Synthesis of $\boldsymbol{\beta}$-Methoxyacrylate Natural Products Based on Box-Pd ${ }^{\text {II }}$ Catalyzed Intermolecular Methoxycarbonylation of Alkynoles

Satoshi Motodate, ${ }^{[a]}$ Takuya Kobayashi, ${ }^{[a]}$ Mikio Fujii, ${ }^{[a]}$ Tomoyuki Mochida, ${ }^{[b]}$ Taichi Kusakabe, ${ }^{[a]}$ Shigeki Katoh, ${ }^{[\text {c] }]}$ Hiroyuki Akita, ${ }^{[a]}$ and Keisuke Kato ${ }^{*[a]}$

Abstract

Bis(oxazoline)-palladium(II) catalyzed carbonylation of homopropargyl alcohols afforded acyclic methoxyacrylate $\mathbf{2}$ and 6-membered lactone $\mathbf{3 a - k}$ in good combined yield. In the case of propargyl alcohols, 5 -membered lactones $\mathbf{3 p}, \mathbf{3 q}, 16$ were obtained in moderate yields. The one-pot synthesis of kawa lactones $\mathbf{3 a}, \mathbf{3 r}$, 3s and formal synthesis of dihydroxycystothiazole A and dihydroxycystothiazole C are presented. To elucidate the stereochemistry of (+)-annularin G and (-)-annularin H , the first asymmetric syntheses of these natural products were achieved.

Introduction

The β-methoxyacrylate system is a common structural motif present in biologically active natural products, such as dihydrokawain ${ }^{[1 a]}$ (and related 6-membered lactones ${ }^{[1 b-e, \text {, ,od] }]}$), tetronic acids ${ }^{[2 a]}$ (and related 5-membered lactones ${ }^{[2 b-e]}$), and β-methoxyacrylate antibiotics. ${ }^{[3]}$ Thus, the practical construction of the β-methoxyacrylate system is attractive for the synthesis of these natural products. Palladium-catalyzed carbonylation of alkynes has provided several kinds of transformations. ${ }^{[4]}$ Although the intermolecular methoxycarbonylation of terminal alkynes is considered to be a useful method for the direct conversion of terminal alkyne units to β-me-
[a] S. Motodate, T. Kobayashi, M. Fujii, Dr. T. Kusakabe, Prof. H. Akita, Prof. K. Kato
Faculty of Pharmaceutical Sciences
Toho University
2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan)
Fax: (+81) 474-721-825
E-mail: kkk@phar.toho-u.ac.jp
[b] Prof. T. Mochida
Department of Chemistry, Faculty of Science
Kobe University
Rokkodai, Nada, Kobe 657-8501 (Japan)
[c] S. Katoh
Department of Respiratory Medicine
Kawasaki Medical School 577, Matsushima, Kurashiki, Okayama 701-0192 (Japan)Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201000292.
thoxyacrylate units, the intermolecular addition of alcohols to alkynes is more difficult to accomplish than the intramolecular process, ${ }^{[5-7]}$ requiring stronger π-Lewis acid catalysts. ${ }^{[8]}$ In our preliminary communication, we reported the intermolecular methoxycarbonylation of terminal alkynes catalyzed by palladium(II) bisoxazoline (box) complexes (Scheme 1). ${ }^{[9]}$ The box ligand enhances the π electrophilicity

Scheme 1. Previous work. ${ }^{[9]}$
of $\mathrm{Pd}^{\text {II }}$ complexes, ${ }^{[7, \mathrm{c}, \mathrm{d}, 10]}$ which leads to effective activation of the triple bond. Herein, we report the direct conversion of homopropargyl and propargyl alcohols to β-methoxyacrylates, and its application to the synthesis of natural products containing 4-methoxyfuran-2-one, acyclic β-methoxyacrylate, and 4-methoxy-2-pyrone structures (Scheme 2).

Scheme 2. This work.

Results and Discussion

Tamaru et al. reported the palladium-catalyzed carbonylation of 4-alkyl (or 4-aryl)-3-butyne-1-ols for which MeOH attacked the C 4 position of the alkyne to afford 5-membered lactones 4, but the reaction of terminal alkynes was not described (Scheme 3). ${ }^{[4 \mathrm{c}]}$

Scheme 3. Tamaru et al. ${ }^{[4 c]}$

Therefore, initial experiments were carried out by the reaction of $\mathbf{1 a}$ under the reported conditions (Scheme 4). However, maleate derivatives ${ }^{[4 \mathrm{p}]} 5 \mathbf{5 a}$ and $\mathbf{6 a}$ were obtained together with an unidentified mixture instead of the desired β-methoxyacrylates 2a, 3a, and 4a.

Scheme 4. Carbonylation of $\mathbf{1 a}$ under the Tamaru's conditions.

The reaction conditions were then changed to those used for our previously reported $\mathrm{Pd}^{\mathrm{II}} / p$-benzoquinone catalytic system (Scheme 5). ${ }^{[5-7,9]}$ The reaction of 1a with $\left[\mathrm{Pd}(\mathrm{tfa})_{2}\right]$

Scheme 5. Carbonylation of $\mathbf{1}$ a by using various catalysts.
($5 \mathrm{~mol} \%$) and p-benzoquinone (2 equiv) in the absence of the ligand in methanol under a carbon monoxide atmosphere (balloon) afforded acetylene carboxylate derivative ${ }^{[4 d]}$ 7a (37%) and maleate derivative 5a (19%) with a small amount of 2a (8%). Although the use of $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}\right]$ resulted in increased yields of β-methoxyacrylate 2a (12%) and six-membered lactone $\mathbf{3 a}(12 \%)$, 5a was also produced in 19% yield. As mentioned previously, ${ }^{[7, \mathrm{c}, \mathrm{d}, 9,10]}$ the phosphine ligand seemed to be ineffective for reactions of this type, that is, the $\left[\mathrm{Pd}(\mathrm{tfa})_{2}\right]$ complex of (S)-BINAP gave $7 \mathbf{a}$ (20%), and $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}\right]$ did not show catalytic activity. Bipyridine- PdCl_{2} complex and $(-)$-sparteine- $\left[\mathrm{Pd}(\mathrm{tfa})_{2}\right]$ com-
plex also gave no reaction. Next, we used the box ligand depicted in Figure 1 according to our previous results. ${ }^{[7, \mathrm{c}, \mathrm{d}, 9]}$

Figure 1. Box ligands for Table 1.

As expected, the reaction proceeded smoothly in the presence of (S)-Phbox $\mathbf{A},(S)$-iPrbox \mathbf{B}, and (R)-Bnbox \mathbf{E}, affording acyclic methoxyacrylate 2a and six-membered lactone 3a in 59-66\% combined yields (Scheme 1, Table 1, en-

Table 1. Intermolecular methoxycarbonylation of homopropargyl alcohol $\mathbf{1 a}(\mathrm{R}=$ Phenethyl, $n=1)$: screening of box ligands (Scheme 2).

Entry	Ligand	Yield of $\mathbf{2 a}[\%]$ $(e e)$	Yield of 3a [\%] $(e e)$	Combined yield [\%]
1	$(\mathbf{S})-\mathbf{A}$	$53(4)$	$13(12)$	66
2	(S)-B	$34(2)$	$25(4)$	59
3	(S)-E	$17(4)$	$42(4)$	59
4	\mathbf{H}	35	25	60
5	(S)-C	$48(6)$	$23(5)$	71
6	$(\pm)-\mathbf{F}$	44	23	67
7	$(\mathbf{S})-\mathbf{D}$	$56(0)$	$23(6)$	79
8	$(\pm)-\mathbf{G}$	65	23	88

tries 1-3). Although effective kinetic resolution (or parallel kinetic resolution) was not observed, Phbox \mathbf{A} seems to be more effective than alkyl substituted boxes \mathbf{B} and \mathbf{E}. Thus, we examined other kinds of aryl-boxes $\mathbf{C}, \mathbf{D}, \mathbf{F}, \mathbf{G}$, and \mathbf{H} (entries 4-8). Among them, (\pm) $-3,5,3^{\prime}, 5^{\prime}-t \mathrm{Bu}_{4} \mathrm{Phbox} \mathbf{G}$ gave the best combined yield (entry 8). With the optimized conditions in hand, the reaction of different substrates was examined to explore the scope of the reaction (Table 2, Scheme 6).

For substrates 1a-d with alkyl substituents, the reaction proceeded well (Table 2, entries 1-4). The alkenyl and aryl series $\mathbf{1 e - i}$ and furyl substituents $\mathbf{1 j}$ and $\mathbf{1 k}$ gave satisfactory results (entries 5-11). The reaction of protected homopropargyl alcohols 11-o provided acyclic β-methoxyacrylates $\mathbf{2 1} \mathbf{- o}$ in moderate yields (entries 12-15). In the case of propargyl alcohols $\mathbf{1 p}$ and $\mathbf{1 q}$, ligands (\pm)-A and (\pm)-E gave better results, affording five-membered lactones $\mathbf{3 p}$ and $\mathbf{3 q}$ in 58 and 53% yields, respectively (Scheme 7).

As an application of these reactions, we describe new syntheses of β-methoxyacrylate natural products. Kawa lactones are 2-pyrones and 5,6-dihydro-2-pyrones found in the roots, stem, and rhizomes of the kawa plant (Piper mythisticum), which grows in the Pacific Islands. ${ }^{[1]}$ Extracts of the root and stem of this plant are utilized in folk medicine. Analgesic, anesthetic, antifungal, antithrombotic, anticonvulsive, and muscle-relaxing properties have been reported. ${ }^{[1 f]}$ The reaction of $\mathbf{1 a}, \mathbf{1 r}$, and $\mathbf{1 s}$, using the conditions depicted in

Table 2. Intermolecular methoxycarbonylation of homopropargyl alcohol 1 (Scheme 6).

Entry	R^{1}	R^{2}	Yield [\%]	Yield [\%]	Combined yield [\%]
1	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	H	2a: 65	3a: 23	88
2	Bn	H	2b: 56	3b: 27	83
3	nonyl	H	2c: 52	3c: 31	83
4	cyclohexyl	H	2d: 47	3d: 35	82
5	(E) $-\mathrm{PhCH}=\mathrm{CH}$	H	2e: 62	3e: 15	77
6	Ph	H	2f: 58	3f: 29	87
7	4-MeO-Ph	H	2g: 60	3g: 34	94
8	$4-\mathrm{Cl}-\mathrm{Ph}$	H	2h: 54	3h: 26	80
9	2-naphthyl	H	2i: 58	3i: 26	84
10	2-furyl	H	2j: 43	3j: 30	73
11	3-furyl	H	2k: 45	3k: 35	80
12	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	Me	21: 63	-	-
13	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	Ac	2m: 50	-	-
14	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	MOM	2n: 58	-	-
15	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	TBDMS	20:53	-	-

tion and subsequent desilylation gave the primary alcohol. This was treated with benzoyl chloride followed by deprotection of the ethoxyethyl group to afford homopropargyl alcohol (-)-1t. The intermolecular methoxycarbonylation of (-)-1t (under the conditions depicted in Scheme 7), using (R)-Phbox ligand, afforded acyclic β-methoxyacrylate $(+)-2 t$ and 6 membered lactone $(+)-\mathbf{3 t}$ in 61% and 20% yields, respectively. The use of (S)-Phbox resulted in slightly decreased

Scheme 6. Intermolecular methoxycarbonylation of homopropargyl alcohol 1.

Scheme 7. Intermolecular methoxycarbonylation of propargyl alcohol 1.

Scheme 5, followed by a one-pot treatment with (+)-10camphorsulfonic acid (CSA) or $\mathrm{K}_{2} \mathrm{CO}_{3}$, afforded (\pm)-dihydrokawain 3a, (\pm)-tetrahydroyangonin 3r, and (\pm)-dihydromethysticin 3 s in 73,71 , and 67% yields, respectively (Scheme 8). ${ }^{[1 \mathrm{~h}, \mathrm{i}, \mathrm{m}]}$

Scheme 8. One-pot synthesis of kawa lactones $\mathbf{3 a}, \mathbf{3 r}$, and $\mathbf{3 s}$.

Antifungal substances, myxothiazoles and cystothiazoles, were isolated from different strains of the myxobacteria Cystobacter fuscus and Archangium gephyra, respectively. ${ }^{[3]}$ Dihydroxycystothiazole A and dihydroxycystothiazole C are known metabolites of cystothiazole $\mathrm{A},{ }^{[3 \mathrm{~b}]}$ and the synthesis of these compounds from the β-methoxyacrylate (+)-10 was reported by our laboratory. ${ }^{[3 g]}$ The substrate $\mathbf{1 t}$ was prepared from known hydroxyester (-)-8 (Scheme 9). ${ }^{[3 i]}$ Protection of the secondary hydroxyl group of $(-) \mathbf{- 8}$ followed by reduc-

Scheme 9. Formal chiral synthesis of cystothiazoles.
yields [(+)-2t: 56\% and (+)-3t: $17 \%]$. Hydrolysis of (+)-2t with lipase OF to avoid lactonization followed by silylation gave (+)-10, which is a known precursor for the synthesis of cystothiazoles.

Annularin G and annularin H were isolated from the organic extracts of the freshwater fungus Annulatascus triseptatus. ${ }^{[2 b]}$ Although the stereochemistry at C-7 of annularin G was proposed to be the same as in annularin A, the stereochemistry at $\mathrm{C}-5$ of annularins G and H was not determined (Figure 2). This prompted us to investigate the stereochemistry by asymmetric total synthesis.

Figure 2. Annularins.

At first, the known secondary alcohol (S)-11 ${ }^{[11]}$ was prepared by enzymatic reduction based on the proposed stereochemistry (Scheme 10). ${ }^{[15]}$

Protection ${ }^{[12]}$ of $(+) \mathbf{- 1 1}$, followed by reduction of the ester group and subsequent oxidation, furnished aldehyde (+)13. ${ }^{[13]}$ Nucleophilic addition of TMS-acetylide, followed by desilylation, afforded a mixture of $(+)-\mathbf{1 4 a}$ and $(+)-\mathbf{1 4 b}$

Scheme 10. Synthesis of $(+) \mathbf{- 1 4 a}$ and $(+) \mathbf{- 1 4 b}$.
(ratio $=1: 1.5$) separable by column chromatography. The stereochemistry was determined by conversion to known diol (+)-15a. ${ }^{[14]}$
The intermolecular methoxycarbonylation of diastereomeric propargyl alcohols $(+)-\mathbf{1 4 a}$ and $(+)-\mathbf{1 4 b}$ under Conditions A afforded $(+)-\mathbf{1 6 a}$ and $(+)-\mathbf{1 6 b}$ in moderate yields, respectively (Scheme 11). The use of (S)-Phbox, (R)-Phbox,

Scheme 11. Synthesis of annularin G and annularin H.
and cationic complex $\left.\left[\{(S)-\operatorname{Phbox}\} \operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}\right]$ gave similar results: $(+)$-16a was obtained in 55,52 , and 52% yields, respectively. (+)-Annularin G [(+)-17a] and its diastereomer $(+) \mathbf{- 1 7 b}$ were obtained by deprotection of the benzyl group. The absolute stereochemistry of (+)-annularin G was unequivocally determined to be in the ($5 R, 7 S$) configuration. Eventually, the natural (-)-annularin H [(-)$\mathbf{1 8} \mathbf{b}$] was obtained by oxidation of the unnatural diastereomer (+)-17b, and its absolute configuration at $\mathrm{C}-5$ was determined to be (S).
Next, to investigate the mechanism of the present reaction, some control reactions were performed (Schemes 12 and 13). Formation of acetylene carboxylate, as reported in the literature, ${ }^{[4 d]}$ and the ensuing 1,4 -addition of MeOH

Scheme 12. Intermolecular methoxycarbonylation of acetylene carboxylates $\mathbf{7 a}$

Scheme 13. Control experiments for interconversion between 2a and 3a.
were conceivable. However, the process was ruled out by experiments using acetylene carboxylates $7 \mathbf{7}$.

Intermolecular methoxycarbonylation of $\mathbf{7 a}$ gave diesters 19 with recovery of the substrate. Next, the products 2 a and 3a were treated under the previous reaction conditions (Scheme 13). Interconversion between 2a and 3a was not observed. These results indicated that these products $2 \mathbf{2 a}$ and 3a were produced by independent pathways. Based on these control experiments, a plausible mechanism for the reaction is shown in Scheme 14.

Scheme 14. Plausible mechanism.

The β-methoxyacrylate 2 should be produced via Path A, because the reaction of simple terminal alkynes without hydroxyl groups proceeded well. ${ }^{[9]}$ The triple bond of $\mathbf{1}$ coordinates to box- $\mathrm{Pd}^{\mathrm{II}}$, and intermediate $\mathbf{A 1}$ undergoes nucleophilic attack by MeOH to produce the vinyl palladium intermediate A2. This is followed by CO insertion and methanolysis to provide acyclic β-methoxyacrylate 2. On the other hand, the assistance of the hydroxyl group is also important. The 6 -membered lactone $\mathbf{3}$ should be produced by reductive elimination of the intermediates $\mathbf{A}^{\prime} \mathbf{1}$ through Path A^{\prime}.

Conclusions

In conclusion, we have demonstrated the direct conversion of homopropargyl and propargyl alcohols to β-methoxyacrylates with the aid of the box ligand. The present reaction is considered to be a useful method for the construction of 4-methoxy-2-pyrone, acyclic β-methoxyacrylate, and 4-me-thoxyfuran-2-one structures. One-pot synthesis of kawa lactones $\mathbf{3 a}, \mathbf{3 g}$, and $\mathbf{3 r}$, chiral formal synthesis of dihydroxycystothiazoles and the first asymmetric synthesis of (+)-annularin G and $(-)$-annularin $\mathrm{H}^{[2 b]}$ were also achieved.

Experimental Section

General Remarks

See Supporting Information for general experimental details, as well as procedures for the preparation and characterization of all precursors and products.

General Procedure for the Intermolecular Methoxycarbonylation

A 30 mL two-necked round-bottom flask containing a magnetic-stirring bar, $\left[\mathrm{Pd}(\mathrm{tfa})_{2}\right] \quad(0.015 \mathrm{mmol})$, ligand $(0.0225 \mathrm{mmol}), p$-benzoquinone (0.6 mmol), and $\mathrm{MeOH}(5 \mathrm{~mL})$ was fitted with a rubber septum and a three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pump-filling through the three-way stopcock. A MeOH solution (1 mL) of substrate $\mathbf{1}$ $(0.3 \mathrm{mmol})$ was added to the stirred solution by syringe. The remaining substrate was washed in $\mathrm{MeOH}(1 \mathrm{~mL})$ twice. After stirring for $8-48 \mathrm{~h}$, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $5 \% \mathrm{NaOH}(40 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc afforded methoxyacrylate 2 and lactone 3.
(2E)-5-Hydroxy-3-methoxy-7-phenyl-2-heptenoic Acid Methyl Ester (2 a)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.79-1.85(2 \mathrm{H}, \mathrm{m}), 2.67-2.75(1 \mathrm{H}$, m), 2.79-2.87 ($2 \mathrm{H}, \mathrm{m}$), $3.04(1 \mathrm{H}, \mathrm{dd}, J=8.4,13.6 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{d}, J=$ $5.6 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.87-3.94(1 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}, \mathrm{s}), 7.15-$ $7.29 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=31.9,39.6,39.7,51.2,55.6,70.1$, $92.3,125.7,128.3$ (2C), 128.5 (2C), 142.2, 169.5, 173.7 ppm ; IR (neat): $\tilde{v}=$ 3437, 1709, 1617, $1133 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$: 264.1362 ; found: 264.1360 .

(\pm)-Dihydrokawain (3 a) ${ }^{[l h]}$

Colorless needles; m.p.: $59-61^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.88-1.97(1 \mathrm{H}$, m), 2.09-2.18 ($1 \mathrm{H}, \mathrm{m}$), $2.30(1 \mathrm{H}, \mathrm{dd}, J=4.017 .0 \mathrm{~Hz}), 2.51(1 \mathrm{H}$, ddd, $J=$ $1.6,12.0,17.0 \mathrm{~Hz}), 2.74-2.92(2 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}$, octet, $J=$ $4.0 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 7.18-7.31 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.9,33.0,36.3,56.0,74.8,90.3,126.1,128.4$ (2C), 128.5 (2C), 140.8, 167.2, 172.7 ppm ; IR (neat): $\tilde{v}=3083,2937,1693,1626$, $1401 \mathrm{~cm}^{-1}$; HRMS-EI:m/z: $\left[M^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}: 232.1099$; found: 232.1094.

(2E)-5-Hydroxy-3-methoxy-6-phenyl-2-hexenoic Acid Methyl Ester (2 b)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.77-2.89(3 \mathrm{H}, \mathrm{m}), 3.00-3.05(2 \mathrm{H}$, $\mathrm{m}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 4.10-4.16(1 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}, \mathrm{s}), 7.10-$ $7.32 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=39.2,44.3,51.2,55.7,71.5,92.4$, $126.3,128.4$ (2C), 129.5 (2C), $138.4,169.3,173.7 \mathrm{ppm}$; IR (neat): $\tilde{v}=3451$, 2946, 1709, 1617, $1133 \mathrm{~cm}^{-1}$; HRMS-APCI: $m / z:[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4}$: 251.1278; found: 251.1282.

5,6-Dihydro-4-methoxy-6-(phenylmethyl)-2H-pyran-2-one (3 b)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.25(1 \mathrm{H}, \mathrm{dd}, J=3.8,17.1 \mathrm{~Hz}), 2.47$ $(1 \mathrm{H}, \mathrm{ddd}, J=1.6,11.6,17.1 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=7.4,13.8 \mathrm{~Hz}), 3.17(1 \mathrm{H}$, $\mathrm{dd}, J=5.8,13.8 \mathrm{~Hz}), 3.70(3 \mathrm{H}, \mathrm{s}), 4.56-4.64(1 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}, \mathrm{d}, J=$ $1.6 \mathrm{~Hz}), 7.22-7.34 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=32.2,40.9,56.0$, $76.4,90.3,127.0,128.7$ (2C), 129.6 (2C), 135.9, 167.1, 172.8 ppm ; IR (neat): $\tilde{v}=2945,1702,1620,1389,1212 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$: 218.0943; found: 218.0941.

(2E)-5-Hydroxy-3-methoxy-2-tetradecenoic Acid Methyl Ester (2 c)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.26(14 \mathrm{H}$, br-s), 1.44-1.54 ($2 \mathrm{H}, \mathrm{m}$), $2.77(1 \mathrm{H}, \mathrm{dd}, J=3.4,13.6 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{d}, J=$ $3.4 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=8.8,13.6 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.85$ $(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 5.14 \mathrm{ppm}(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1,22.7,25.5,29.3$, 29.6, 29.6, 29.7, 31.9, 38.0, 39.8, 51.2, 55.7, 70.8, $92.2,169.4,174.1 \mathrm{ppm}$; IR (neat): $\tilde{v}=3485,2924,2853,1619,1137 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4}$: 286.2144 ; found: 286.2142 .

5,6-Dihydro-4-methoxy-6-nonyl-2H-pyran-2-one (3c)

Colorless needles; m.p.: $60-62{ }^{\circ} \mathrm{C}$ (hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.88$ $(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.26(12 \mathrm{H}, \mathrm{br}-\mathrm{s}), 1.37-1.54(2 \mathrm{H}, \mathrm{m}), 1.59-1.67(1 \mathrm{H}$, m), $1.76-1.85(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{dd}, J=3.8,17.1 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{ddd}, J=$ $1.3,11.8,17.1 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 4.33-4.40(1 \mathrm{H}, \mathrm{m}), 5.14 \mathrm{ppm}(1 \mathrm{H}, \mathrm{d}, J=$ $1.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1,22.6,24.8,29.2,29.3,29.4,29.5,31.8$, 33.0, 34.7, 55.9, 75.9, 90.3, 167.4, 172.8 ppm ; IR (KBr): $\tilde{v}=3388,3083$, 2915, 2847, 1713, $1627 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3}$: 254.1882; found: 254.1876.
(2E)-5-Cyclohexyl-5-hydroxy-3-methoxy-2-pentenoic Acid Methyl Ester (2d)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.01-1.30(5 \mathrm{H}, \mathrm{m}), 1.35-1.44(1 \mathrm{H}$, m), 1.65-1.89 ($5 \mathrm{H}, \mathrm{m}), 2.67(1 \mathrm{H}, \mathrm{dd}, J=2.8,13.4 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{br}-\mathrm{s})$, $3.07(1 \mathrm{H}, \mathrm{dd}, J=10.0,13.4 \mathrm{~Hz}), 3.61(1 \mathrm{H}$, br-s $), 3.67(3 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}$, s), $5.15 \mathrm{ppm}(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=26.2,26.3,26.6,27.9,28.8$, $37.0,44.5,51.2,55.7,74.9,92.1,169.6,174.9 \mathrm{ppm}$; IR (neat): $\tilde{v}=3464$, 2924, 2851, 1617, $1133 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}$: 242.1518; found: 242.1519 .

6-Cyclohexyl-5,6-dihydro-4-methoxy-2H-pyran-2-one (3d)
Colorless needles; m.p.: $80-81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.02-1.32(5 \mathrm{H}$, m), $1.60-1.81(5 \mathrm{H}, \mathrm{m}), 1.95-1.98(1 \mathrm{H}, \mathrm{m}), 2.26(1 \mathrm{H}, \mathrm{dd}, J=3.8,17.0 \mathrm{~Hz})$, $2.53(1 \mathrm{H}$, ddd, $J=1.6,12.6,17.0 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 4.11-4.17(1 \mathrm{H}, \mathrm{m})$, $5.13 \mathrm{ppm}(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=25.8,25.9,26.3,28.2$, 28.3, 30.3, 41.5, 56.0, 80.0, 90.4, 167.6, 173.2 ppm ; $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=3094$, 2937, 2853, 1700, $1631 \mathrm{~cm}^{-1}$; HRMS-EI: $\mathrm{m} / \mathrm{z}:\left[M^{+}\right]$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$: 210.1256; found: 210.1257.
(2E,6E)-5-Hydroxy-3-methoxy-7-phenyl-2,6-heptedienoic Acid Methyl Ester (2e)
Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.91(1 \mathrm{H}, \mathrm{dd}, J=4.0,13.3 \mathrm{~Hz}), 3.18$ $(1 \mathrm{H}, \mathrm{dd}, J=8.6,13.3 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 4.59$ $(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 5.17(1 \mathrm{H}, \mathrm{s}), 6.27(1 \mathrm{H}, \mathrm{dd}, J=5.8,15.7 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=$ $15.7 \mathrm{~Hz}), 7.20-7.38 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=40.2,51.2,55.7$, $71.2,92.6,126.5$ (2C), $127.4,128.4$ (2C), 129.5, 131.9, 136.8, 169.4, 172.9 ppm ; IR (neat): $\tilde{v}=3421,2947,1708,1617,1135 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$: 262.1205; found: 262.1203.

(\pm)-Kawain ($\mathbf{3} \boldsymbol{e})^{[I h]}$

Colorless needles; m.p.: $142-143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.55(1 \mathrm{H}$, dd, $J=4.4,17.2 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{ddd}, J=1.2,10.2,17.2 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 5.04-$ $5.09(1 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=6.2,16.1 \mathrm{~Hz})$, $6.74(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 7.26-7.41 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ $33.3,56.1,75.9,90.6,125.5,126.7$ (2C), 128.3, 128.7 (2C), 133.2, 135.7, 166.7, 172.3 ppm ; IR (KBr): $\tilde{v}=3076,2920,1703,1625,1230 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}: 230.0943$; found: 230.0947 .
(2E)-5-Hydroxy-3-methoxy-5-phenyl-2-pentenoic Acid Methyl Ester (2f)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.91(1 \mathrm{H}, \mathrm{dd}, J=3.6,13.6 \mathrm{~Hz}), 3.32$ $(1 \mathrm{H}, \mathrm{dd} J=9.6,13.6 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 4.96-$ $4.99(1 \mathrm{H}, \mathrm{m}), 5.18(1 \mathrm{H}, \mathrm{s}), 7.24-7.44 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=42.4,51.3,55.8,72.9,92.6,125.5$ (2C), 127.4, 128.3 (2C), 144.5, 169.6, 173.3 ppm ; IR (neat): $\tilde{v}=3431,2947,1706,1616,1133 \mathrm{~cm}^{-1}$; HRMS-EI: $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}: 236.1049$; found: 236.1048 .

5,6-Dihydro-4-methoxy-6-phenyl-2H-pyran-2-one (3f)

Spectral data were identical with those reported in the literature. ${ }^{[1]]}$
(2E)-5-Hydroxy-3-methoxy-5-(4-mthoxyphenyl)-2-pentenoic Acid Methyl Ester ($\mathbf{2 g}$)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.89(1 \mathrm{H}, \mathrm{dd}, J=3.5,13.6 \mathrm{~Hz}), 3.30$ $(1 \mathrm{H}, \mathrm{dd}, J=9.7,13.6 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.93$ $(1 \mathrm{H}, \mathrm{dd}, J=3.5,9.7 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{s}), 6.86-6.89(2 \mathrm{H}, \mathrm{m}), 7.33-7.36 \mathrm{ppm}$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=42.3,51.2,55.2,55.7,72.4,92.4,113.7$ (2C), 126.7 (2C), 136.6, 158.8, 169.5, 173.3 ppm ; IR (neat): $\tilde{v}=3436,2948$, 1707, 1611, $1133 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$: 266.1154; found: 266.1157 .

5,6-Dihydro-4-methoxy-6-(4-methoxyphenyl)-2H-pyran-2-one (3g)

Colorless needles; m.p.: $98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.55(1 \mathrm{H}$, dd, $J=3.8,17.1 \mathrm{~Hz}), 2.83(1 \mathrm{H}$. ddd, $J=1.4,12.3,17.1 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{dd}, J=3.8,12.3 \mathrm{~Hz}), 6.89-6.93$ $(2 \mathrm{H}, \mathrm{m}), 7.32-7.35 \mathrm{ppm}(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=34.9,55.3,56.1$, $77.0,90.5,114.0$ (2C), 127.5 (2C), 130.3, $159.8,167.0,172.7 \mathrm{ppm}$; IR (KBr): 3053, 2961, 2837, 1712, $1626 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$: 234.0892; found: 234.0896.
(2E)-5-(4-Chlorophenyl)-5-hydroxy-3-methoxy-2-pentenoic Acid Methyl Ester (2 h)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.91(1 \mathrm{H}, \mathrm{dd}, J=3.6,13.6 \mathrm{~Hz}), 3.23$ $(1 \mathrm{H}, \mathrm{dd}, J=9.4,13.6 \mathrm{~Hz}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{d}, J=$ $3.6 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{s}), 7.29-7.37 \mathrm{ppm}(4 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=42.3,51.4,55.8,72.3,92.7,127.0$ (2C), 128.4 (2C), 132.9, 142.9, 169.7, 172.9 ppm ; IR (neat): $\tilde{v}=3415,2947,1705,1617$, $1134 \mathrm{~cm}^{-1}$; HRMS-EI: $\mathrm{m} / \mathrm{z}:\left[M^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Cl}: 270.0659$; found: 270.0657.

6-(4-Chlorophenyl)-5,6-dihydro-4-methoxy-2H-pyran-2-one (3 h)

Spectral data were identical with those reported in the literature. ${ }^{[1 k]}$
(2E)-5-Hydroxy-3-methoxy-5-(naphthalen-2-yl)-2-pentenoic Acid Methyl Ester (2 i)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=3.00(1 \mathrm{H}, \mathrm{dd}, J=3.4,13.7 \mathrm{~Hz}), 3.40$ $(1 \mathrm{H}, \mathrm{dd}, J=9.6,13.7 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.92(1 \mathrm{H}, \mathrm{d}, J=$ $5.6 \mathrm{~Hz}), 5.14-5.16(1 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{s}), 7.44-7.47(2 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{dd}$, $J=1.6,8.4 \mathrm{~Hz}), 7.81-7.85(3 \mathrm{H}, \mathrm{m}), 7.89 \mathrm{ppm}(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=42.4,51.4,55.8,73.1,92.7,123.9,124.1,125.7,126.0,127.7,128.0$, 128.1, 132.9, 133.3, 141.9, 169.8, 173.2 ppm ; IR (neat): $\tilde{v}=3415,2946$, 1704, 1616, $1133 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$: 286.1205; found: 286.1210 .

5,6-Dihydro-4-methoxy-6-(naphthalen-2-yl)-2H-pyran-2-one (3i)

Spectral data were identical with those reported in the literature. ${ }^{[11]}$
(2E)-5-(Furan-2-yl)-5-hydroxy-3-methoxy-2-pentenoic Acid Methyl Ester ($\mathbf{2 j}$)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.97(1 \mathrm{H}, \mathrm{dd}, J=3.9,13.7 \mathrm{~Hz}), 3.53$ $(1 \mathrm{H}, \mathrm{dd}, J=9.8,13.7 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{dd}, J=3.9$, $9.8 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{s}), 6.28(1 \mathrm{H}, \mathrm{dt}, J=0.8,3.2 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $3.2 \mathrm{~Hz}), 7.37 \mathrm{ppm}(1 \mathrm{H}, \mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=38.8$, $51.3,55.8,66.5,92.9,105.6,110.1,141.9,156.4,169.5,172.5 \mathrm{ppm}$; IR (neat): $\tilde{v}=3429,2949,1706,1619,1133 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$: 226.0841; found: 226.0837.

5,6-Dihydro-6-(furan-2-yl)-4-methoxy-2H-pyran-2-one (3j)
Spectral data were identical with those reported in the literature. ${ }^{[1 \mathrm{k}]}$
(2E)-5-(Furan-3-yl)-5-hydroxy-3-methoxy-2-pentenoic Acid Methyl Ester (2 k)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.95(1 \mathrm{H}, \mathrm{dd}, J=3.7,13.7 \mathrm{~Hz}), 3.35$ $(1 \mathrm{H}, \mathrm{dd}, J=9.2,13.7 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 4.95$ $(1 \mathrm{H}, \mathrm{dd}, J=3.7,9.2 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{s}), 6.44(1 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{t}, J=$ $1.2 \mathrm{~Hz}), 7.42 \mathrm{ppm}(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=40.8,51.3$, 55.7, 65.9, 92.7, 108.6, 129.1, 138.9, 143.2, 169.4, 173.0 ppm ; IR (neat): $\tilde{v}=$ 3434, 2949, 1705, 1618, $1134 \mathrm{~cm}^{-1}$; HRMS-EI: m/z: $\left[M^{+}\right]$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$: 226.0841; found: 226.0850 .

5,6-Dihydro-6-(furan-3-yl)-4-methoxy-2H-pyran-2-one (3 k)
Colorless needles; m.p.: $124-125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.62(1 \mathrm{H}$, ddd, $J=0.6,4.1,17.0 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=11.2,17.0 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s})$, $5.21(1 \mathrm{H}, \mathrm{s}), 5.42(1 \mathrm{H}, \mathrm{dd}, J=4.1,11.2 \mathrm{~Hz}), 6.46-6.46(1 \mathrm{H}, \mathrm{m}), 7.42-7.43$ $(1 \mathrm{H}, \mathrm{m}), 7.50 \mathrm{ppm}(1 \mathrm{H}, \mathrm{dd}, J=1.0,1.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=33.6$, $56.2,70.5,90.6,108.6,123.7,139.9,143.7,166.7,172.4 \mathrm{ppm}$; IR (KBr): $\tilde{v}=$ 3119, 2952, 1680, 1620, $1076 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$: 194.0579; found: 194.0573.

(2E)-3,5-Dimethoxy-7-phenyl-2-heptenoic Acid Methyl Ester (2l)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.78-1.83(2 \mathrm{H}, \mathrm{m}), 2.59-2.66(1 \mathrm{H}$, m), 2.77-2.82 ($1 \mathrm{H}, \mathrm{m}$), $2.87(1 \mathrm{H}, \mathrm{dd}, J=6.4,13.2 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=$ $6.4,13.2 \mathrm{~Hz}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.55(1 \mathrm{H}$, quintet, $J=6.4 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s})$, $3.67(3 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{s}), 7.17-7.29 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=31.5,36.0,36.4,50.8,55.5,56.8,78.8,91.6,125.7,128.3$ (2C), 128.4 (2C), 142.5, 167.8, 173.8 ppm ; IR (neat): $\tilde{v}=2943,1710,1619,1133$, $1051 \mathrm{~cm}^{-1}$; HRMS-EI: m/z: $\left[M^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}: 278.1518$; found: 278.1516.
(2E)-5-Acetoxy-3-methoxy-7-phenyl-2-heptenoic Acid Methyl Ester (2 m)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.88-1.94(2 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{s})$, 2.59-2.74 ($2 \mathrm{H}, \mathrm{m}$), $3.06(1 \mathrm{H}, \mathrm{dd}, J=8.0,13.9 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{dd}, J=5.0$, $13.9 \mathrm{~Hz}), 3.59(3 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{s}), 5.21-5.27(1 \mathrm{H}, \mathrm{m}), 7.15-$ $7.29 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=21.1,31.7,35.9,36.4,50.9,55.5$, $71.9,92.2,125.9,128.4$ (2C), 128.4 (2C), 141.6, 167.8, 170.6, 172.2 ppm ; IR (neat): $\tilde{v}=2947,1737,1712,1624,1134 \mathrm{~cm}^{-1} ;$ HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$: 306.1467; found: 306.1461 .
(2E)-3-Methoxy-5-(methoxymethoxy)-7-phenyl-2-heptenoic Acid Methyl Ester (2n)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.82-1.88(2 \mathrm{H}, \mathrm{m}), 2.61-2.69(1 \mathrm{H}$, $\mathrm{m}), 2.79-2.86(1 \mathrm{H}, \mathrm{m}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=6.5,13.2 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=$ $6.5,13.2 \mathrm{~Hz}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.61(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.96(1 \mathrm{H}$, quintet, $J=6.5 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{s})$, $7.15-7.29 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=31.6,36.7,37.3,50.9,55.5$, 55.7, 75.7, 91.8, 95.6, 125.7, 128.3 (2C), 128.4 (2C), 142.4, 167.8, 173.4 ppm ; IR (neat): $\tilde{v}=2946,1711,1620,1134,1028 \mathrm{~cm}^{-1}$; HRMS-EI: $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}: 308.1624$; found: 308.1618.
(2E)-5-(tert-Butyldimethylsilyloxy)-3-methoxy-7-phenyl-2-heptenoic Acid Methyl Ester (2 o)
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.02(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}$, s), $1.75-1.81(2 \mathrm{H}, \mathrm{m}), 2.61-2.79(2 \mathrm{H}, \mathrm{m}), 2.97(1 \mathrm{H}, \mathrm{dd}, J=6.0,13.1 \mathrm{~Hz})$, $3.03(1 \mathrm{H}, \mathrm{dd}, J=7.4,13.1 \mathrm{~Hz}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 4.08-4.14(1 \mathrm{H}$, $\mathrm{m}), 5.04(1 \mathrm{H}, \mathrm{s}), 7.14-7.28 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-4.67$, $-4.58,18.0,25.8,31.2,39.4,39.5,50.8,55.3,70.3,91.7,125.6,128.3$ (2C), 128.4 (2C), 142.8, 167.8, 173.8 ppm ; IR (neat): $\tilde{v}=2950,2856,1713,1621$, $1134 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}: 378.2226$; found: 378.2230.

4-Methoxy-5-(phenylethyl)furan-2(5 H)-one (3p)
Colorless needles; m.p.: $35^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.87-1.96(1 \mathrm{H}, \mathrm{m})$, 2.15-2.24 ($1 \mathrm{H}, \mathrm{m}$), 2.72-2.84 ($2 \mathrm{H}, \mathrm{m}$), $3.83(3 \mathrm{H}, \mathrm{s}), 4.74(1 \mathrm{H}, \mathrm{dd}, J=3.6$, $8.4 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, \quad J=0.8 \mathrm{~Hz}) 7.18-7.31 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta=30.5,33.5,59.4,77.8,88.7,126.3,128.5$ (2C), 128.6 (2C), $140.4,172.6,182.4 \mathrm{ppm}$; IR (KBr): $\tilde{v}=3106,2949,1735,1624,1249 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}: 218.0943$; found:218.0942 .

4-Methoxy-5-nonylfuran-2(5 H)-one (3 q)

Colorless needles; m.p.: $42{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.88(3 \mathrm{H}, \mathrm{t}, J=$ $6.9 \mathrm{~Hz}), 1.26-1.44(14 \mathrm{H}, \mathrm{m}), 1.55-1.66(1 \mathrm{H}, \mathrm{m}), 1.85-1.93(1 \mathrm{H}, \mathrm{m}), 3.89$ $(3 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{dd}, J=3.7,7.6 \mathrm{~Hz}), 5.06 \mathrm{ppm}(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1,22.7,24.2,29.2,29.3,29.4,29.5,31.8,31.9,59.4,78.9$, $88.6,172.8,182.6 \mathrm{ppm}$; IR (KBr): $\tilde{v}=3122,2919,1744,1626,1247 \mathrm{~cm}^{-1}$; HRMS-EI: $\mathrm{m} / \mathrm{z}:\left[M^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}: 240.1726$; found: 240.1728 .

One-pot Synthesis of Kawa Lactones 3 a, 3r, and $3 \mathbf{s}$.

The carbonylation reaction was performed in a similar manner to that described above. After stirring for $24 \mathrm{~h},(+)$-10-camphorsulfonic acid (CSA) (1 equiv) or $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5 equiv) was added to the reaction mixture and stirring was continued at room temperature for 24 h . The mixture was diluted with EtOAc (50 mL), and washed with saturated NaHCO_{3} aq. $(30 \mathrm{~mL})$) or brine $(30 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(20 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/ethyl acetate (5/1-3/1) afforded (\pm)-kawa lactones $\mathbf{3 a}, \mathbf{3 r}$, and $\mathbf{3 s}$ in $67-73 \%$ yields.

(\pm)-Tetrahydroyangonine $(\mathbf{3 r})^{[I m]}$

Colorless needles; m.p.: $98-99^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=1.84-1.93(1 \mathrm{H}$, $\mathrm{m}), 2.05-2.14(1 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=4.0,17.1 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{ddd}, J=$ $1.6,12.0,17.1 \mathrm{~Hz}), 2.68-2.85(2 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.34$ $(1 \mathrm{H}$, octet, $J=4.0 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 6.81-6.85(2 \mathrm{H}, \mathrm{m}), 7.10-$ $7.14 \mathrm{ppm}(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.0,33.0,36.5,55.3,56.0,74.8$, 90.3, 114.0 (2C), 129.4 (2C), 132.8, 158.0, 167.4, 172.8 ppm ; IR (KBr): $\tilde{v}=$ 3374, 2935, 1711, 1622, $1249 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}:$ 262.1205; found: 262.1202.

(\pm)-Dihydromethysticin ($\mathbf{3} \boldsymbol{s})^{[I I]}$

Colorless needles; m.p.: $115-116{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=1.83-1.91$ $(1 \mathrm{H}, \mathrm{m}), 2.03-2.13(1 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=4.0,16.9 \mathrm{~Hz}), 2.50(1 \mathrm{H}$, ddd, $J=1.6,12.0,16.9 \mathrm{~Hz}), 2.66-2.83(2 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.29-4.40$ $(1 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 5.92(2 \mathrm{H}, \mathrm{s}), 6.64-6.74 \mathrm{ppm}(3 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.7,33.0,36.6,56.0,74.7,90.4,100.8,108.3,108.9$, $121.3,134.6,145.9,147.7,167.3,172.7 \mathrm{ppm}$; IR (KBr): $\tilde{v}=3376,3107$, 2952, 1687, 1618, $1260 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$: 276.0998; found: 276.0997.

(2R, 3S)-3-Methyl-4-pentyne-1,2-diol 1-Benzoate (1 t t)

To a solution of known hydroxyester (-)-8 ($462 \mathrm{mg}, 2.16 \mathrm{mmol}, 95 \% e e$) and ethyl vinyl ether ($187 \mathrm{mg}, 2.59 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added PPTS ($54 \mathrm{mg}, 0.22 \mathrm{mmol}$) at room temperature and the mixture was stirred for 1 h . The mixture was diluted with saturated NaHCO_{3} aq. $(25 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. To a solution of the crude product in THF (10 mL) was added $\mathrm{LiBH}_{4}(188 \mathrm{mg}, 8.62 \mathrm{mmol})$ at room temperature and the solution was stirred for 3 h at $40^{\circ} \mathrm{C}$. After cooling, the mixture was diluted with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}(10: 30: 10 \mathrm{~mL})$ and stirred for 12 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}(30: 30 \mathrm{~mL}$). The layers were separated, the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. To a solution of the crude product in MeOH $(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(357 \mathrm{mg}, 2.59 \mathrm{mmol})$ at room temperature and the mixture was stirred for 2 h . The mixture was diluted with brine $(30 \mathrm{~mL})$ and EtOAc (30 mL). The layers were separated, the aqueous layer was extracted with ethyl acetate (20 mL), and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. To a solution of the crude product in pyridine (5 mL) was added $\mathrm{BzCl}(364 \mathrm{mg}$, 2.59 mmol) at room temperature and the solution was stirred for 1 h . The mixture was diluted with brine $(30 \mathrm{~mL})$ and EtOAc $(30 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate
$(20 \mathrm{~mL})$, and the combined organic layers were washed with $10 \% \mathrm{HCl}$ aq. $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated in vacuo. To a solution of the crude product in MeOH $(5 \mathrm{~mL})$ was added PPTS $(54 \mathrm{mg}, 0.216 \mathrm{mmol})$ at room temperature and the solution was stirred for 2 h . The mixture was diluted with EtOAc $(30 \mathrm{~mL})$ and saturated NaHCO_{3} aq. $(30 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate (20 mL), and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (15/1) afforded benzoate 1s in 57% yield. Colorless oil; $[\alpha]_{\mathrm{D}}^{24}=-45.0 \quad\left(c=0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.33(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.17(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 2.64(1 \mathrm{H}$, br-s), 2.70-2.78 ($1 \mathrm{H}, \mathrm{m}$), $3.91(1 \mathrm{H}, \mathrm{dt}, J=3.1,7.0 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{dd}, J=$ $7.0,11.9 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, J=3.1,11.9 \mathrm{~Hz}), 7.42-7.46(2 \mathrm{H}, \mathrm{m}), 7.55-7.60$ $(1 \mathrm{H}, \mathrm{m}), 8.04-8.07 \mathrm{ppm}(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=16.7,29.9,67.2$, $71.0,72.8,77.3,84.8,128.5$ (2C), 129.7 (2C), 133.3, 166.9 ppm ; IR (KBr): $\tilde{v}=3505,3262,2977,1704,1285 \mathrm{~cm}^{-1}$; HRMS-FAB: $m / z:\left[M^{+}+\mathrm{H}\right]$ calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}$: 219.1021; found: 219.1022.

Intermolecular Methoxycarbonylation of $\mathbf{1 t}$

See the general procedure. (R)-Phbox ligand was employed.
(2E)-(4R,5R)-6-(Benzoyloxy)-5-hydroxy-3-methoxy-4-methyl-2-hexenoic Acid Methyl Ester ((+)-2 t)
Colorless oil; $[\alpha]_{\mathrm{D}}^{22}=+16.6\left(c=0.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.26$ $(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{s}), 4.11(1 \mathrm{H}$, $\mathrm{dt}, J=3.2,6.8 \mathrm{~Hz}), 4.20-4.26(2 \mathrm{H}, \mathrm{m}), 4.41(1 \mathrm{H}, \mathrm{dd}, J=3.2,11.6 \mathrm{~Hz}), 5.07$ $(1 \mathrm{H}, \mathrm{s}), 7.41-7.46(2 \mathrm{H}, \mathrm{m}), 7.53-7.58(1 \mathrm{H}, \mathrm{m}), 8.05-8.07 \mathrm{ppm}(2 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.0,38.0,51.0,55.7,67.2,72.4,91.6,128.3$ (2C), 129.8 (2C), 130.0, 133.0, 166.8, 168.2, 176.0 ppm ; IR (neat): $\tilde{v}=3488$, 2949, 1711, 1619, $1270 \mathrm{~cm}^{-1}$; HRMS-FAB: $m / z:\left[M^{+}+\mathrm{H}\right]$ calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{6}: 309.1338$; found: 309.1307 .

6-(Benzoyloxymethyl)-5,6-dihydro-4-methoxy-5-methyl-2H-pyran-2-one (+ + $-3 t$)

Colorless oil; $[\alpha]_{\mathrm{D}}^{24}=+67.7\left(c=0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.24$ $(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.53-2.59(1 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.48-4.59(2 \mathrm{H}, \mathrm{m})$, 4.76-4.80 ($1 \mathrm{H}, \mathrm{m}$), $5.13(1 \mathrm{H}, \mathrm{s}), 7.43-7.47(2 \mathrm{H}, \mathrm{m}), 7.56-7.61(1 \mathrm{H}, \mathrm{m})$, 8.04-8.06 ppm ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=11.1,34.5,56.3,63.1,75.5$, $89.4,128.5$ (2C), 129.4, 129.8 (2C), 133.4, 166.1, 166.1, 177.7 ppm . IR (KBr): $\tilde{v}=2956,1725,1698,1621,1221 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$: 276.0998; found: 276.1001.
(2E)-(4R,5R)-5,6-Dihydroxy-3-methoxy-4-methyl-2-hexenoic Acid Methyl Ester ($(+)-9)$

To a solution of (+)-2t ($49.5 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}$-saturated $i \mathrm{Pr}_{2} \mathrm{O}$ $(7 \mathrm{~mL})$ was added lipase OF $(100 \mathrm{mg})$ and the mixture was stirred for 30 h at $33^{\circ} \mathrm{C}$. The mixture was filtered, and the filtrate was washed with EtOAc (20 mL). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (1/ 1) afforded diol (+)-9 in 70% yield. Colorless oil; $[\alpha]_{\mathrm{D}}^{24}=+84.8(c=1.01$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.22(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 3.08(2 \mathrm{H}, \mathrm{br}-\mathrm{s})$, $3.57(2 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.63-3.66(4 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.84-3.91(1 \mathrm{H}$, m), $5.07 \mathrm{ppm}(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.4,38.0,51.4,55.8,64.0$, 73.9, 91.4, 169.7, 177.0 ppm ; IR (neat): $\tilde{v}=3398,2941,1707,1614$, $1145 \mathrm{~cm}^{-1}$; HRMS-FAB: m/z: $\left[M^{+}+\mathrm{H}\right]$ calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{5}:$ 205.1076; found: 205.1091.
(2E)-(4R,5R)-5,6-Bis-(tert-butyldimethylsilyloxy)-3-methoxy-4-methyl-2-
hexenoic Acid Methyl Ester $(\mathbf{(+) - 1 0)}$
To a solution of (+)-9 ($20.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 2,6-lutidine $(98.3 \mathrm{mg}$, 0.41 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TBDMSOTf (107.7 mg , 0.41 mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1.5 h at room temperature. The mixture was diluted with EtOAc $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by
column chromatography on silica gel. The fraction eluted with hexane/ EtOAc (100/1) afforded benzoate (+)-10 in 97% yield. The spectral data were identical with those reported in the literature. ${ }^{[3 \mathrm{~g}]}$

(S)-3-(Phenylmethoxy)-1-pentanoic Acid Ethyl Ester ($(+$)-12)

To a solution of $(+)-\mathbf{1 1}(2.0 \mathrm{~g}, 13.7 \mathrm{mmol})$ and benzyl $2,2,2$-trichloroacetimidate ($3.45 \mathrm{~g}, 13.7 \mathrm{mmol}$) in cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1,150 \mathrm{~mL})$ was added TfOH $(0.2 \mathrm{~mL})$ and the mixture was stirred for 40 h at room temperature. The mixture was diluted with saturated NaHCO_{3} aq. $(100 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate $(240 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/ EtOAc (60:1) afforded (+)-12 in 80% yield. Colorless oil; $[\alpha]_{\mathrm{D}}^{13}=+11.6$ $\left(c=1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.95(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.24$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.59-1.66(2 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=5.2,14.8 \mathrm{~Hz})$, $2.60(1 \mathrm{H}, \mathrm{dd}, J=7.6,14.8 \mathrm{~Hz}), 3.82-3.88(1 \mathrm{H}, \mathrm{m}), 4.13(2 \mathrm{H}, \mathrm{dq}, J=1.2$, $7.2 \mathrm{~Hz}), 4.54(2 \mathrm{H}, \mathrm{s}), 7.23-7.33 \mathrm{ppm}(5 \mathrm{H} \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.4$, $14.2,27.0,39.6,60.4,71.5,77.2,127.5,127.7$ (2C), 128.3 (2C), 138.6, 171.9 ppm ; IR (neat): $\tilde{v}=2974,2935,2877,1732,1455,1372,1062$, $1029 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: 236.1413$; found: 236.1413.

(S)-3-(Phenylmethoxy)-1-pentanal ($(+$)-13)

To a solution of (+)-12 ($1.83 \mathrm{~g}, 7.74 \mathrm{mmol}$) in THF (35 mL) was added $\mathrm{LiAlH}_{4}(347 \mathrm{mg}, 9.13 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1.5 h . The reaction was quenched with acetone (3 mL) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and stirred for an additional 1 h . The mixture was filtered through Celite and the filter cake was washed with EtOAc $(40 \mathrm{~mL} \times 3)$. The layers were separated, the aqueous layer was extracted with ethyl acetate (20 mL), and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. To a solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added DMP reagent $(6.02 \mathrm{~g}, 14.2 \mathrm{mmol})$ at room temperature and the mixture was stirred for 2 h . The mixture was diluted with saturated NaHCO_{3} aq. $(15 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (40/1) afforded (+)-13 in 78% yield. Spectral data were identical with those reported in the literature. ${ }^{[13]}$

Synthesis of (+)-14a and (+)-14b

To a solution of trimethylsilylacetylene ($715 \mathrm{mg}, 7.28 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ was added $n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexane) $(4.55 \mathrm{~mL}, 7.28 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ and the mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$. A solution of $(+)-\mathbf{1 3}$ $(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ was added to the above mixture at $-40^{\circ} \mathrm{C}$, followed by stirring for 1.5 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (5 mL), and the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$ and EtOAc $(40 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate (20 mL), and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. To a solution of the crude product in $\mathrm{MeOH}(8 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.79 \mathrm{~g}$, 13 mmol) and the solution was stirred for 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and $\mathrm{EtOAc}(40 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with ethyl acetate (20 mL), and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (30:1) afforded $(+)$-14a and $(+)$ 14b in 31 and 46% yields, respectively.

(3R,5S)-5-(Phenylmethoxy)-1-heptyn-3-ol ((+)-14a)

Colorless oil; $[\alpha]_{\mathrm{D}}^{18}=+100.8\left(c=1.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.94$ $(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.59-1.73(2 \mathrm{H}, \mathrm{m}), 1.83-2.01(2 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{d}$, $J=2 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 3.91-3.97(1 \mathrm{H}, \mathrm{m}), 4.49-4.64(3 \mathrm{H}, \mathrm{m})$, $7.23-7.37 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.0,25.8,39.8,60.4,71.2$, $72.7,78.0,84.9,127.8,128.0$ (2C), 128.5 (2C), 138.1 ppm ; IR (neat): $\tilde{v}=$ 3410, 2964, 2926, 2875, 1454, $1354 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$: 218.1307; found: 218.1313.

(3R,5S)-5-(Phenylmethoxy)-1-heptyn-3-ol ($(+) \mathbf{- 1 4 b})$

Colorless oil; $[\alpha]_{\mathrm{D}}^{18}=+78.8\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.93$ $(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 1.62-1.69(2 \mathrm{H}, \mathrm{m}), 1.82-1.87(1 \mathrm{H}, \mathrm{m}), 2.00-2.08(1 \mathrm{H}$, m), $2.43(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.63-3.69(1 \mathrm{H}, \mathrm{m})$, 4.39-4.62 $(3 \mathrm{H}, \mathrm{m}), 7.25-7.34 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.8$, $26.0,41.5,61.3,70.9,72.7,78.9,84.7,127.8,127.9$ (2C), 128.4 (2C), 138.1 ppm ; IR (neat): $\tilde{v}=3389,2963,2928,2876,1455 \mathrm{~cm}^{-1}$; HRMS-EI: $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$: 218.1307; found: 218.1316.

Intermolecular Methoxycarbonylation of $1 \boldsymbol{s}$

See the general procedure. (\pm)-Phbox ligand was employed.
(5R)-4-Methoxy-5-[(2S)-2-(phenylmethoxy]butyl]-2(5 H)-furanone ((+)16a)
Colorless oil; $[\alpha]_{\mathrm{D}}^{18}=+124.8\left(c=0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.93$ $(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.51-1.70(3 \mathrm{H}, \mathrm{m}), 2.02-2.09(1 \mathrm{H}, \mathrm{m}), 3.71-3.77(1 \mathrm{H}$, m), $3.85(3 \mathrm{H}, \mathrm{s}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz})$, $5.01-5.04(2 \mathrm{H}, \mathrm{m}), 7.22-7.41 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.9$, $26.7,37.5,59.4,71.9,76.2,76.4,88.2,127.6,127.8$ (2C), 128.4 (2C), 138.6, 172.7, 183.3 ppm ; IR (neat): $\tilde{v}=2965,2938,2875,1750,1629 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}: 276.1362$; found: 276.1358 .
(5S)-4-Methoxy-5-[(2S)-2-(phenylmethoxy]butyl]-2(5 H)-furanone ((+)16b)
Colorless oil; $[\alpha]_{\mathrm{D}}^{19}=+61.0\left(c=1.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.95$ $(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.60-1.74(2 \mathrm{H}, \mathrm{m}), 1.94-2.11(2 \mathrm{H}, \mathrm{m}), 3.56-3.62(1 \mathrm{H}$, m), $3.65(3 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.89$ $(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 7.24-7.35 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.1,26.1,35.4,59.2,70.9,75.6,76.1,88.0,127.6$, 127.8 (2C), 128.3 (2C), 138.5, 172.8, 183.2 ppm ; IR (neat): $\tilde{v}=2968,2939$, 2876, 1748, $1627 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$: 276.1362; found: 276.1364.

General Procedure for the Synthesis of (+)-Annularine G ($(+)-17$ a) and (+)-17b

To a solution of $(+) \mathbf{- 1 6 a}(36.8 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{FeCl}_{3}(64.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ and the mixture was stirred for 0.5 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (1/1) afforded (+)-17a in 70% yield.
(5R)-4-Methoxy-5-[(2S)-2-hydroxybutyl]-2(5 H)-furanone ((+)-annularine $G((+)-17 a))$
Colorless needles; m.p.: $107-109^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}=+56.4 \quad\left(c=0.59, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.96(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.49-1.56(2 \mathrm{H}, \mathrm{m}), 1.58$ $(1 \mathrm{H}, \mathrm{ddd}, J=2.4,10.8,13.2 \mathrm{~Hz}), 1.94(1 \mathrm{H}$, ddd, $J=2.4,10.4,12.8 \mathrm{~Hz})$, $2.17(1 \mathrm{H}, \mathrm{br}), 3.81-3.87(1 \mathrm{H}, \mathrm{m}), 3.90(3 \mathrm{H}, \mathrm{s}), 5.07(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz})$, $5.08 \mathrm{ppm}(1 \mathrm{H}$, ddd, $J=1.0,2.8,10.0 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.7,30.8$, $39.4,59.5,69.1,76.3,88.3,172.7,183.3 \mathrm{ppm}$; IR (KBr): $\tilde{v}=3490,2968$, 2950, 2919, 1742, $1628 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$: 186.0892; found: 186.0897 .

(5S)-4-Methoxy-5-[(2S)-2-hydroxybutyl]-2(5 H)-furanone ($(+$)-17 b)

$(+)-\mathbf{1 7 b}$ was obtained in 85% yield as colorless needles; m.p.: $61-62^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{21}=+15.6\left(c=0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.96(3 \mathrm{H}, \mathrm{t}, J=$ $7.4 \mathrm{~Hz}), 1.49-1.60(2 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{tt}, 5.07, J=8.4,14.8 \mathrm{~Hz}), 2.06(1 \mathrm{H}$, $\mathrm{tt}, J=4.0,8.0 \mathrm{~Hz}), 2.10(1 \mathrm{H}, \mathrm{br}), 3.80-3.86(1 \mathrm{H}, \mathrm{m}), 3.90(3 \mathrm{H}, \mathrm{s}), 4.93$ $(1 \mathrm{H}, \mathrm{dd}, J=4.4,7.6 \mathrm{~Hz}), 5.08 \mathrm{ppm}(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=9.7$, $30.2,38.8,59.5,70.0,77.3,88.3,172.4,183.0 \mathrm{ppm}$; IR (KBr): $\tilde{v}=3472$, 2963, 2939, 2916, 1748, $1637 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$: 186.0892; found: 186.0891.

General Procedure for the Synthesis of ent-Annularine H ((+)-18a) and Annularine $\mathrm{H}(\mathbf{(-) - 1 8 b)}$
To a solution of $(+)-\mathbf{1 7} \mathbf{a}(11.9 \mathrm{mg}, 0.064 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added DMP ($54.3 \mathrm{mg}, 0.128 \mathrm{mmol}$) and the mixture was stirred for 1 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 2)$, and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (1:1) afforded (+)-18a in 89% yield.
(5R)-4-Methoxy-5-(2-oxobutyl)-2(5 H)-furanone (ent-Annularine H ((+)18a))
Colorless needles; m.p.: $58-61^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{19}=+42.5 \quad\left(c=0.44, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.08(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.51(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz})$, $2.72(1 \mathrm{H}, \mathrm{dd}, J=8.6,16.8 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=3.6,16.8 \mathrm{~Hz}), 3.90(3 \mathrm{H}$, s), $5.10(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 5.26 \mathrm{ppm}(1 \mathrm{H}, \mathrm{ddd}, J=1.2,4.0,8.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.4,37.0,43.8,59.6,74.6,88.9,171.9,181.8$, 206.1 ppm ; IR (KBr): $\tilde{v}=3484,3416,2973,2958,2925,1783,1750$, $1646 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}: 184.0736$; found: 184.0734.
(5S)-4-Methoxy-5-(2-oxobutyl)- 2(5 H)-furanone ((-)-Annularine H ((-)18 b))
95% yield. Colorless needles; m.p.: $58-62^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=-43.5 \quad(c=0.45$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.08(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.51(2 \mathrm{H}, \mathrm{q}, J=$ $7.6 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=8.4,16.8 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=3.6,16.8 \mathrm{~Hz})$, $3.90(3 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 5.26 \mathrm{ppm}(1 \mathrm{H}$, ddd, $J=1.2,3.6$, $8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.4,37.0,43.8,59.6,74.6,88.9,171.9$, 181.8, 206.1 ppm ; IR (KBr): $\tilde{v}=3483,3416,2974,2958,2925,1783,1759$, $1643 \mathrm{~cm}^{-1}$; HRMS-EI: $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}: 184.0736$; found: 184.0733.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 21590026). We also thank Daicel Chemical Industries, Ltd., for giving us the Chiralscreen E001 (Enzyme Kit).
[1] a) S. Sotheeswaran, Chem. Aust. 1987, 377; b) M. W. Klohs, F. Keller, R. E. Williams, M. I. Tockes, G. E. Cronheim, J. Med. Pharm. Chem. 1959, 1, 95; c) K. Gerth, P. Washausen, G. Höfle, H. Irschik, H. Reichenbach, J. Antibiot. 1996, 49, 71; d) H. Achenbach, G. Wittman, Tetrahedron Lett. 1970, 11, 3259; e) T. Hashimoto, M. Suganuma, H. Fujiki, M. Yamada, T. Kohno, Y. Asakawa, Phytomedicine 2003, 10, 309; f) T. E. Smith, M. Djang, A. J. Velander, C. W. Downey, K. A. Carroll, S. V. Alphen, Org. Lett. 2004, 6, 2317; g) P. A. Amaral, N. Gouault, M. Le Roch, V. L. Eifler-Lima, M. David, Tetrahedron Lett. 2008, 49, 6607; h) G. Sabitha, K. Sudhakar, J. S. Yadav, Tetrahedron Lett. 2006, 47, 8599; i) A. V. Moro, F. S. P. Cardoso, C. R. D. Correia, Org. Lett. 2009, 11, 3642; j) W. C. Groutas, T. L. Huang, M. A. Stanga, M. J. Brubaker, M. K. Moi, J. Heterocycl. Chem. 1985, 22, 433; k) H. Du, D. Zhao, K. Ding, Chem. Eur. J. 2004, 10, 5964; 1) M. Y. Shandala, M. T. Ayoub, M. J. Mohammad, J. Heterocycl. Chem. 1984, 21, 1755; m) T. Fujita, H. Nishimura, K. Kaburagi, J. Mizutani, Phytochemistry 1994, 36, 23; Synthesis of unsaturated lactones: n) V. Boucard, G. Broustal, J. M. Campagne, Eur. J. Org. Chem. 2007, 225; o) J. A. Marco, M. Carda, J. Murga, E. Falmir, Tetrahedron 2007, 63, 2929.
[2] a) A. L. Zografos, D. Georgiadis, Synthesis 2006, 3157; b) C. Li, M. V. Nitka, J. B. Gloer, J. Nat. Prod. 2003, 66, 1302; Synthesis of (\pm)-annularin H: c) M. Brasholz, H-U. Reissig, Synlett 2007, 1294; d) N. G. Clemo, G. Pattenden, Tetrahedron Lett. 1982, 23, 585; e) M. Tachibana; C. Matsui, Y. Takeuchi, E. Suzuki, K. Umezawa, Hetero-
cycles 2008, 76, 1561; f) K. Kobayashi, T. Ui, J. Chem. Soc. Chem. Соттип. 1977, 774a.
[3] a) Y. Suzuki, M. Ojika, Y. Sakagami, R. Fudou, S. Yamanaka, Tetrahedron 1998, 54, 11399; b) F. Sasse, B. Böhlendrof, M. Herrmann, B. Kunze, E. Forche, H. Steinmmetz, G. Höfle, H. Reichenbach, J. Antibiot. 1999, 52, 721; c) K. Gerth, H. Irschik, H. Reichenbach, W. Trowitzsch, J. Antibiot. 1980, 33, 1474; d) T. Anke, H. Besl, U. Mocek, W. Steglich, J. Antibiot. 1983, 36, 661; e) H. Takayama, K. Kato, M. Kimura, H. Akita, Heterocycles 2007, 71, 75; f) Y. Iwaki, H. Akita, Chem. Pharm. Bull. 2007, 55, 1610; g) Y. Iwaki, S. Yamamura, H. Akita, Tetrahedron: Asymmetry 2008, 19, 2192; h) Y. Suzuki, M. Ojika, Y. Sakagami, Biosci. Biotechnol. Biochem. 2004, 68, 390; i) N. Sutou, K. Kato, H. Akita, Tetrahedron: Asymmetry 2008, 19, 1833.
[4] a) Modern Carbonylation Methods (Ed.: L. Kollár), Wiley-VCH, 2008; b) A. Brennführer, H. Neumann, M. Beller, ChemCatChem 2009, 1, 28; c) Y. Tamaru, M. Hojo, Z-I. Yoshida, J. Org. Chem. 1991, 56, 1099; d) J. Tsuji, M. Takahashi, T. Takahashi, Tetrahedron Lett. 1980, 21, 849; e) B. Gabriele, M. Costa, G. Salerno, G. P. Chiusoli, J. Chem. Soc. Perkin Trans. 1 1994, 83; f) B. Gabriele, G. Salerno, P. Plastina, M. Costa, A. Crispini, Adv. Synth. Catal. 2004, 346, 351; g) J-H. Li, S. Tang, Y-X. Xie, J. Org. Chem. 2005, 70, 477; h) K. Nozaki, N. Sato, H. Takaya, J. Org. Chem. 1994, 59, 2679; i) H. Alper, B. Despeyroux, J. B. Woell, Tetrahedron Lett. 1983, 24, 5691; j) R. Hua, H. Takeda, S. Onozawa, Y. Abe, M. Tanaka, J. Am. Chem. Soc. 2001, 123, 2899; k) W-J. Xiao, H. Alper, J. Org. Chem. 1997, 62, 3422; 1) A. Ogawa, H. Kuniyasu, N. Sonoda, T. Hirao, J. Org. Chem. 1997, 62, 8361; m) S. Ma, B. Wu, S. Zhao, Org. Lett. 2003, 5, 4429 ; n) C. Coperet, T. Sugihara, G. Wu, I. Shimoyama, E-I Negishi, J. Am. Chem. Soc. 1995, 117, 3422; o) L. Zhao, X. Lu, Angew. Chem. 2002, 114, 4519; Angew. Chem. Int. Ed. 2002, 41, 4343 ; p) B. Gabriele, G. Salerno, F. D. Pascali, M. Costa, G. P. Chiusoli, J. Chem. Soc. Perkin Trans. 1 1997, 147.
[5] Reaction of 4-yne-1-ols: a) B. Gabriele, G. Salerno, F. D. Pascali, M. Costa, G. P. Chiusoli, J. Org. Chem. 1999, 64, 7693; b) B. Gabriele, G. Salerno, F. D. Pascali, M. Costa, G. P. Chiusoli, J. Organomet. Chem. 2000, 593-594, 409; c) K. Kato, A. Nishimura, Y. Yamamoto, H. Akita, Tetrahedron Lett. 2001, 42, 4203; d) Asymmetric versions: K. Kato, M. Tanaka, Y. Yamamoto, H. Akita, Tetrahedron Lett. 2002, 43, 1511; e) K. Kato, C. Matsuba, T. Kusakabe, H. Takayama, S. Yamamura, T. Mochida, H. Akita, T. A. Peganova, N. V. Vologdin, O. V. Gusev, Tetrahedron 2006, 62, 9988; Reaction of 5-yne-1ols: f) J. A. Marshall, M. M. Yanik, Tetrahedron Lett. 2000, 41, 4717; Reaction of 2-alkynylphenols: g) Y. Nan, H. Miao, Z. Yang, Org. Lett. 2000, 2, 297.
[6] Reaction of 4-yne-1-ones: a) K. Kato, Y. Yamamoto, H. Akita, Tetrahedron Lett. 2002, 43, 4915; b) A. Bacchi, M. Costa, N. D. Cà, B. Gabriele, G. Salerno, S. Cassoni, J. Org. Chem. 2005, 70, 4971; Asymmetric versions: c) K. Kato, M. Tanaka, S. Yamamura, Y. Yamamoto, H. Akita, Tetrahedron Lett. 2003, 44, 3089; d) T. Kusakabe, K. Kato, S. Takaishi, S. Yamamura, T. Mochida, H. Akita, T. A. Peganova, N. V. Vologdin, O. V. Gusev, Tetrahedron 2008, 64, 319; e) Cyclization of aldehyde: N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764.
[7] Reaction of propargyl acetates: a) K. Kato, Y. Yamamoto, H. Akita, Tetrahedron Lett. 2002, 43, 6587; b) K. Kato, H. Nouchi, K. Ishikura, S. Takaishi, S. Motodate, H. Tanaka, K. Okudaira, T. Mochida, R. Nishigaki, K. Shigenobu, H. Akita, Tetrahedron 2006, 62, 2545; c) K. Kato, R. Teraguchi, S. Yamamura, T. Mochida, H. Akita, T. A. Peganova, N. V. Vologdin, O. V. Gusev, Synlett 2007, 0638; d) K. Kato, R. Teraguchi, S. Motodate, A. Uchida, T. Mochida, T. A. Peganova, N. V. Vologdin, H. Akita, Chem. Commun. 2008, 3687; Reaction of amide: e) M. Costa, N. D. Cà, B. Gabriele, C. Massera, G. Salerno, M. Soliani, J. Org. Chem. 2004, 70, 2469.
[8] F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079, and references therein.
[9] K. Kato, S. Motodate, T. Mochida, T. Kobayashi, H. Akita, Angew. Chem. 2009, 121, 3376; Angew. Chem. Int. Ed. 2009, 48, 3326.
[10] K. Kato, T. Mochida, H. Takayama, M. Kimura, H. Moriyama, A. Takeshita, Y. Kanno, Y. Inouye, H. Akita, Tetrahedron Lett. 2009, 50, 4744.
[11] a) T. Fujisawa, T. Itoh, T. Sato, Tetrahedron Lett. 1984, 25, 5083; b) D. Seebach, F. Giovannini, B. Lamatsch, Helv. Chim. Acta 1985, 68, 958-960.
[12] T. Iversen, D. R. Bundle, J. Chem. Soc. Chem. Commun. 1981, 1240.
[13] W. H. Kim, J. Org. Chem. 2005, 70, 8190.
[14] S. D. Rychnovsky, G. Griesgraber, S. Zeller, D. J. Skalitzy, J. Org. Chem. 1991, 56, 5161.
[15] See the Supporting Information.

Received: April 22, 2010 Published online: July 28, 2010

