plausible reactions are:
a three-center elimination of HCl and isomeriza-
tion of chloroethyne, both leading to chlorovinyli-
dene which is capable, when added to dichloroethenes
and chloroethyne, of yielding three-membered cyclic
compounds that further rearrange to unsaturated
three-membered linear compounds. Thus, it was as-
sumed that the earlier observed H and Cl forma-
tion and Cl2, HCl, and H2 elimination (Umemoto

Fig. 1. GC/MS trace analysis of volatile products in ArF laser photolysis of cis-1,2-dichloroethene. Peak designation: 1 – Ar, 2 –
HCl, 3 – chloroethyne, 4 – 1,1-dichloroethene, 5 – trans-1,2-dichloroethene, 6 – cis-1,2-dichloroethene, 7 – trichloroethene,
8 – trichloromethane, 9 – 1,1,2,2-tetrachloroethane, 10 – 1,1,1,3,-tetrachloropropene, 11 – 1,2,3,3-tetrachloro-1-propene.
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Fig. 2. SEM images of ultrafine powder obtained after deposition (a) and subsequent heating to 700◦C (b).
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Fig. 3. FTIR spectrum of ultrafine powder obtained after deposition (a) and subsequent heating to 700◦C (b).

et al., 1985; He et al., 1995; Chandra et al., 2006;
Hua et al., 2010), along with the formation and rear-
rangement of the three-membered cyclic compounds,
are followed by further C—H and C—Cl bond ho-
molyses, rearrangements, molecular (Cl2, HCl, and
H2) elimination, and carbene additions allowing the
formation of high-molecular C/H/Cl unsaturated
compounds. The observed 1,1,2,2-tetrachloroethane,
1,1,1,3,-tetrachloropropene, and 1,2,3,3-tetrachloro-1-
propene serve as examples of intermediate products
arising from an addition of carbenes and/or addi-
tion/recombination of C-centered radicals; the ob-
served trichloromethane illustrates the possibility of
cleavage of bonds between carbon atoms in these in-
termediate products.
Approximately 38 mg of the ultrafine powder was

accumulated in five runs, each carried out using 8
min irradiation and driving the photolysis to the
progress of about 50 %. Scanning electron microscopy
confirmed fluffy submicron structures merged to
larger spongy agglomerates (Fig. 2a) and SEM-energy
dispersive X-ray (EDX)-derived stoichiometry C1.00
Cl0.098 O0.050 revealed chlorocarbon structure with

the C to Cl mole ratio of about 10 and tiny incor-
poration of O. The substantial decrease in the Cl con-
tent in the deposit as compared to the initial amount
of dichloroethene is related to the efficient cleavage of
C—Cl bonds. Low incorporation of O in the deposit is
compatible with the reactivity of the deposit towards
atmospheric oxygen.
The FTIR spectra (Fig. 3a) showed absorption

maxima at 3440 cm−1, 2840–2970 cm−1, 1730 cm−1,
and 1460 cm−1 and bands at 1370–970 cm−1 and 744–
600 cm−1 which could be assigned to ν(O—H), ν(C—
H), ν(C——O), ν(O—C—O), δ(C—H), and skeletal and
ν(C—Cl) vibrations, respectively. These spectra con-
firm the presence of the C—H and C—Cl bonds as
well as the incorporation of oxygen in the C——O and
O—H groups.
Raman spectrum of the deposited powder (Fig. 4a)

showed D and G bands of unsaturated sp2 carbon at
1350 cm−1 and 1600 cm−1, respectively. The G band
reflects bond stretches of all pairs of sp2 atoms in rings
and chains, and the D band corresponds to the breath-
ing modes of the rings (e.g. Dillon et al., 1984; Schwan
et al., 1996).
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Raman shift, cm–1 

Fig. 4. Raman spectrum of the deposit before (a) and after (b)
heating to 700◦C.
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Fig. 5. TGA of the deposited powder.

High molecular mass of the deposit was confirmed
by the low volatility at high temperatures: thermo-
gravimetric analysis (Fig. 5) revealed that the de-
posit experiences a continuous but small (ca. 30 %)
decrease in mass when heated to 700◦C. Major di-
agnostic single-ion peaks of the gaseous decompo-
sition products at m/z 2 (H2), 27 (a C2H3 frag-
ment), 36 (HCl), 37 (a C3H fragment), and 70 (Cl2)
(Fig. 6) confirm the cleavage of C—C, C—Cl, and C—
H bonds in the high-molecular mass (hydrogenated)
Cl-substituted carbonaceous network.
It has to be noted that the very sensitive TGA

technique (Galíková & Pola, 2008) permits the detec-
tion of traces of O2. The peak observed at m/z =
32 cannot, however, correspond to O2 because typi-
cal signal of O2 under similar conditions (argon flow,
temperature increase, sample mass) is by 2–3 orders of
magnitude lower. It can thus be assumed that the peak
at m/z = 32 corresponds to the formation of methanol
via hydrogenation of CO and CH2O produced by ther-
mal cleavage of the superficially oxygenated carbon
framework.
The above assignments of single ion peaks are in

agreement with spectral properties of the heated pow-
der. The SEM-EDX analysis showed that the heated
powder retains its morphology (Fig. 2b) and that it
lacks Cl. The FTIR spectrum (Fig. 3b) confirmed the
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Fig. 6. Diagnostic single-ion traces obtained upon heating of
the deposit.

depletion of the C—Cl bands and the growth of the
C——C band. The latter feature is supported by the
Raman spectrum (Fig. 4b) showing better developed
D and G bands; the sharper G and more intense D
band are accountable for by a more pronounced sp2

bonding of the carbon network and a higher content
of ring structures.
Spectral and EDX-SEM analyses of the deposited

powder are thus in agreement with the carbonaceous
structure and some content of H—C and C—Cl bonds,
whereas the spectral changes and TGA analysis re-
vealed that the deposited powder undergoes cleav-
age of the C—Cl and C—H bonds and transforms to
graphitic carbon.
It was observed that the deposited submicroscopic

chlorohydrocarbon has a potential for the synthesis of
nanoscopic carbonaceous materials with organic func-
tional groups because it may undergo reactions with
various reagents like nucleophiles, chlorosilanes, or hy-
dridosilanes and replace thus the –Cl substituent by
e.g. –OH, –OR, and alkoxysilyl groups (Komuro et al.,
2002; Bykovchenko et al., 1965; Okamoto et al., 2001).

Conclusions

ArF laser photolytic decomposition of cis-dichloro-
ethene yields gaseous HCl and a number of volatile
chlorohydrocarbons, and it allows concomitant depo-
sition of an ultrafine solid Cl- and H-containing car-
bonaceous deposit.
SEM-determined morphology of the deposited

powder is described as sub-µm-sized fluffy agglom-
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erates and SEM-EDX-elemental composition corre-
sponds to C1.00Cl0.098O0.050 reflecting low incorpora-
tion of O upon the exposition of the powder to atmo-
sphere.
TGA analysis of the powder revealed a small sam-

ple mass decrease due to the elimination of HCl, H2,
and H/C fragments.
FTIR and Raman spectra of the deposited and

subsequently TGA-heated powder are consistent with
structural modification of the heated powder and de-
velopment of graphitic features.
The deposited chlorohydrocarbon has a potential

for substituting the C—Cl bonds by other functional
groups.
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