15-Fluoro prostaglandin FP agonists: a new class of topical ocular hypotensives

Peter Klimko,* Mark Hellberg, Marsha McLaughlin, Najam Sharif, Bryon Severns, Gary Williams, Karen Haggard and John Liao
Alcon Research, Ltd, Pharmaceutical Products Research, 6201 S. Freeway, MS R2-39, Ft. Worth, TX 76134, USA

Received 10 February 2004; revised 23 April 2004; accepted 28 April 2004
Available online 25 May 2004

Abstract

A novel series of 15 -fluoro prostaglandins with phenoxy termination of the ω-chain was synthesized and evaluated for binding and functional activation of the prostaglandin FP receptor in vitro and for side effect potential and topical ocular hypotensive efficacy in vivo. Compounds with the 15α-fluoride relative stereochemistry displayed EC_{50} values of $\leqslant 20 \mathrm{nM}$, comparable to the value for the endogenous ligand $\mathrm{PGF}_{2 \alpha}$. Evaluation of selected ester prodrugs of these 15 -fluoro prostaglandins in vivo highlighted their generally low propensity to elicit hyperemia or ocular irritation in rabbits and efficacious intraocular pressure-lowering property in monkeys. In particular 13,14-dihydro-15-deoxy-15 α-fluoro-16-aryloxy- ω-tetranor-cis- Δ^{4} - $\mathrm{PGF}_{2 \alpha}$ isopropyl ester (24) caused relatively little ocular irritation in rabbits while lowering intraocular pressure in conscious ocular hypertensive monkeys by 39% following a topical ocular dose of $3 \mu \mathrm{~g}$. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Glaucoma, a heterogeneous family of optic neuropathies, is one of the leading causes of blindness in the developed world. Elevated intraocular pressure (IOP) is an important risk factor for loss of visual field due to optic nerve damage. ${ }^{1}$ Endogenous prostaglandins and their prodrugs, such as $\mathrm{PGF}_{2 \alpha}$ isopropyl ester, reduce IOP in monkeys and in man, but also cause conjunctival hyperemia, foreign-body sensation, and stinging. ${ }^{2}$ Prodrugs of potent, selective prostaglandin FP receptor agonists exhibit similar IOP-lowering potencies and efficacies as their endogenous counterparts but elicit greatly reduced ocular side effects. Three such synthetic prostaglandin analogs-travoprost, ${ }^{3 \mathrm{a}}$ latanoprost, ${ }^{3 \mathrm{~b}}$ and bimatoprost ${ }^{3 \mathrm{c}}$ —are the active ingredients of topically active, once-a-day IOP-lowering medications (Fig. 1). Their introduction to clinical practice has revolutionized the treatment of glaucoma.

Our continuing interest in discovering novel structures with prostaglandin FP receptor agonist activity led us

[^0]

Figure 1.
to consider the 15 -deoxy-15-fluoro (termed 15 -fluoro hereinafter) structural motif. The replacement of the carbon 15-hydroxyl group of $\mathrm{PGF}_{2 \alpha}$ with a fluorine atom should profoundly affect many physicochemical properties of the molecule. ${ }^{4}$ The volume occupied by the $\mathrm{C}-\mathrm{F}$ group (bond distance $\sim 1.38 \AA,{ }^{5 \mathrm{a}} \mathrm{F}$ van der Waals radius $\sim 1.47 \AA^{6}$) is smaller than that for the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ array (bond lengths: $\sim 1.43 \AA^{5 \mathrm{~b}}$ for a $\mathrm{C}-\mathrm{O}$ bond and $0.96 \AA^{\text {sc }}$ for an $\mathrm{O}-\mathrm{H}$ bond; van der Waals radii: $1.52 \AA^{6}$ for $\mathrm{O}, 1.20 \AA^{6}$ for H). Compared to the hydroxyl group the carbon-bound fluorine atom has no hydrogen bond-donating capacity and has a diminished hydrogen
bond-accepting ability, although there is some controversy as to the magnitude of this effect. ${ }^{7}$ Due to the greater electronegativity of fluorine compared to oxygen, the fluorinated carbon should be more electronegative than its hydroxylated congener. In a related fashion, the lower energy of the $\mathrm{C}-\mathrm{F}$, as compared to the $\mathrm{C}-\mathrm{O}, \sigma^{*}$ orbital can reinforce unusual stereoelec-tronic-based conformational properties (e.g., the anomeric effect) due to energetically favorable n / σ^{*} or π / σ^{*} overlap. ${ }^{8}$ Finally, fluorine-for-hydroxyl substitution significantly increases lipophilicity.

Given the structure-activity relationship insight that could be gained by this substitution, there are surprisingly few reports of this motif. This is perhaps due to the belief that hydroxyl substitution at carbon 15 is necessary for potent biological activity. ${ }^{9}$ The most systematic studies in the literature are those of Bezuglov et al., who reported the synthesis, ex vivo biological studies, and physicochemical properties of a variety of 15 -fluoro analogs of endogenous prostaglandins, including 15-fluoro- $\mathrm{PGF}_{2 \alpha}$ and 15 -fluoro- PGE_{2} (Fig. 2). ${ }^{10}$

Based on the effect of 15 -fluoro- $\mathrm{PGF}_{2 \alpha}$ on smooth muscle tone of several organs in rats, hamsters, and guinea pigs, it was theorized that this substitution increased EP receptor affinity. ${ }^{10 c}$ Interestingly, 15 -fluoro PGE_{2} itself demonstrated reduced biological activity compared to PGE_{2}.

We now report the synthesis and pharmacological characterization of a series of 15-fluoro-16-aryloxy- ω -tetranor- $\mathrm{PGF}_{2 \alpha}$ analogs I (Fig. 3). ${ }^{1,12}$ Many of these compounds potently activated the prostaglandin FP receptor in vitro, and several effectively lowered IOP in conscious lasered (ocular hypertensive due to trabeculoplasty) monkeys while causing relatively little ocular irritation in rabbits. In particular, phenoxy-terminated congener 24 elicited minimal ocular hyperemic response in rabbits, and a twice-a-day $3 \mu \mathrm{~g}$ dose lowered IOP in monkeys by 39%.

Figure 2.

Figure 3.

2. Results and discussion

2.1. Chemistry

The syntheses of the 16 -phenoxy terminated 15 -fluoro compounds are illustrative. Reduction of known enone 1^{13} with (+)-B-chlorodiisopinocampheylborane ${ }^{14}[(+)$ -DIP-Cl] afforded predominantly the β-alcohol 2 with $\sim 8: 1$ stereoselectivity; diastereomerically pure 2 was isolated in 35% yield after flash chromatography (Scheme 1). In a complementary fashion, reduction with the antipode (-)-DIP-Cl afforded the diastereomerically pure epimeric α-alcohol 3 in 50% yield after chromatography. Alternatively, carbonyl reduction of 1 with $\mathrm{CeCl}_{3} / \mathrm{NaBH}_{4}$ provided the alcohols 2 and $\mathbf{3}$ as a $\sim 1: 1$ mixture. Fluorination of the allyl alcohol functionality with (diethylaminosulfur)trifluoride (DAST) was not stereospecific; using either the diastereomerically pure 2 or the $1: 1$ mixture $2 / 3$ as the starting material afforded the same mixture of four allylic fluorides 4-5. The lack of stereospecificity in the fluorination implies ionization at carbon 15 to generate the same intermediate from either diastereomeric alcohol, followed by attack of fluoride with retention or inversion at the ipso- or β-positions. One diastereomer of 5 and the two diaste-reo-mers 4 coeluted chromatographically, but were separable from the other diasteromer of $\mathbf{5}$. Debenzoylation of the $\mathbf{4}$ +one diastereomer of 5 mixture provided alcohols 6, which were separable from the alcohol derived from 5. The alcohols $\mathbf{6}$ were then protected as their THP ethers 7. DIBAL-H reduction of the lactone to the corresponding lactol, followed by Wittig condensation with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{~K}$ and esterification of the crude product mixture gave 8 . Deprotection of 8 and HPLC purification afforded the 15α - and 15β-fluoride isopropyl esters $\mathbf{9}$ and $\mathbf{1 0}$, which were saponified to their corresponding acids $\mathbf{1 1}$ and $\mathbf{1 2}$ under standard conditions. In this and all subsequent cases, the carbon 15 absolute stereochemistry was tentatively assigned based on the EC_{50} values of the acids in the prostaglandin FP receptor functional assay (see Table 1), the more potent diastereomer being assigned as the 15α-fluoride. ${ }^{15}$

With respect to the 13,14-dihydro series, hydrogenation of β-alcohol 2 followed by DAST fluorination afforded 13 (Scheme 2). In contrast to the allyl alcohol case, DAST fluorination was stereospecific: the same sequence applied to α-alcohol 3 afforded the inverted product 15. In each case the fluorination product was accompanied by about 20% of an HF elimination by-product, which could be separated by flash chromatography either immediately post-fluorination or at the end of the synthesis. Protecting group interchange, lactone to lactol reduction, α-chain installation/esterification, and deprotection as above afforded 13,14-dihy-dro-15-fluoro prostaglandin esters 17 and 18, which were saponified to the acids 19 and 20.

Synthesis of the 13,14 -dihydro-cis- Δ^{4} congener ${ }^{16}$ diverged from 14 (Scheme 3). For convenience, the aforementioned HF elimination contaminant (see above) from the DAST fluorination step was carried forward until HPLC isolation of $\mathbf{2 4}$ at the end of the synthesis.

$\mathrm{HCl}, i-\mathrm{PrOH}$ 77\% combined yield

After HPLC separation, 14% yield of 9 and 32% yield of 10

12, 88\% from 10

Scheme 1.

Table 1. FP receptor functional response and binding data

Compound	$K_{\mathrm{i}} \pm \mathrm{SEM}^{\mathrm{a}}(\mathrm{nM})$	$\mathrm{EC}_{50} \pm \mathrm{SEM}(\mathrm{nM})$	Response (\%)
11	210 ± 64	4 ± 0.5	104
12	1100 ± 110	96 ± 16	97
19	52 ± 1	10 ± 2	79
20	3900 ± 2200	154 ± 6	65
25	690 ± 140	11 ± 1	81
28	360 ± 27	183 ± 41	91
30	38 ± 12	20 ± 11	64
32	230 ± 23	13 ± 3	85
34	240 ± 130	2 ± 0.5	84
36	182 ± 15	81 ± 10	76
38	160 ± 22	13 ± 5	83
40	3800 ± 160	131 ± 35	44
$\mathrm{PGF}_{2 \alpha}$	129 ± 12	24.5 ± 0.92	92
Latanoprost acid	92 ± 14	34.4 ± 5.2	75
Cloprostenol	31 ± 2	1 ± 0.04	100
Travoprost acid	52 ± 2	2.7 ± 0.28	100
16-Phenoxy- ω-tetranor-PGF 2α	22 ± 5	1 ± 0.4	100

[^1]

LiOH, MeOH

19, 93\% from 17

20, 83\% from 18

Scheme 2.

Scheme 3.

Silylation of the C-11 oxygen afforded lactone 21. Reduction to the lactol using DIBAL-H was followed by Wittig condensation to provide enol ether 22. Acidic hydrolysis gave homologated lactol 23, which underwent olefination in the usual manner and TBAF-mediated desilylation to provide 24 as a $96: 4$ mixture of 4Z:4E olefin geometrical isomers after HPLC purification. Saponification then afforded 25.

As a final synthetic note, we were unable to prepare 15-fluoro- $\mathrm{PGF}_{2 \alpha}$ itself. The immediate post-fluorination product 26, an allyl alkyl fluoride, largely degraded upon standing over $1-2$ days, even in solution at $4^{\circ} \mathrm{C}$ (Fig. 4). An odor of H-F could be detected from the degraded sample, and $600 \mathrm{MHz}{ }^{1} \mathrm{H} / 150 \mathrm{MHz}^{13} \mathrm{C}$ NMR analyses of the crude showed a complex mixture whose components mostly lacked a C-F bond. Interestingly the

$R=H, 28$
$\mathrm{R}=\mathrm{Pr}-\mathrm{i}, 29$

Figure 4.

13,14-dihydro-15-fluoro analog 27, a dialkyl fluoride, and products synthetically derived from it were stable at room temperature indefinitely. Therefore for comparative biological evaluation we prepared 13,14-dihydro-15-deoxy-15 α-fluoro- $\mathrm{PGF}_{2 \alpha}$ (28) and its isopropyl ester (29). We currently have no satisfactory explanation for the enhanced stabilities of dialkyl fluorides such as 27 and allyl (phenoxyalkyl) fluorides like $\mathbf{4}$ over allyl alkyl fluoride 26. ${ }^{17}$

2.2. Pharmacology

The compounds shown in Figure 5 were evaluated for their binding affinity and functional efficacy at the FP prostaglandin receptor, for side effect potential in the rabbit ocular irritation (ROI) model, for topical ocular potency in the cat pupil diameter (CPD) constriction model, and for IOP lowering in the lasered ocular
hypertensive monkey model. The carboxylic acid was used in all in vitro studies since it is believed to be the pharmacologically active form of the compound. The corresponding isopropyl ester prodrugs were used in the in vivo experiments to facilitate corneal penetration and delivery of the carboxylic acid to the aqueous humor.

2.3. In vitro studies

2.3.1. FP receptor functional response and binding. Table 1 summarizes our evaluation of 15 -fluoro prostaglandin acids for binding to an FP receptor expressed in bovine corpus luteum $\left(K_{\mathrm{i}}\right),{ }^{18 a}$ and for functional potency $\left(\mathrm{EC}_{50}=\right.$ effective concentration necessary for a compound to attain 50% of its maximal response) and efficacy via stimulation of FP receptor-linked phosphoinositide turnover in Swiss 3 T 3 mouse fibroblast cells. ${ }^{18 \mathrm{~b}}$ The standards $\mathrm{PGF}_{2 \alpha}$, latanoprost acid, cloprostenol,

HO

$\mathrm{X}=\mathrm{Cl}$, cloprostenol
$\mathrm{X}=\mathrm{CF}_{3}$, travoprost acid
$\mathrm{X}=\mathrm{H}, 16$-phenoxy- ω-tetranor- $\mathrm{PGF}_{2 \alpha}$

Figure 5. Structure of prostaglandin analogs evaluated in vitro and in vivo.

Table 2. Cat, rabbit, monkey, and lipophilicity data

Ester (corresponding acid)	$\mathrm{ROI}_{15}{ }^{\text {a }}$ ($\mu \mathrm{g}$)	CPD, ${ }^{\text {b }} \mathrm{ED}_{5}(\mu \mathrm{~g})$	Monkey IOP, \% change (dose in $\mu \mathrm{g}$)	RRI ${ }^{\text {c }}$
9 (11)	0.3	0.05	- ${ }^{\text {d }}$	1.79
10 (12)	1	0.5	-	-
17 (19)	10	0.2	-	2.41
24 (25)	10	0.04	-39\% (3)	2.46
31 (30)	100	1	-33\% (10)	4.13
33 (32)	100	10	-	4.96
35 (34)	10	0.1	-18\% (1)	2.96
37 (36)	>100	1	-	-
39 (38)	10	1.2	-	3.51
$\mathrm{PGF}_{2 \alpha}$ isopropyl ester	<0.1	0.03	-38\% (1)	1.00
Travoprost	3	0.015	-29\% (0.3)	1.16
Latanoprost	1.8	0.13	-27\% (3)	1.05
Cloprostenol isopropyl ester	0.3	0.013	-39\% (1)	-

${ }^{\mathrm{a}} \mathrm{ROI}_{15}=$ Dose estimated to produce conjunctival hyperemia in 15% of the tested rabbits over 4 h .
${ }^{\mathrm{b}} \mathrm{CPD}=$ Cat pupil diameter constriction.
${ }^{c}$ RRI $=$ Relative retention index.
${ }^{\mathrm{d}}$ Not tested.
travoprost acid, and 16 -phenoxy- ω-tetranor- $\mathrm{PGF}_{2 \alpha}$ are included for comparison.

2.4. In vivo studies

Conjunctival hyperemia was studied in New Zealand Albino rabbits. ${ }^{3 a} \mathrm{ROI}_{15}$ denotes the dose estimated to produce 15% incidence of hyperemia over the 4 h course of the study. As a preliminary assay of topical ocular potency, the ability of a test compound to constrict the cat pupil over time was measured and is expressed as an ED_{5} value, ${ }^{3 \mathrm{a}}$ indicating the dose estimated to produce a 5 unit area (mm h) in a graph of the difference in pupil diameter in the dosed eye versus time. Acute IOP-lowering efficacy was measured in conscious ocular hypertensive cynomolgus monkeys. ${ }^{3 a}$ These parameters for selected compounds are shown in Table 2.

The high hydrophobicity of prostaglandins in general and these 15 -fluoro analogs in particular caused experimental determination of octanol-water partition coefficients to be imprecise and not very useful for comparison purposes. As an alternative, for selected compounds an HPLC-based relative retention index (RRI) was used as a surrogate measure of distribution. Retention times were measured for the compounds on a reverse-phase HPLC column using acetonitrile/pH3 ammonium phosphate buffer elution. The RRI is defined as the retention time of the test item divided by that for $\mathrm{PGF}_{2 \alpha}$ isopropyl ester. In general, the higher a compound's RRI value, the more lipophilic it is.

The corresponding data for the standards cloprostenol isopropyl ester, latanoprost, travoprost, and $\mathrm{PGF}_{2 \alpha}$ isopropyl ester are included in Table 2 for comparison.

The 15 -fluoro prostaglandin analogs had approximately 10 -fold lower affinity for, while being $2-5$-fold less potent for functional activation of the FP receptor as compared to the corresponding 15 -hydroxy analogs (11, 34, and 38 vs 16 -phenoxy- ω-tetranor-PGF 2α, cloprostenol, and travoprost acid). The 13,14-dihydro analogs
tended to have increased receptor binding affinity but were less potent in the functional assay.

Topical ocular efficacy of a prostaglandin analog depends on its inherent activity, metabolic stability, and bioavailability. To be effective, an ester prodrug must be absorbed and hydrolyzed by ocular tissue and the resulting carboxylic acid delivered to the trabecular meshwork or ciliary muscle, which are the presumed target tissues. In the 15 -fluoro series there is neither a strong correlation between FP receptor binding affinity and functional efficacy nor between either in vitro binding affinity or functional efficacy and in vivo efficacy. However within a series of 15α-fluoride ester prodrugs whose acids had similar K_{i} values (e.g., compounds 11, 32, 34, and 38, with $K_{\mathrm{i}}=160-240 \mathrm{nM}$), less lipophilic compounds were more potent in the cat pupil diameter assay. Similarly the two 15α-fluoride acids $\mathbf{1 1}$ and 34 and the 15 -hydroxy compound travoprost acid all had similar functional potency $\left(\mathrm{EC}_{50}=1-4 \mathrm{nM}\right)$, yet for their corresponding isopropyl esters lower lipophilicity afforded higher cat pupil diameter potency.

The cis- Δ^{4} analog 25 is noteworthy because although it had modest affinity for the FP receptor ($K_{\mathrm{i}}=690 \mathrm{nM}$), it was a fairly potent agonist in the functional assay $\left(\mathrm{EC}_{50}=11 \mathrm{nM}\right)$. The corresponding isopropyl ester 24 was surprisingly potent in the cat pupil diameter assay, while demonstrating good separation between its cat $\mathrm{ED}_{5}(0.04 \mu \mathrm{~g})$ and $\mathrm{ROH}_{15}(10 \mu \mathrm{~g})$ values. The compound was also very effective in lowering IOP in ocular hypertensive monkeys. The cis- Δ^{4} modification is known to inhibit α-chain metabolism of $\mathrm{PGF}_{2 \alpha}$ in monkeys. ${ }^{19}$ Thus the in vivo efficacy of $\mathbf{2 4}$ may be due in part to its enhanced metabolic stability, both in the α-chain due to the Δ^{5} to Δ^{4} olefin shift and in the ω-chain due to the lack of the 15 -hydroxy group.

3. Conclusion

Substitution of a fluorine for the 15 -hydroxy group of select prostaglandin FP agonists decreased in vitro
receptor affinity markedly and functional potency less dramatically. As compared to their 15-hydroxy congeners, the 15 -fluoro prostaglandin ester prodrugs were less potent but still effective in the cat, and tended to be less hyperemic in the rabbit. Notably compound 24 (13,14-dihydro-15-deoxy-15 α-fluoro-16-aryloxy- ω-tetra-nor-cis- $\Delta^{4}-\mathrm{PGF}_{2 \alpha}$ isopropyl ester) potently constricted the cat pupil, induced minimal hyperemic response in the rabbit, and lowered monkey IOP by 39%. This profile is consistent with other prostaglandin analogs shown to be effective ocular hypotensive agents in humans.

4. Experimental section

4.1. Chemistry general methods

Abbreviations used include: calcd, calculated; DAST (diethylamino)sulfur trifluoride; DBU, 1,8-diazabicylo-[5.4.0]undec-7-ene; DHP, 3,4-dihydro-2H-pyran; DMAP, 4-(dimethylamino)pyridine; DIBAL-H, diisobutylaluminum hydride; $(+)$ - and (-)-DIP chloride, $(+)$ - and (-)-B-chlorodiisopinocampheylborane; MF, molecular formula; MW, molecular weight; PTFE, poly(terfluoroethylene); p-TsOH, p-toluenesulfonic acid monohydrate; TBAF, tetra- n-butylammonium fluoride. Unless otherwise noted, all ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were acquired in CDCl_{3} solvent. All $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $50 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were acquired on a Varian Gemini 200 spectrometer. All $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were acquired on a Bruker DRX600 spectrometer. For reactions without added water, solvents used were anhydrous grade from Aldrich Chemical Company and were used without further purification. $\mathrm{PGF}_{2 \alpha}$ and its isopropyl ester and 16-phenoxy- ω-tetranor- $\mathrm{PGF}_{2 \alpha}$ were purchased from Cayman Chemical Company, Ann Arbor, Michigan, USA, and were used as received. Latanoprost and its acid ${ }^{20}$ was synthesized in-house according to published procedures, as were travoprost and its acid and cloprostenol and its isopropyl ester. ${ }^{21}$ Unless otherwise stated, all reactions were run under a positive pressure of nitrogen, and all temperatures quoted refer to external temperatures. Concentration refers to removal of solvent in vacuo on a rotary evaporator. Reactions were monitored by TLC on E. Merck Silica Gel $60 \mathrm{~F}_{254}$ plates, with visualization by UV light or staining with either ethanolic phosphomolybdic acid or 2% aqueous KMnO_{4}. Column chromatographic purifications were performed under positive air flow using 230-400 mesh silica gel from E.M. Science. Chromatography solvents used were HPLC grade from E.M. Science. Electrospray low resolution mass spectra (ES-LRMS) were acquired on a Finnegan TSQ 46 triple quadrupole mass spectrometer operating in the positive electrospray mode. Matrixassisted laser desorption ionization low resolution mass spectra (MALDI-LRMS) were acquired on a Voyager RP laser desorption time-of-flight mass spectrometer. High resolution mass spectra (HRMS) were acquired by Analytical Instrument Group, Raleigh, NC; the spectra were acquired using the Fast Atom Bombardment Mode.
4.1.1. [3aR,4R(1E,3S),5R,6aS]-5-Benzoyloxy-4-(3-hydr-oxy-4-phenoxy-1-buten-1-yl)-hexahydro- 2 H -cyclopenta-[b]furan-2-one (2). To a mixture of enone $\mathbf{1}^{13}$ (2.97 g , $7.31 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added via syringe over 20 min a solution of (+)-DIP chloride (5.0 g , 15.6 mmol) in THF $(20 \mathrm{~mL})$. After 90 min the reaction mixture was warmed to room temperature and stirred overnight. Methanol (5 mL) was added, the mixture was stirred for 15 min , and $1 \mathrm{M} \mathrm{HCl}(75 \mathrm{~mL})$ was added. The solution was extracted with ethyl acetate $(3 \times 75 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, and the residue was dissolved in 100 mL of $1: 1 \mathrm{CH}_{3} \mathrm{CN}$-hexane. The bottom $\mathrm{CH}_{3} \mathrm{CN}$ layer was isolated and extracted with hexane $(1 \times 50 \mathrm{~mL})$, concentrated, and chromatographed on a 15 cm tall $\times 45 \mathrm{~mm}$ diameter silica gel column eluting with $1: 1$ ethyl acetate-hexane to afford three components; the slowest eluting was a diastereomerically pure ($\geqslant 99: 1$) sample of alcohol $2(1.03 \mathrm{~g}$, 35%), the middle eluting was a $\sim 9: 1$ mixture of 2 and its diastereomeric alcohol $3(820 \mathrm{mg}, 27 \%)$, and the fastest eluting was a $\sim 1: 1$ mixture of $\mathbf{2 : 3}(579 \mathrm{mg}, 19 \%)$. Spectral data for 2: ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 176.36$ (C), 166.03 (C), $158.29(\mathrm{C}), 133.37(\mathrm{CH}), 131.14(\mathrm{CH}), 131.00(\mathrm{CH})$, $129.65(\mathrm{CH}), 129.57(\mathrm{CH}), 128.54(\mathrm{CH}), 121.39(\mathrm{CH})$, $114.60(\mathrm{CH}), 83.28(\mathrm{CH}), 79.03(\mathrm{CH}), 71.56\left(\mathrm{CH}_{2}\right)$, $70.41(\mathrm{CH}), 54.30(\mathrm{CH}), 42.67(\mathrm{CH}), 37.57\left(\mathrm{CH}_{2}\right), 34.94$ $\left(\mathrm{CH}_{2}\right)$. MALDI-LRMS, m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 431$; found 431.

Abstract

4.1.2. [3aR,4R(1E,3RS),5R,6aS]-5-Benzoyloxy-4-(3-flu-oro-4-phenoxybutenyl)-hexahydro- $2 H$-cyclopenta $[b]$ furan-2-one (4) and $[3 a R, 4 R(2 E, 1 R S), 5 R, 6 a S]-5-B e n z o y l o x y-4-$ (1-fluoro-4-phenoxy-2-buten-1-yl)-hexahydro-2H-cyclo-penta[b]furan-2-one (5).

4.1.2.1. Demonstration run. To a solution of 2 $(182 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise via syringe (diethylamino)sulfur trifluoride (DAST; $110 \mathrm{mg}, 0.69 \mathrm{mmol}$). After 1 h saturated $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and ethyl acetate $(4 \mathrm{~mL})$ were added, and the mixture was extracted with ethyl acetate $(3 \times 4 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was flash chromatographed on a 7 cm tall $\times 40 \mathrm{~mm}$ diameter silica gel column eluting with $2: 1$ hexane-ethyl acetate to afford two components. The first to elute, 13.5 mg , was tentatively assigned as a single diastereomer (the olefin geometry was assumed to be E) of 5, the allyl fluoride resulting from formal $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination of the starting material, on the basis of ${ }^{1} \mathrm{H}$ NMR spectral data for this compound (yield $=7 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum for this compound (200 MHz) showed the proton on the fluo-rine-containing carbon resonating as a doublet of multiplets between $\delta=5.1$ and 5.4 ppm with an estimated J value of about 50 Hz , and being mostly obscured by the two multiplets due to two oxygenated methine protons resonating between $\delta=5.4-5.5 \mathrm{ppm}$ and $\delta=$ $5.1-5.2 \mathrm{ppm}$. Furthermore, the $\mathrm{CH}_{2} \mathrm{OPh}$ protons appeared as a broad singlet between $\delta=4.5-4.6 \mathrm{ppm}$, which was distinct from that for the formal $\mathrm{S}_{\mathrm{N}} 2$ fluorination product 4 (vide infra). MALDI-LRMS, calcd for
$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{FNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 433$; found, 433. The second component to elute, 80.0 mg , was assigned as a mixture of the two diastereomers of the formal $\mathrm{S}_{\mathrm{N}} 2$ product 4 and the other diastereomer of 5 (yield $=43 \%$). The proton NMR spectrum (200 MHz) for this three-compound mixture was more complicated than that for the single compound faster-eluting component. However, a key region of the spectrum was between $\delta=4-5 \mathrm{ppm}$. A broad singlet between $\delta=4.5-4.6 \mathrm{ppm}$ was likely due to the resonance of the $\mathrm{CH}_{2} \mathrm{OPh}$ protons for 5 (vide supra). The appearance of two multiplets, one about $\delta=$ 4.0 ppm and the other about $\delta=4.1 \mathrm{ppm}$, are consistent with resonances due to the individual $\mathrm{CH}_{2} \mathrm{OPh}$ for 4. The integration values indicated a ratio of $3: 1$ ratio of 4 :one diastereomer of 5 .

Particularly diagnostic for the slower-eluting component was the ${ }^{13} \mathrm{C}$ and DEPT NMR spectra. The first key region of these spectra was that between $\delta=85-95 \mathrm{ppm}$. The appearance of three doublets due to a CH carbon bonded to fluorine ($\delta=92.16 \mathrm{ppm}, \mathrm{CH}, \mathrm{d}, J=174 \mathrm{~Hz}$; $\delta=90.42 \mathrm{ppm}, \mathrm{CH}, \mathrm{d}, J=172 \mathrm{~Hz} ; \delta=90.20 \mathrm{ppm}, \mathrm{CH}$, d, $J=174 \mathrm{~Hz}$) indicate that there were three-fluorinated products. The second key region of the spectra was between $\delta=65-70 \mathrm{ppm}$, with the relevant resonances being at $\delta=69.44 \mathrm{ppm}\left(\mathrm{CH}_{2}, \mathrm{~d}, J=24 \mathrm{~Hz}\right)$ and at $\delta=66.83 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$. The third key region was between $\delta=50-60 \mathrm{ppm}$, with resonances at $\delta=56.98 \mathrm{ppm}(\mathrm{CH}$, $\mathrm{d}, J=21 \mathrm{~Hz}), \delta=54.14 \mathrm{ppm}(\mathrm{CH})$, and $\delta=54.00 \mathrm{ppm}$ (CH). HRMS analysis of the slower eluting component exhibited an m / z ratio for M^{+}of 410.15283 (calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~F}, 410.152839$). These data are most consistent with the assignments in Table 3 below.
4.1.2.2. Synthesis run. To a solution of $2(2.90 \mathrm{~g}$, $7.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DAST dropwise via syringe ($1.71 \mathrm{~g}, 10.6 \mathrm{mmol})$. After 5 h the reaction mixture was quenched by the addition of methanol $(3 \mathrm{~mL})$, the solution was warmed to room temperature, and saturated NaHCO_{3} was added $(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 75 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was flash chromatographed on a 20 cm tall $\times 53 \mathrm{~mm}$ diameter silica gel column, $2: 1 \rightarrow 3: 2$ hexane-ethyl acetate gradient elution, to afford the slower-eluting component described in the demonstration run above, which consisted of a mixture of 4 and one diastereomer of allylically transposed fluoride 5 ($1.48 \mathrm{~g}, 51 \%$).
4.1.3. [3aR,4R(1E,3RS),5R,6aS]-4-(3-Fluoro-4-phenoxy-butenyl)-5-hydroxy-hexahydro- 2 H -cyclopenta $[b]$ furan-2one (6) and $[3 a R, 4 R(2 E, 1 R S), 5 R, 6 a S]-4-(1-F l u o r o-4-p h e n-$ oxy-2-buten-1-yl)-5-hydroxy-hexahydro-2H-cyclopenta $[b]$ -furan-2-one. To a solution of the above mixture of $\mathbf{4}$ and
$5(830 \mathrm{mg}, 2.03 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($320 \mathrm{mg}, 2.31 \mathrm{mmol}$). After 1 h the reaction mixture was quenched by the addition of saturated citric acid $(25 \mathrm{~mL})$ and the solution was extracted with ethyl acetate $(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, and the residue was chromatographed on a 23 cm tall $\times 53 \mathrm{~mm}$ diameter silica gel column, $1: 1 \rightarrow 3: 2$ ethyl acetate-hexane gradient elution.

The first compound to elute was an 82 mg fraction consisting of one diastereomer of the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorinationderived product [$3 \mathrm{a} R, 4 R(2 E, 1 R S$),5R,6aS]-4-(1-fluoro-4-phenoxy-2-buten-1-yl)-5-hydroxy-hexahydro-2H-cyclo-penta[b]furan-2-one (yield $=13 \%$). The proton NMR spectrum for this compound (200 MHz) showed the proton on the fluorinated carbon resonating at $\delta=4.92 \mathrm{ppm}$ as a doublet of triplets, $J=5 \mathrm{~Hz}$ and 48 Hz , due to coupling to the protons on the adjacent carbons (the 5 Hz triplet) and to the directly attached fluorine (the 48 Hz doublet). Also, the $\mathrm{CH}_{2} \mathrm{OPh}$ protons resonated as a broad singlet about $\delta=4.58 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 176.98$ (C), 158.08 (C), 129.79 (d, $J=12 \mathrm{~Hz}, \mathrm{CH}), 129.49(\mathrm{CH}), 128.25(\mathrm{~d}, J=19 \mathrm{~Hz}$, $\mathrm{CH}), 121.16(\mathrm{CH}), 114.69(\mathrm{CH}), 93.09(\mathrm{~d}, J=171 \mathrm{~Hz}$, $\mathrm{CH}), 84.12(\mathrm{CH}), 73.57(\mathrm{~d}, J=4 \mathrm{~Hz}, \mathrm{CH}), 66.87\left(\mathrm{CH}_{2}\right)$, $58.26(\mathrm{~d}, \quad J=20 \mathrm{~Hz}, \mathrm{CH}), 40.89\left(\mathrm{CH}_{2}\right), 39.62(\mathrm{~d}$, $J=4 \mathrm{~Hz}, \mathrm{CH}), 35.81\left(\mathrm{CH}_{2}\right)$. The appearance of the most downfield CH_{2} signal at $\delta=66.87 \mathrm{ppm}$, due to the $\mathrm{CH}_{2} \mathrm{OPh}$ carbon, as a singlet indicates that a $\mathrm{C}-\mathrm{F}$ bond was not formed on the adjacent carbon; otherwise a two bond $\mathrm{C}-\mathrm{F}$ coupling constant would be present. A twobond $\mathrm{C}-\mathrm{F}$ doublet with a 20 Hz coupling constant is found instead for a $C H$ signal at $\delta=58.26 \mathrm{ppm}$. This is most consistent with an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination-derived product structural assignment for this compound, as is the presence of two CH signals as doublets in the aliphatic region of the spectrum with 4 Hz coupling constants due to three bond $\mathrm{C}-\mathrm{F}$ couplings: one at $\delta=73.57 \mathrm{ppm}$ and one at $\delta=39.62 \mathrm{ppm}$.

The second component to elute was a 593 mg fraction, which was assigned as the $\mathrm{S}_{\mathrm{N}} 2$ fluorination-derived product 6 (nominal yield $=95 \%$; there was likely a weighing error as the nominal combined yield exceeds 100%). An inspection of the proton NMR spectrum $(200 \mathrm{MHz})$ for this component showed several key differences to that $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination-derived product from above. First, the appearance of the olefin protons was much sharper. Second, the proton on the fluorinated carbon resonated as a doublet of quartets at $\delta=5.24 \mathrm{ppm}$ with $J=4 \mathrm{~Hz}$ and 50 Hz that is, about 0.3 ppm downfield from the fluorinated $\mathrm{C} H$ for the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination-derived product. Third, the $\mathrm{CH}_{2} \mathrm{OPh}$ protons resonated as a doublet of multiplets about $\delta=4.1 \mathrm{ppm}$.

Table 3. Selected carbon 13 NMR spectroscopy peaks for compounds $\mathbf{4}$ and $\mathbf{5}$

Compound	Fluorinated carbon resonance	$C H_{2} \mathrm{OPh}$ resonance	$\mathrm{R}_{2} \mathrm{CHO} \mathrm{O}_{2} \mathrm{CPh}$ resonance
$\mathbf{4 ,}$ major fluoride diastereomer	$\delta=90.42 \mathrm{ppm}, \mathrm{d}, J=172 \mathrm{~Hz}$	$\delta=69.44 \mathrm{ppm}, \mathrm{d}, J=24 \mathrm{~Hz}$	$\delta=54.14 \mathrm{ppm}$, singlet
$\mathbf{4 ,}$ minor fluoride diastereomer	$\delta=90.20 \mathrm{ppm}, \mathrm{d}, J=174 \mathrm{~Hz}$	$\delta=69.44 \mathrm{ppm}, \mathrm{d}, J=24 \mathrm{~Hz}$	$\delta=54.00 \mathrm{ppm}$, singlet
$\mathbf{5}$, one fluoride diastereomer	$\delta=92.16 \mathrm{ppm}, \mathrm{d}, J=174 \mathrm{~Hz}$	$\delta=66.83 \mathrm{ppm}$, singlet	$\delta=56.98 \mathrm{ppm}, \mathrm{d}, J=21 \mathrm{~Hz}$

The carbon and DEPT NMR spectra for 6 had the following resonances $(50 \mathrm{MHz}): \delta 176.91(\mathrm{C}), 158.27$ (C), 134.14 (d, $J=10 \mathrm{~Hz}, \mathrm{CH}), 129.61(\mathrm{CH}), 127.55(\mathrm{~d}$, $J=18 \mathrm{~Hz}, \mathrm{CH}), 121.50(\mathrm{CH}), 114.69(\mathrm{CH}), 90.56(\mathrm{~d}$, $J=172 \mathrm{~Hz}, \mathrm{CH}$), $82.68(\mathrm{CH}), 76.74$ (due to major diastereomer, d, $J=2 \mathrm{~Hz}, \mathrm{CH}$), 76.65 (due to minor diastereomer, d, $J=2 \mathrm{~Hz}, \mathrm{CH}), 69.57\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $56.24(\mathrm{CH}), 42.46(\mathrm{CH}), 40.11\left(\mathrm{CH}_{2}\right), 34.49\left(\mathrm{CH}_{2}\right)$. Note the appearance of the $\mathrm{CH}_{2} \mathrm{OPh}$ carbon as a doublet at $\delta=69.57 \mathrm{ppm}$ with $J=24 \mathrm{~Hz}$ due to 2 -carbon $\mathrm{C}-\mathrm{F}$ coupling, as opposed to its appearance as a singlet in the ${ }^{13} \mathrm{C}$ NMR spectrum for the regioisomeric fluoride (vide supra).

HRMS data for 6: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 307.134634; found, 307.134634.
4.1.4. [3aR,4R(1E,3RS),5R,6aS]-4-(3-Fluoro-4-phenoxy-butenyl)-5-(tetrahydropyran-2-yloxy)-hexahydro-2H-cy-clopenta[b]furan-2-one (7). To a solution of $6(590 \mathrm{mg}$, $1.93 \mathrm{mmol})$ and DHP ($202 \mathrm{mg}, 2.41 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(11 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $p-\mathrm{TsOH}(73 \mathrm{mg}, 0.38 \mathrm{mmol})$. After 30 min the reaction mixture was quenched by the addition of $\mathrm{NEt}_{3}(110 \mathrm{mg}, 1.1 \mathrm{mmol})$ and concentrated, and the residue was chromatographed on a 14 cm tall $\times 41 \mathrm{~mm}$ diameter silica gel column eluting with 3:2 ethyl acetate-hexane to afford $7(437 \mathrm{mg}, 58 \%)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 391.192125$; found, 391.19213.
4.1.5. (5Z,13E)-(9S,11R,15RS)-15-Fluoro-9-hydroxy-16-phenoxy-11-(tetrahydropyran-2-yloxy)-17,18,19,20-tetra-nor-5, 13-prostadienoic acid isopropyl ester (8). To a solution of $7(426 \mathrm{mg}, 1.09 \mathrm{mmol})$ in THF $(9 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a 1.5 M solution of DIBAL-H in toluene $(1.2 \mathrm{~mL}, 1.8 \mathrm{mmol})$. After 3 h methanol was added (1 mL) and the solution was warmed to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, ether $(15 \mathrm{~mL})$, and saturated sodium potassium tartrate $(15 \mathrm{~mL})$ were added and the suspension was stirred for 15 min to break the emulsion. The layers were separated, the aqueous phase was extracted with ether $(2 \times 25 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to afford the lactol $[3 \mathrm{a} R, 4 R(1 E$, $3 R S$), $5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxybutenyl)-5-hydroxy-hexahydro- 2 H -cyclopenta[b]furan-2-ol ($406 \mathrm{mg}, ~ 93 \%$). MALDI-LRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{FNa}[(\mathrm{M}+$ $\mathrm{Na})^{+}$], 415; found, 415.

To a suspension of $\mathrm{Ph}_{3} \mathrm{P}^{+}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{HBr}^{-}(970 \mathrm{mg}$, $2.19 \mathrm{mmol})$ in THF (10 mL) at $0^{\circ} \mathrm{C}$ was added a 1 M solution of potassium t-butoxide in THF $(4.6 \mathrm{~mL}$, 4.6 mmol). After 15 min a solution of the above lactol $(426 \mathrm{mg}, 1.09 \mathrm{mmol})$ in THF (10 mL) was added. After 2.5 h the reaction mixture was quenched by the addition of saturated $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and was warmed to room temperature. The solution was extracted with ethyl acetate $(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to afford a crude oil.

This oil was dissolved in acetone $(15 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. DBU ($760 \mathrm{mg}, 5.01 \mathrm{mmol}$) was added, and after 40 min isopropyl iodide was added $(850 \mathrm{mg}, 5.0 \mathrm{mmol})$. The reaction mixture was warmed to room temperature and stirred overnight. Saturated $\mathrm{KH}_{2} \mathrm{PO}_{4}(20 \mathrm{~mL})$ was added to quench the reaction mixture, saturated brine $(20 \mathrm{~mL})$ was added, and the solution was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The residue was chromatographed on a 10 cm tall $\times 41 \mathrm{~mm}$ diameter silica gel column eluting with 40% ethyl acetate in hexane to afford $\mathbf{8}(236 \mathrm{mg}, 45 \%)$. HRMS, m / z calcd for $\quad \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{~F} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right], \quad 519.312738$; found, 519.31274.
4.1.6. (5Z,13E)-(9S, $11 R, 15 R$)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostadienoic acid isopropyl ester (9) and $(5 Z, 13 E)-(9 S, 11 R, 15 S)-9,11$-dihy-droxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostadienoic acid isopropyl ester (10). To a solution of THP ether 8, isopropanol $(10 \mathrm{~mL})$, and water (1 mL) was added $12 \mathrm{M} \mathrm{HCl}(1.5 \mathrm{~mL})$. After 45 min the reaction mixture was quenched by the addition of solid NaHCO_{3} $(2 \mathrm{~g})$, water was added $(55 \mathrm{~mL})$, and the mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated, and the residue was chromatographed on a 25 cm tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with 60:35:5 hexane-ethyl acetate-isopropanol to afford the C-15 diastereomer mixture $(5 Z, 13 E)-(9 S, 11 R, 15 R S)$ -9,11-dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetra-nor-5-prostadienoic acid isopropyl ester $(146.3 \mathrm{mg}$, 77%). The individual C-15 diastereomers were separated by normal-phase HPLC on a chiral column to afford 9 $(25.9 \mathrm{mg})$ and $10(60.5 \mathrm{mg})$. Compound 9: ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 173.43$ (C), 158.38 (C), 137.43 (d, $J=11 \mathrm{~Hz}, \mathrm{CH}), 129.98(\mathrm{CH}), 129.52(\mathrm{CH}), 128.80$ (CH), $125.69(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 121.30(\mathrm{CH}), 114.68$ (CH), $91.00(\mathrm{~d}, J=170 \mathrm{~Hz}, \mathrm{CH}), 78.08(\mathrm{~d}, J=2 \mathrm{~Hz}$, CH), $73.21(\mathrm{CH}), 69.87\left(\mathrm{~d}, J=25 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.66$ $(\mathrm{CH}), 56.04(\mathrm{CH}), 50.55(\mathrm{CH}), 42.93\left(\mathrm{CH}_{2}\right), 34.00$ $\left(\mathrm{CH}_{2}\right), 26.63\left(\mathrm{CH}_{2}\right), 25.74\left(\mathrm{CH}_{2}\right), 24.84\left(\mathrm{CH}_{2}\right), 21.82$ $\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 435.254622; found, 435.25460. Compound 10: ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 173.45$ (C), 158.33 (C), 137.43 (d, $J=11 \mathrm{~Hz}, \mathrm{CH}), 129.90(\mathrm{CH}), 129.46(\mathrm{CH}), 128.78$ $(\mathrm{CH}), 125.68(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 121.23(\mathrm{CH}), 114.64$ (CH), $91.00(\mathrm{~d}, J=170 \mathrm{~Hz}, \mathrm{CH}), 78.04(\mathrm{~d}, J=2 \mathrm{~Hz}$, CH), $73.07(\mathrm{CH}), 69.84\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.62$ $(\mathrm{CH}), 55.96(\mathrm{CH}), 50.49(\mathrm{CH}), 42.94\left(\mathrm{CH}_{2}\right), 33.97$ $\left(\mathrm{CH}_{2}\right), 26.57\left(\mathrm{CH}_{2}\right), 25.61\left(\mathrm{CH}_{2}\right), 24.80\left(\mathrm{CH}_{2}\right), 21.76$ $\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 435.254622; found, 435.25464 .
4.1.7. (5Z,13E)-(9S,11R,15R)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostadienoic acid (11). To a solution of $9(15.8 \mathrm{mg}, 0.0364 \mathrm{mmol})$ in methanol $(1.4 \mathrm{~mL})$ was added $0.5 \mathrm{M} \mathrm{LiOH}(0.33 \mathrm{~mL}, 0.16 \mathrm{mmol})$. After stirring 4 d the reaction mixture was quenched by the addition of 0.24 M citric acid $(1.9 \mathrm{~mL})$ and was extracted with $\mathrm{CHCl}_{3}(3 \times 3 \mathrm{~mL})$. The combined organic layers were
washed with water $(2 \times 2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and filtered through a $0.45 \mu \mathrm{M}$ nylon syringe filter to remove insoluble material. The filtrate was concentrated to afford 11 ($10.3 \mathrm{mg}, 72 \%$). ${ }^{13} \mathrm{C}$ NMR (150 MHz): δ 158.39 (C), 137.48 (d, $J=10 \mathrm{~Hz}, \mathrm{CH}), 129.88$ (CH), $129.56(\mathrm{CH}), 128.99(\mathrm{CH}), 125.82(\mathrm{CH}), 125.82(\mathrm{~d}$, $J=18 \mathrm{~Hz}, \mathrm{CH}), 121.34(\mathrm{CH}), 114.72(\mathrm{CH}), 91.10(\mathrm{~d}$, $J=170 \mathrm{~Hz}, \mathrm{CH}), 78.02(\mathrm{CH}), 73.27(\mathrm{CH}), 69.88(\mathrm{~d}$, $\left.J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 55.81(\mathrm{CH}), 50.54(\mathrm{CH}), 42.82\left(\mathrm{CH}_{2}\right)$, $33.26\left(\mathrm{CH}_{2}\right), 26.43\left(\mathrm{CH}_{2}\right), 25.72\left(\mathrm{CH}_{2}\right), 24.60\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 393.207942$; found, 303.20794.
4.1.8. (5Z,13E)-(9S,11R,15S)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostadienoic acid (12). Analogous to the saponification of ester 9 to afford acid 11, compound $10(59 \mathrm{mg})$ was converted to $12(47 \mathrm{mg})$ in 88% yield. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 178.22$ (C), 158.32 (C), 137.31 (d, $J=11 \mathrm{~Hz}, \mathrm{CH}), 129.77$ (CH), 129.50 $(\mathrm{CH}), 128.94(\mathrm{CH}), 125.86(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 121.29$ (CH), $114.68(\mathrm{CH}), 91.04(\mathrm{~d}, J=170 \mathrm{~Hz}, \mathrm{CH}), 77.87$ (CH), $73.09(\mathrm{CH}), 69.84\left(\mathrm{~d}, ~ J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 55.59$ $(\mathrm{CH}), 50.28(\mathrm{CH}), 42.76\left(\mathrm{CH}_{2}\right), 33.19\left(\mathrm{CH}_{2}\right), 26.38$ $\left(\mathrm{CH}_{2}\right), 25.57\left(\mathrm{CH}_{2}\right), 24.50\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 393.208311 ; found, 393.20831.
4.1.9. $[3 \mathrm{a} R, 4 R(3 R), 5 R, 6 \mathrm{a} S]$-5-Benzoyloxy-4-(3-fluoro-4-phenoxybutyl)-hexahydro- $2 H$-cyclopenta $[b]$ furan-2-one (13). A suspension of olefin $2(1.00 \mathrm{~g}, 2.45 \mathrm{mmol})$ and $10 \% \mathrm{w} / \mathrm{w} \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in ethyl acetate $(30 \mathrm{~mL})$ was hydrogenated at atmospheric pressure using a balloon. After 3 d the mixture was filtered through Celite and concentrated to afford [$3 \mathrm{a} R, 4 R(3 S), 5 R, 6 \mathrm{a} S]$-5-benz-oyloxy-4-(3-hydroxy-4-phenoxybutyl)-hexahydro-2 H -cyclopenta[b]furan-2-one ($998 \mathrm{mg}, 99 \%$). ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 176.86$ (C), 166.16 (C), 158.42 (C), 133.33 $(\mathrm{CH}), 129.68(\mathrm{CH}), 129.60(\mathrm{CH}), 128.56(\mathrm{CH}), 121.34$ $(\mathrm{CH}), 114.57(\mathrm{CH}), 84.58(\mathrm{CH}), 80.42(\mathrm{CH}), 71.98$ $\left(\mathrm{CH}_{2}\right), 70.00(\mathrm{CH}), 53.08(\mathrm{CH}), 43.51(\mathrm{CH}), 37.82$ $\left(\mathrm{CH}_{2}\right), 36.38\left(\mathrm{CH}_{2}\right), 31.14\left(\mathrm{CH}_{2}\right), 29.64\left(\mathrm{CH}_{2}\right)$. MF for product $=\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}, \quad \mathrm{MW}=410$. ES-LRMS, peak at $m / z=428\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right.$ intensity $]$.

To a solution of the alcohol from the previous step ($754 \mathrm{mg}, 1.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DAST ($512 \mathrm{mg}, 3.18 \mathrm{mmol}$). After 45 min TLC analysis (40% ethyl acetate in hexane eluent) of a saturated NaHCO_{3}-quenched aliquot showed no starting material left and the appearance of two new spots: an $R_{\mathrm{f}}=0.46$ spot that was not UV active but was visible with phosphomolybdic acid staining, and an $R_{\mathrm{f}}=0.40$ spot that was UV active but was not visible with phosphomolybdic acid staining. Saturated NaHCO_{3} was added to the reaction mixture $(6 \mathrm{~mL})$, the mixture was warmed to room temperature, the layers were separated, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 10 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was chromatographed on a 21 cm tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with 40% ethyl acetate in hexane
to afford two fractions. The first was a 266.5 mg fraction that by TLC analysis was a mixture of the two aforementioned spots, and consisted of a 1.7:1 molar mixture of $\mathbf{1 3}$ and an HF elimination by-product (as measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy). The second was a 259.9 mg fraction that by TLC analysis displayed only the $R_{\mathrm{f}}=0.40$ spot, and by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR DEPT spectroscopy consisted only of $\mathbf{1 3}$. Total combined yield of fluoride $13=430 \mathrm{mg}=57 \%$. ${ }^{13} \mathrm{C}$ NMR DEPT spectrum $(50 \mathrm{MHz}): \delta 133.75(\mathrm{CH}), 130.05(\mathrm{CH}), 129.98$ $(\mathrm{CH}), 128.96(\mathrm{CH}), 121.76(\mathrm{CH}), 115.18(\mathrm{CH}), 115.00$ (CH), 91.74 (d, $J=172 \mathrm{~Hz}, \mathrm{CH}), 84.76(\mathrm{CH}), 80.35$ (CH), $69.73\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 52.77(\mathrm{CH}), 43.94$ $(\mathrm{CH}), 38.14\left(\mathrm{CH}_{2}\right), 36.65\left(\mathrm{CH}_{2}\right), 30.06\left(\mathrm{CH}_{2}\right), 29.37(\mathrm{~d}$, $\left.J=27 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.06\left(\mathrm{~d}, J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$. MALDILRMS, $m / z=435$, consistent with $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{FNa}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$.
4.1.10. [3aR,4R(3R),5R,6aS]-4-(3-Fluoro-4-phenoxybut-yl)-5-hydroxy-hexahydro-2H-cyclopenta[b]furan-2-one (14). Analogous to the debenzoylation of 4 to alcohol 6, a 2.5:1 molar mixture of fluoride benzoate $\mathbf{1 3}$ and an HF elimination by-product (555 mg) was converted to a mixture of 14 and an HF elimination by-product (316 mg) in 76% yield (calculated as the fluoride). The ${ }^{13} \mathrm{C}$ NMR resonances for 14 were as follows (50 MHz): δ $177.77(\mathrm{C}), 158.23(\mathrm{C}), 129.52(\mathrm{CH}), 121.16(\mathrm{CH}), 114.46$ (CH), $91.58(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH}), 84.00(\mathrm{CH}), 77.08$ (CH), $69.28\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 53.41(\mathrm{CH}), 42.85$ $(\mathrm{CH}), 40.24\left(\mathrm{CH}_{2}\right), 36.05\left(\mathrm{CH}_{2}\right), 29.38(\mathrm{~d}, J=20 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 28.03\left(\mathrm{CH}_{2}\right)$. MF for $\mathbf{1 4}=\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~F}, \mathrm{MW}=308$. ES-LRMS, m / z (fragment, intensity): $325.9\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$ for 14, 100\%], $308.9\left[(\mathrm{M}+\mathrm{H})^{+}\right.$for 14, 43\%], 305.9 $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$for HF elimination by-product, 28\%], 289.0 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$for HF elimination by-product, $\left.15 \%\right]$.
4.1.11. (5Z)-(9S,11R,15R)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester (17). Analogous to the conversion of alcohol 6 to the THP ether 7, alcohol $14(170 \mathrm{mg})$ was converted to THP ether [$3 \mathrm{a} R, 4 R(3 R), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxy-butyl)-5-(tetrahydropyran-2-yloxy)-hexahydro-2H-cyclo-penta[b]furan-2-one ($140 \mathrm{mg}, 70 \%$). MALDI-LRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})^{+}, 415$; found, 415.563.

Analogous to the reduction of lactone 7 to the lactol [3a $R, 4 R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxybuten-yl)-5-hydroxy-hexahydro-2H-cyclopenta[b]furan-2-ol, the above lactone $(140 \mathrm{mg})$ was reduced to the lactol [$2 R S, 3 \mathrm{a} R, 4 R(3 R), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxybutyl)-5-(tetrahydropyran-2-yloxy)-hexahydro-2H-cyclopenta-[b]furan-2-ol (120 mg) in 92% yield. MALDI-LRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})^{+}, 417$; found, 417.516 .

Analogous to the Wittig reaction/esterification of the lactol $[3 \mathrm{a} R, 4 R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxy-butenyl)-5-hydroxy-hexahydro- 2 H -cyclopenta $[b]$-furan2 -ol to 8 , the above lactol (110 mg) was converted to (5Z)-(9S, $11 R, 15 R$)-9-hydroxy-15-fluoro-16-phenoxy-11-
(tetrahydropyran-2-yloxy)-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester (50 mg) in 18% yield in four steps from 14.

Analogous to the deprotection of THP ether $\mathbf{8}$ to the diols 9 and 10, the above THP ether (50 mg) was converted to $17(29 \mathrm{mg})$ in 67% yield. ${ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}): \delta$ 173.4 (C), $158.4(\mathrm{C}), 129.8(\mathrm{CH}), 129.5(\mathrm{CH}), 129.1$ $(\mathrm{CH}), 121.2(\mathrm{CH}), 114.6(\mathrm{CH}), 91.7(\mathrm{~d}, J=175 \mathrm{~Hz}$, $\mathrm{CH}), 78.9(\mathrm{CH}), 74.7(\mathrm{CH}), 69.6\left(\mathrm{~d}, J=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $67.6(\mathrm{CH}), 52.7(\mathrm{CH}), 51.7(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 34.0$ $\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.8(\mathrm{~d}$, $\left.J=15 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 437.270528$; found, 437.27053.
4.1.12. (5Z)-(9S,11R,15R)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostenoic acid (19). Analogous to the saponification of ester 9 to acid 11, $17(8 \mathrm{mg})$ was converted to $\mathbf{1 9}(7 \mathrm{mg})$ in 93% yield. ${ }^{13} \mathrm{C}$ NMR (67.5 MHz): $\delta 158.5(\mathrm{C}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH})$, $129.0(\mathrm{CH}), \quad 120.7(\mathrm{CH}), \quad 114.3(\mathrm{CH}), 91.8(\mathrm{~d}$, $J=169 \mathrm{~Hz}, \quad \mathrm{CH}), 77.0(\mathrm{CH}), 72.3(\mathrm{CH}), 69.6(\mathrm{~d}$, $\left.J=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 50.6(\mathrm{CH}), 50.1(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 33.1$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{~d}, J=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 24.8$ $\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~F}\left(\mathrm{M}^{+}\right)$, 394.215436; found, 394.21542.
4.1.13. $[3 a R, 4 R(1 E, 3 R), 5 R, 6 a S]$-5-Benzoyloxy-4-(3-hy-droxy-4-phenoxybutenyl)-hexahydro-2H-cyclopenta[b]-furan-2-one (3). Analogous to the reduction of enone 1 to β-alcohol 2 with (+)-DIP chloride, enone $1(3.29 \mathrm{~g})$ was converted to α-alcohol $3(1.64 \mathrm{~g})$ in 50% yield using $(-)-D I P ~ c h l o r i d e . ~{ }^{1} \mathrm{H}$ NMR (600 MHz): $\delta 7.99$ (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{dd}, J=16 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dd, $J=16 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}$ of $\mathrm{d}, J=5 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.50(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.94$ (dd, $J=9 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=9 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.86-2.78 (m, 3 H$), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~d}$, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=16 \mathrm{~Hz}$, $4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ DEPT NMR (150 MHz): $\delta 133.33(\mathrm{CH})$, $131.06(\mathrm{CH}), 130.70(\mathrm{CH}), 129.65(\mathrm{CH}), 129.55(\mathrm{CH})$, $128.52(\mathrm{CH}), 121.36(\mathrm{CH}), 114.63(\mathrm{CH}), 83.30(\mathrm{CH})$, $79.08(\mathrm{CH}), 71.58\left(\mathrm{CH}_{2}\right), 70.19(\mathrm{CH}), 54.18(\mathrm{CH}), 42.67$ $(\mathrm{CH}), 37.59\left(\mathrm{CH}_{2}\right), 34.94\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]$, 431.146911 ; found, 431.14691 .
4.1.14. [3aR,4R(3S),5R,6aS]-5-Benzoyloxy-4-(3-fluoro-4-phenoxybutyl)-hexahydro-2H-cyclopenta[b]furan-2-one (15). Analogous to the hydrogenation of olefin 2 to [3aR,4R(3S),5R,6aS]-5-benzoyloxy-4-(3-hydroxy-4-phen-oxybutyl)-hexahydro- $2 H$-cyclopenta[b]furan-2-one, 3 $(1.59 \mathrm{~g})$ was reduced to $[3 \mathrm{a} R, 4 R(3 R), 5 R, 6 \mathrm{a} S]-5$-ben-zoyloxy-4-(3-hydroxy-4-phenoxybutyl)-hexahydro- 2 H -cyclopenta[b]furan-2-one (1.60 g) in 100% yield. ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 176.81$ (C), 166.02 (C), 158.40 (C), $133.23(\mathrm{CH}), 129.59(\mathrm{CH}), 129.51(\mathrm{CH}), 128.47(\mathrm{CH})$, $121.22(\mathrm{CH}), 114.52(\mathrm{CH}), 84.81(\mathrm{CH}), 80.04(\mathrm{CH})$,
$71.92\left(\mathrm{CH}_{2}\right), 69.60(\mathrm{CH}), 52.50(\mathrm{CH}), 43.57(\mathrm{CH}), 37.74$ $\left(\mathrm{CH}_{2}\right), 36.23\left(\mathrm{CH}_{2}\right), 30.72\left(\mathrm{CH}_{2}\right), 29.24\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 433.162978$; found, 433.16296.

Analogous to the conversion of the β-alcohol [3a $R, 4 R(3 S), 5 R, 6 \mathrm{a} S]$-5-benzoyloxy-4-(3-hydroxy-4-phen-oxybutyl)-hexahydro- $2 H$-cyclopenta[b]furan-2-one to the α-fluoride 13, the above α-alcohol (1.39 g) was converted to a $4: 1$ molar of $\mathbf{1 5}$ and an HF elimination byproduct (1.01 g total, 72% calculated as the fluoride). ${ }^{13} \mathrm{C}$ NMR line listing for 15: (150 MHz): $\delta 176.54(\mathrm{C}), 166.04$ $(\mathrm{C}), 158.33(\mathrm{C}), 133.29(\mathrm{CH}), 129.64(\mathrm{CH}), 129.54(\mathrm{CH})$, $128.52(\mathrm{CH}), 121.39(\mathrm{CH}), 114.62(\mathrm{CH}), 91.45(\mathrm{~d}$, $J=171 \mathrm{~Hz}, \mathrm{CH}), 84.30(\mathrm{CH}), 80.18(\mathrm{CH}), 69.28(\mathrm{~d}$, $\left.J=26 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 52.75(\mathrm{CH}), 43.47(\mathrm{CH}), 37.81\left(\mathrm{CH}_{2}\right)$, $36.23\left(\mathrm{CH}_{2}\right), 29.88\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.86\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{FNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 435.158817; found, 435.15881 .
4.1.15. [3aR,4R(3S),5R,6aS]-4-(3-Fluoro-4-phenoxybutyl)-5-hydroxy-hexahydro- $2 H$-cyclopenta[b]furan-2-one (16). Analogous to the debenzoylation of 4 to alcohol 6, the above 15/HF elimination by-product mixture $(982 \mathrm{mg}$ calculated as the fluoride) was converted to a mixture of alcohol 16 and an HF elimination by-product (591 mg combined) in 80% yield (calculated as the fluoride). ${ }^{13} \mathrm{C}$ NMR line listing for 16: (50 MHz): $\delta 177.43$ (C), 158.33 (C), $129.53(\mathrm{CH}), 121.34(\mathrm{CH}), 114.58(\mathrm{CH}), 91.66(\mathrm{~d}$, $J=171 \mathrm{~Hz}, \mathrm{CH}), 83.93(\mathrm{CH}), 77.57(\mathrm{CH}), 69.33(\mathrm{~d}$, $\left.J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 53.94(\mathrm{CH}), 43.00(\mathrm{CH}), 40.56\left(\mathrm{CH}_{2}\right)$, $36.02\left(\mathrm{CH}_{2}\right), 29.81\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.38(\mathrm{~d}$, $J=4 \mathrm{~Hz}, \mathrm{CH}_{2}$). HRMS, m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~F}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 309.150295$; found, 309.15029 .
4.1.16. (5Z)-(9S,11R,15S)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester (18). Analogous to the protection of alcohol 6 as its THP ether 7 , the above $16 / \mathrm{HF}$ elimination by-product mixture (542 mg) was converted to a mixture of its THP ether $[3 \mathrm{a} R, 4 R(3 S), 5 R(2 R S), 6 \mathrm{a} S]-4$-(3-fluoro-4-pheno-xybutyl)-5-(2-tetrahydropyran-2-yloxy)-hexahydro- 2 H -cyclopenta[b]furan-2-one and the corresponding HF elimination by-product (652 mg) in 94% yield (calculated as the fluoride). HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~F}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 393.207942$; found, 393.20794.

Analogous to the reduction of lactone 7 to the corresponding lactol, the above THP ether lactone/HF elimination by-product mixture (641 mg) was converted to the lactol $[2 R S, 3 \mathrm{a} R, 4 R(3 S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxybutyl)-5-(tetrahydropyran-2-yloxy)-hexahydro2 H -cyclopenta[b]furan-2-ol and the corresponding HF elimination by-product (652 mg) in 100% yield (calculated as the fluoride). HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~F}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 395.223390$; found, 395.22339.

Analogous to the conversion of the lactol [3aR,4$R(1 E, 3 R S), 5 R, 6 a S]$-4-(3-fluoro-4-phenoxybutenyl)-5-hy-droxy-hexahydro- $2 H$-cyclopenta $[b]$ furan-2-ol to the Wittig+esterification product 8, the above lactol
$(643 \mathrm{mg})$ was converted to a mixture of (5Z)($9 S, 11 R, 15 S$)-15-fluoro-9-hydroxy-16-phenoxy-11-(tetra-hydropyran-2-yloxy)-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester and the corresponding HF elimination by-product (430 mg) in 51% yield (calculated as the fluoride). HRMS, m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{FNa}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 543.309571; found, 543.30957.

Analogous to the deprotection of THP ether 8 to the alcohols 9 and 10, the above THP ether/HF elimination compound mixture (420 mg) was treated with $\mathrm{HCl} /$ isopropanol to afford a crude deprotection product, which was chromatographed on a 7 cm tall $\times 41 \mathrm{~mm}$ diameter silica gel column eluting with a gradient of $2: 3 \rightarrow 3: 2 \mathrm{v}: \mathrm{v}$ mixture of ethyl acetate-hexane. Thin layer chromatographic analysis showed that the desired, major product, 18, eluted with $R_{\mathrm{f}} \sim 0.22$ while the corresponding HF elimination by-product eluted with $R_{\mathrm{f}} \sim 0.26$ ($2: 3 \mathrm{v}: \mathrm{v}$ ethyl acetate-hexane eluent). Two samples were isolated from the column: 53.1 mg of a $97: 3$ mixture (as measured by 600 MHz proton NMR) of 18: HF elimination by-product, and 115.6 mg of a $96: 4$ mixture of the same two compounds (total yield $=168.7 \mathrm{mg}=48 \%$ calculated as the fluoride). This sample was further purified by normal-phase HPLC to provide 126.9 mg of 18 without any detectable HF elimination by-product by 600 MHz proton NMR spectroscopy. ${ }^{13} \mathrm{C}$ NMR (150 MHz): δ 173.40 (C), $158.50(\mathrm{C}), 129.87(\mathrm{CH}), 129.58(\mathrm{CH})$, $129.22(\mathrm{CH}), 121.31(\mathrm{CH}), 114.72(\mathrm{CH}), 114.72(\mathrm{CH})$, $92.16(\mathrm{~d}, ~ J=171 \mathrm{~Hz}, \mathrm{CH}), 78.90(\mathrm{CH}), 74.73(\mathrm{CH})$, $69.63\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.70(\mathrm{CH}), 53.04(\mathrm{CH})$, $51.78(\mathrm{CH}), 42.65\left(\mathrm{CH}_{2}\right), 34.11\left(\mathrm{CH}_{2}\right), 30.42(\mathrm{~d}, J=$ $\left.19 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.24\left(\mathrm{~d}, J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.03\left(\mathrm{CH}_{2}\right)$, $26.73\left(\mathrm{CH}_{2}\right), 24.99\left(\mathrm{CH}_{2}\right), 21.90\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 437.269858; found, 437.26986.
4.1.17. (5Z)-(9S,11R,15S)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-5-prostenoic acid (20). Analogous to the saponification of isopropyl ester 9 to acid $\mathbf{1 1}, \mathbf{1 8}(21 \mathrm{mg})$ was saponified to give $\mathbf{2 0}(16 \mathrm{mg})$ in 83% yield. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 178.00$ (C), 158.50 $(\mathrm{C}), 129.58(\mathrm{CH}), 129.47(\mathrm{CH}), 129.26(\mathrm{CH}), 121.21$ (CH), $114.61(\mathrm{CH}), 92.06(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH}), 78.74$ (CH), $74.65(\mathrm{CH}), 69.51\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 52.68$ $(\mathrm{CH}), 51.50(\mathrm{CH}), 42.37\left(\mathrm{CH}_{2}\right), 33.00\left(\mathrm{CH}_{2}\right), 30.19(\mathrm{~d}$, $\left.J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.04\left(\mathrm{~d}, J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.88\left(\mathrm{CH}_{2}\right)$, $26.41\left(\mathrm{CH}_{2}\right), 24.49\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 395.223759$; found, 395.22375.
4.1.18. [3aR,4R(3R),5R,6aS]-5-(t-Butyldiphenylsiloxy)-4-(3-fluoro-4-phenoxybutyl)-hexahydro-2H-cyclopenta[b]-furan-2-one (21). To a solution of a mixture of fluoride alcohol 14 and its HF elimination by-product (312 mg , 1.01 mmol calculated as the fluoride), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, DMAP ($35 \mathrm{mg}, 0.29 \mathrm{mmol}$), and imidazole (109 mg , $1.60 \mathrm{mmol})$ was added $t-\mathrm{BuPh}_{2} \mathrm{SiCl}(360 \mathrm{mg}, 1.31 \mathrm{mmol})$. After 3 h saturated NaCl was added $(10 \mathrm{~mL})$, the layers were separated, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by chromatography on a 20 cm
tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with 20% ethyl acetate in hexane to afford pure silyl ether 21 ($213 \mathrm{mg}, 39 \%$ yield), as well as a $65: 35$ molar mixture (as measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of 21 and an HF elimination by-product (246 mg , total $=459 \mathrm{mg}=83 \%$ calculated as the fluoride). ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 177.20$ (C), 158.31 (C), $135.95(\mathrm{CH}), 135.91(\mathrm{CH}), 133.47(\mathrm{CH})$, $133.35(\mathrm{C}), 129.83(\mathrm{CH}), 129.79(\mathrm{CH}), 129.52(\mathrm{CH})$, $127.72(\mathrm{CH}), 127.67(\mathrm{CH}), 121.30(\mathrm{CH}), 114.49(\mathrm{CH})$, $91.38(\mathrm{~d}, J=172 \mathrm{~Hz}, \mathrm{CH}), 84.30(\mathrm{CH}), 78.53(\mathrm{CH})$, 69.17 (d, $\left.J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 54.98(\mathrm{CH}), 42.92(\mathrm{CH})$, $40.17\left(\mathrm{CH}_{2}\right), 36.30\left(\mathrm{CH}_{2}\right), 29.36\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $28.29\left(\mathrm{~d}, \quad J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.80\left(\mathrm{CH}_{3}\right), 18.93(\mathrm{C})$. HRMS, m / z calculated for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{SiFNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 569.249528; found, 569.24951.
4.1.19. ($1 E Z$)-($9 S, 11 R, 15 R$)-11-(t-Butyldiphenylsiloxy)-15-fluoro-9-hydroxy-16-phenoxy-3,4,5,6,17,18,19,20-oc-tanor-1-prosten-1-yl methyl ether (22). To a solution of a mixture of 21 and an HF elimination contaminant ($645 \mathrm{mg}, 1.18 \mathrm{mmol}$ calculated as the fluoride) in toluene $(12 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a 1.5 M solution of DIBAL-H in toluene ($1.8 \mathrm{~mL}, 2.7 \mathrm{mmol}$). After 30 min methanol (1 mL) was added and the reaction mixture was warmed to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and sodium potassium tartrate $(9 \mathrm{~mL})$ were added, and the mixture was stirred until the emulsion broke (about 20 min). The solution was extracted with ethyl acetate $(2 \times 25 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, and the residue was purified by chromatography on a 10 cm tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with 40% ethyl acetate in hexane to afford the lactol [2RS,3aR,4R(3R),5R,6aS]-5-(t-butyldiphenylsil-oxy)-4-(3-fluoro-4-phenoxybutyl)-hexahydro- 2 H -cyclo-penta[b]furan-2-ol as a mixture with an HF elimination contaminant ($523 \mathrm{mg}, 81 \%$ nominal yield). HRMS, m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{SiFNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 571.266039; found, 571.26605.

To a suspension of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{OCH}_{3} \mathrm{Cl}^{-} \quad(1.05 \mathrm{~g}$, $3.07 \mathrm{mmol})$ and $\mathrm{KOBu}^{t}(1 \mathrm{M}$ in $\mathrm{THF}, \quad 2.85 \mathrm{~mL}$, $2.85 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of the above fluoride lactol/HF elimination by-product mixture ($516 \mathrm{mg}, 0.94 \mathrm{mmol}$ nominal fluoride) in THF $(11 \mathrm{~mL})$. After 15 min saturated $\mathrm{KH}_{2} \mathrm{PO}_{4}(10 \mathrm{~mL})$, saturated $\mathrm{NaCl}(25 \mathrm{~mL})$, and water $(15 \mathrm{~mL})$ were added, the mixture was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by chromatography on an 18 cm tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with 20% ethyl acetate in hexane to afford enol ether 22 as a mixture with an HF elimination by-product ($408 \mathrm{mg}, 75 \%$ yield calculated as the fluoride). HRMS, m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{SiFNa}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 599.296403; found, 599.29638.
4.1.20. [2RS,4aR,5R(3R),6R,7aS]-6-(t-Butyldiphenyl-siloxy)-5-(3-fluoro-4-phenoxybutyl)-octahydro-2H-cyclo-penta[b]pyran-2-ol (23). A solution of a mixture of 22 and an $H F$ elimination contaminant $(402 \mathrm{mg}$,
0.700 mmol nominal fluoride), $p-\mathrm{TsOH}(82 \mathrm{mg}$, $0.43 \mathrm{mmol})$, THF $(10 \mathrm{~mL})$, and water $(1 \mathrm{~mL})$ were heated to $65-70^{\circ} \mathrm{C}$ (internal temperature). After 2 h the reaction mixture was cooled to room temperature, saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated $\mathrm{NaCl}(10 \mathrm{~mL})$ were added, and the mixture was extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, and the residue was purified by chromatography on a 13 cm tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with a $20 \% \rightarrow 40 \%$ ethyl acetate in hexane gradient to afford lactol fluoride 23 as a mixture with an HF elimination contaminant ($254 \mathrm{mg}, 64 \%$ nominal fluoride yield). HRMS, m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{SiFNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 585.281036; found, 585.28100.
4.1.21. (4Z)-(9S,11R,15R)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-4-prostenoic acid isopropyl ester (24). Analogous to the conversion of the lactol $[3 \mathrm{a} R, 4 R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxy-butenyl)-5-hydroxy-hexahydro- 2 H -cyclopenta[b]furan-2ol to the Wittig+esterification product 8, a mixture of lactol 23 and an HF elimination contaminant $(250 \mathrm{mg})$ was converted to a mixture of $(4 Z)-(9 S, 11 R, 15 R)$-11(t-butyldiphenylsiloxy)-15-fluoro-9-hydroxy-16-phenoxy-17,18,19,20-tetranor-4-prostenoic acid isopropyl ester, its corresponding 15 -desfluoro- $\Delta^{14,15}$ olefin, and $\mathrm{Ph}_{3} \mathrm{P}^{+}$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Pr}^{i} \mathrm{Br}^{-} \quad(503 \mathrm{mg}$ total) in $>100 \%$ nominal yield. HRMS, m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{SiF}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 675.387994; found, 675.38800.

To a solution of the above impure sample in THF $(8 \mathrm{~mL})$ was added a 1 M solution of TBAF in THF $(0.85 \mathrm{~mL}, \quad 0.85 \mathrm{mmol})$. After 3 h saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$ was added, the mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by chromatography on a 16 cm tall $\times 26 \mathrm{~mm}$ diameter silica gel column eluting with 60% ethyl acetate in hexane to afford $\mathbf{2 4}$ as a $2: 1$ molar mixture (as measured by ${ }^{13} \mathrm{C}$ NMR spectroscopy) with its corresponding 15 -desfluoro- $\Delta^{14,15}$ olefin $(103 \mathrm{mg}, 54 \%$ three-step yield from lactol 23, calculated as the 15 -fluoride). The sample was further purified by HPLC on a chiral AD column eluting with 4:1 hexane-isopropanol to afford the 15 -desfluoro- $\Delta^{14,15}$ olefin geometrical isomers $(4 Z, 14 E Z)-(9 S, 11 R)-9,11-$ dihydroxy-16-phenoxy-17,18,19,20-tetranor-4,14-prostadienoic acid isopropyl ester as the minor, faster-eluting component $(16.8 \mathrm{mg})$ and the title compound 24 as the major, slower-eluting component $(67.3 \mathrm{mg})$. As measured by ${ }^{13} \mathrm{C}$ NMR spectroscopy, this sample of $\mathbf{2 4}$ consisted of a $\sim 94: 6$ mixture of $4 Z: 4 E$ olefin geometrical isomers. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 173.02$ (C), 158.39 (C), $131.07(\mathrm{CH}), 129.47(\mathrm{CH}), 127.68(\mathrm{CH}), 121.16(\mathrm{CH})$, $114.55(\mathrm{CH}), 91.68(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH}), 78.54(\mathrm{CH})$, $74.14(\mathrm{CH}), 69.58\left(\mathrm{~d}, J=22 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.78(\mathrm{CH})$, $52.92(\mathrm{CH}), 51.53(\mathrm{CH}), 42.58\left(\mathrm{CH}_{2}\right), 34.42\left(\mathrm{CH}_{2}\right), 30.10$ $\left(\mathrm{d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.79\left(\mathrm{CH}_{2}\right), 28.74(\mathrm{~d}, J=9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 26.02\left(\mathrm{CH}_{2}\right), 22.69\left(\mathrm{CH}_{2}\right), 21.86\left(\mathrm{CH}_{3}\right), 21.79$ $\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~F}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$, 437.270740; found, 437.27075.
4.1.22. (4Z)-(9S,11R,15R)-9,11-Dihydroxy-15-fluoro-16-phenoxy-17,18,19,20-tetranor-4-prostenoic acid (25). Analogous to the saponification of isopropyl ester 9 to the acid 11, $24(34 \mathrm{mg})$ was converted to $\mathbf{2 5}(26 \mathrm{mg})$ in 84% yield as a $\sim 94: 6$ mixture of $4 Z: 4 E$ olefin geometrical isomers. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 177.28$ (C), 158.42 $(\mathrm{C}), 131.56(\mathrm{CH}), 129.49(\mathrm{CH}), 128.19(\mathrm{CH}), 127.06$ $(\mathrm{CH}), 121.18(\mathrm{CH}), 114.56(\mathrm{CH}), 91.65(\mathrm{~d}, J=171 \mathrm{~Hz}$, $\mathrm{CH}), 78.45(\mathrm{CH}), 73.94(\mathrm{CH}), 69.62(\mathrm{~d}, J=22 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 52.44(\mathrm{CH}), 51.70(\mathrm{CH}), 42.18\left(\mathrm{CH}_{2}\right), 33.96$ $\left(\mathrm{CH}_{2}\right), 29.96\left(\mathrm{~d}, J=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.97\left(\mathrm{CH}_{2}\right), 28.97$ $\left(\mathrm{CH}_{2}\right), 28.48\left(\mathrm{CH}_{2}\right), 26.16\left(\mathrm{CH}_{2}\right), 22.80\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 395.223759$; found, 395.22375 .
4.1.23. [3aR,4R(1E,3R),5R,6aS]-5-Benzoyloxy-4-(3-hy-droxyoctenyl)hexahydro-2H-cyclopenta $[b]$ furan-2-one (42). Analogous to the reduction of enone 1 to β-alcohol 2, [3a $R, 4 R(1 E), 5 R, 6 \mathrm{a} S]$-5-benzoyloxy-4-(3-oxooctenyl)hexa-hydro- $2 H$-cyclopenta[b]furan-2-one ${ }^{13}(7.24 \mathrm{~g})$ was reduced with (+)-DIP chloride to afford β-alcohol 42 (3.78 g ; $R_{\mathrm{f}}=0.18,2: 3$ ethyl acetate-hexane eluent) in 52% yield, as well as a mixture of 42 with its $\alpha(S)$-alcohol diastereomer ($1.08 \mathrm{~g} ; R_{\mathrm{f}}=0.23,2: 3$ ethyl acetate-hexane) in 15% yield. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 176.42(\mathrm{C}), 165.95(\mathrm{C})$, $136.46(\mathrm{CH}), 133.26(\mathrm{CH}), 129.55(\mathrm{CH}), 129.43(\mathrm{C})$, $128.42(\mathrm{CH}), 128.26(\mathrm{CH}), 83.14(\mathrm{CH}), 78.94(\mathrm{CH}), 72.20$ $(\mathrm{CH}), 53.88(\mathrm{CH}), 42.54(\mathrm{CH}), 37.45\left(\mathrm{CH}_{2}\right), 37.20\left(\mathrm{CH}_{2}\right)$, $34.75\left(\mathrm{CH}_{2}\right)$, $31.57\left(\mathrm{CH}_{2}\right), 24.91\left(\mathrm{CH}_{2}\right), 22.42\left(\mathrm{CH}_{2}\right)$, $13.92\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 395.18346$; found, 395.18347.
4.1.24. [3aR,4R(3R),5R,6aS]-5-Benzoyloxy-4-(3-hydrox-yoctyl)hexahydro-2H-cyclopenta[b]furan-2-one (43). Analogous to the hydrogenation of olefin 2 to [3aR,4R(3S), $5 R, 6 \mathrm{a} S]$-5-Benzoyloxy-4-(3-hydroxy-4-phenoxybutyl)-hexahydro- $2 H$-cyclopenta[b]furan-2-one, $42(3.72 \mathrm{~g}$) was hydrogenated to afford $43(3.55 \mathrm{~g})$ in 94% yield. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 176.83$ (C), 166.09 (C), 123.22 (CH), $129.62(\mathrm{CH}), 128.47(\mathrm{CH}), 84.50(\mathrm{CH}), 80.43(\mathrm{CH}), 71.12$ $(\mathrm{CH}), 52.95(\mathrm{CH}), 43.42(\mathrm{CH}), 37.72\left(\mathrm{CH}_{2}\right), 36.30\left(\mathrm{CH}_{2}\right)$, $35.79\left(\mathrm{CH}_{2}\right), 35.17\left(\mathrm{CH}_{2}\right), 33.50\left(\mathrm{CH}_{2}\right), 31.77\left(\mathrm{CH}_{2}\right)$, $29.71\left(\mathrm{CH}_{2}\right), 25.25\left(\mathrm{CH}_{2}\right), 23.45\left(\mathrm{CH}_{2}\right), 22.55\left(\mathrm{CH}_{2}\right)$, $13.96\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 397.19923; found, 397.19922.
4.1.25. [3aR,4R(3S),5R,6aS]-5-Benzoyloxy-4-(3-fluoro-octyl)hexahydro-2H-cyclopenta[b]furan-2-one (44). Analogous to the fluorination of the alcohol 5-benzoyloxy-4-(3-hydroxy-4-phenoxybutyl)-hexahydro- 2 H -cyclopenta-[b]furan-2-one to $\mathbf{1 3}$, alcohol $43(1.42 \mathrm{~g})$ was fluorinated with DAST and the residue after concentration was chromatographed on a 24 cm tall $\times 53 \mathrm{~mm}$ diameter silica gel column eluting with 30% ethyl acetate in hexane to afford $44\left(530 \mathrm{mg} ; R_{\mathrm{f}}=0.71,40 \%\right.$ ethyl acetate in hexane) as well as a 79:21 (as measured by proton NMR spectroscopy) molar mixture of 44 and an HF elimination by-product (134 mg). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 176.10(\mathrm{C}), 165.98(\mathrm{C}), 133.24(\mathrm{CH}), 129.61(\mathrm{CH})$, $128.48(\mathrm{CH}), 93.84(\mathrm{~d}, J=167 \mathrm{~Hz}, \mathrm{CH}), 84.33(\mathrm{CH})$,
$79.98(\mathrm{CH}), 52,37(\mathrm{CH}), 43.56(\mathrm{CH}), 37.77\left(\mathrm{CH}_{2}\right), 36.20$ $\left(\mathrm{CH}_{2}\right), 35.06\left(\mathrm{~d}, J=20 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 32.90(\mathrm{~d}, J=22 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 31.57\left(\mathrm{CH}_{2}\right), 28.90\left(\mathrm{~d}, J=3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 24.71(\mathrm{~d}$, $\left.J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.47\left(\mathrm{CH}_{2}\right), 13.92\left(\mathrm{CH}_{3}\right)$. ES-LRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{FNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 394$; found, 394 .
4.1.26. [3aR,4R(3S),5R,6aS]-4-(3-Fluorooctyl)-5-hydroxy-hexahydro- $2 H$-cyclopenta $[b]$ furan-2-one (45). Analogous to the debenzoylation of 4 to alcohol $\mathbf{6}$, benzoate 44 $(520 \mathrm{mg})$ was converted $45(248 \mathrm{mg})$ in 66% yield. ${ }^{1} \mathrm{H}$ NMR (200 MHz ; characteristic peaks): $\delta 4.98$ (t of d, $J=7 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$ of $\mathrm{m}, ~ J=47 \mathrm{~Hz}$ for the doublet coupling, 1 H), $4.05(\mathrm{q}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (d of $\mathrm{d}, J=18 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 177.57$ (C), $94.23(\mathrm{~d}, J=166 \mathrm{~Hz}, \mathrm{CH}), 84.04(\mathrm{CH}), 77.40(\mathrm{CH})$, $53.40(\mathrm{CH}), 43.17(\mathrm{CH}), 40.54\left(\mathrm{CH}_{2}\right), 36.05\left(\mathrm{CH}_{2}\right), 35.02$ $\left(\mathrm{CH}_{2}\right), 33.12\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.57\left(\mathrm{CH}_{2}\right), 28.56(\mathrm{~d}$, $\left.J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 24.71\left(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.46\left(\mathrm{CH}_{2}\right)$, $13.91\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~F}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 273.18674$; found, 273.18673.
4.1.27. [3aR,4R(3S),5R,6aS]-4-(3-Fluorooctyl)-5-(tetra-hydropyran-2-yloxy)hexahydro-2H-cyclopenta[b]furan-2one (46). Analogous to the conversion of alcohol 6 to the THP ether 7, $\mathbf{4 5}(240 \mathrm{mg})$ was converted to THP ether 46 $(263 \mathrm{mg})$ in 84% yield. HRMS, m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~F}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 357.24383$; found, 357.24384.
4.1.28. $[3 a R, 4 R(3 S), 5 R, 6 a S]-4-(3-F l u o r o o c t y l)-5-(t e t r a-$ hydropyran-2-yloxy)hexahydro-2H-cyclopenta[b]furan-2ol (47). Analogous to the reduction of lactone 7 to the lactol [$3 \mathrm{a} R, 4 R(1 E, 3 R S$),5R,6aS]-4-(3-fluoro-4-phenoxy-butenyl)-5-hydroxy-hexahydro- 2 H -cyclopenta $[b]$ furan-2-ol, $46(256 \mathrm{mg})$ was reduced to lactol $47(260 \mathrm{mg})$ in 100% yield. HRMS, m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~F}$ [(M+ H) ${ }^{+}$, 341.24867 ; found, 341.24865.
4.1.29. (5Z)-(9S,11R,15S)-15-Fluoro-9-hydroxy-11-(tetra-hydropyran-2-yloxy)-5-prostenoic acid isopropyl ester (48). Analogous to the Wittig reaction/esterification of the lactol $[3 \mathrm{a} R, 4 R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phen-oxybutenyl)-5-hydroxy-hexahydro- $2 H$-cyclopenta $[b]$ -furan-2-ol to 8 , lactol $47(146 \mathrm{mg})$ was converted to 48 $(92 \mathrm{mg})$ in 46% yield. HRMS, m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{49}$ $\mathrm{O}_{5} \mathrm{FNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 507.34579$; found, 507.34579.
4.1.30. (5Z)-(9S,11R,15S)-9,11-Dihydroxy-15-fluoro-5prostenoic acid isopropyl ester (29). Analogous to the deprotection of THP ether 8 to the diols 9 and 10, THP ether $48(86 \mathrm{mg})$ was deprotected with HCl in isopropanol to afford $29(33 \mathrm{mg})$ in 47% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz) (characteristic peaks): $\delta 5.50-5.42(\mathrm{~m}, 1 \mathrm{H})$, $5.41-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.00$ (septet, $J=7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (d of $\mathrm{m}, J=49 \mathrm{~Hz}$ for the doublet coupling, 1 H), 4.17 (br s, $1 \mathrm{H}), 3.93(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 173.37$ (C), $129.66(\mathrm{CH}), 129.23(\mathrm{CH}), 94.34(\mathrm{~d}, J=166 \mathrm{~Hz}, \mathrm{CH})$, $78.73(\mathrm{CH}), 74.72(\mathrm{CH}), 67.58(\mathrm{CH}), 52.84(\mathrm{CH}), 51.82$
$(\mathrm{CH}), 42.57\left(\mathrm{CH}_{2}\right), 35.14\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 34.04$ $\left(\mathrm{CH}_{2}\right), 33.68\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.65\left(\mathrm{CH}_{2}\right), 29.90(\mathrm{~d}$, $\left.J=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.90\left(\mathrm{CH}_{2}\right), 26.63\left(\mathrm{CH}_{2}\right), 24.91\left(\mathrm{CH}_{2}\right)$, $24.79\left(\mathrm{~d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $22.51\left(\mathrm{CH}_{2}\right)$, $21.81\left(\mathrm{CH}_{3}\right)$, $13.94\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~F}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 401.30690$; found, 401.30689.
4.1.31. (5Z)-(9S,11R,15S)-9,11-Dihydroxy-15-fluoro-5prostenoic acid (28). Analogous to the saponification of ester 9 to acid 11, isopropyl ester $29(18 \mathrm{mg})$ was saponified to provide acid $28(12 \mathrm{mg})$ in 74% yield. ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 177.93$ (C), 129.52 (CH), 129.43 (CH), 94.42 (d, $J=166 \mathrm{~Hz}, \mathrm{CH}), 78.75(\mathrm{CH}), 74.81$ $(\mathrm{CH}), 52.68(\mathrm{CH}), 51.72(\mathrm{CH}), 42.44\left(\mathrm{CH}_{2}\right), 35.16(\mathrm{~d}$, $\left.J=20 \mathrm{~Hz}, \quad \mathrm{CH}_{2}\right), 33.64\left(\mathrm{~d}, \quad J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), \quad 33.07$ $\left(\mathrm{CH}_{2}\right), 31.67\left(\mathrm{CH}_{2}\right), 29.18\left(\mathrm{CH}_{2}\right), 26.91\left(\mathrm{CH}_{2}\right), 26.47$ $\left(\mathrm{CH}_{2}\right), 24.83\left(\mathrm{CH}_{2}\right), 24.57\left(\mathrm{CH}_{2}\right), 22.53\left(\mathrm{CH}_{2}\right), 13.97$ $\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 359.26007; found, 359.26007.
4.1.32. $\quad[3 a R, 4 R(1 E, 3 S), 5 R, 6 a S]-5-B e n z o y l o x y-4-[4-(3-$ chlorophenoxy)-3-hydroxy-1-butenyl]-hexahydro-2H-cy-clopenta[b]furan-2-one (49). Analogous to the reduction of enone 1 to β-alcohol 2 with (+)-DIP chloride, the enone [3a $R, 4 R(1 E), 5 R, 6 \mathrm{a} S]$-5-benzoyloxy-4-[4-(3-chlo-rophenoxy)-3-oxo-1-butenyl]-hexahydro- 2 H -cyclopenta-[b]furan-2-one ${ }^{13}(1.02 \mathrm{~g})$ was reduced with $(+)$-DIP chloride to afford β-alcohol 49 (502 mg) in 49% yield, as well as a mixture of 49 and the corresponding α-alcohol ($254 \mathrm{mg}, 23 \%$).
4.1.33. [3aR,4R(3S),5R,6aS]-5-Benzoyloxy-4-[4-(3-chlo-rophenoxy)-3-hydroxybutyl]-hexahydro-2H-cyclopenta[b]-furan-2-one (50). Analogous to the hydrogenation of olefin 2 to [$3 \mathrm{a} R, 4 R(3 S), 5 R, 6 \mathrm{a} S]$-5-benzoyloxy-4-(3-hy-droxy-4-phenoxybutyl)-hexahydro- $2 H$-cyclopenta[b]-furan- 2 -one, olefin 49 (500 mg) was hydrogenated to afford $50(486 \mathrm{mg})$ in 97% yield.
4.1.34. [3aR,4R(3R),5R,6aS]-5-Benzoyloxy-4-[4-(3-chlo-rophenoxy)-3-fluorobutyl]-hexahydro- $2 H$-cyclopenta $[b]$ -furan-2-one (51). Analogous to the conversion of the β alcohol $[3 \mathrm{a} R, 4 R(3 S), 5 R, 6 \mathrm{a} S]$-5-benzoyloxy-4-(3-hydr-oxy-4-phenoxybutyl)-hexahydro- 2 H -cyclopenta $[b]$-fur-an-2-one to the α-fluoride 13, β-alcohol $50(480 \mathrm{mg})$ to afford α-fluoride $51(117 \mathrm{mg}, 33 \%)$ as well as a mixture of 51 and an HF elimination by-product $(44 \mathrm{mg}) .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 176.57$ (C), 166.04 (C), 159.03 (C), $134.93(\mathrm{C}), 133.34(\mathrm{CH}), 130.31(\mathrm{CH}), 129.62(\mathrm{CH})$, $128.54(\mathrm{CH}), 121.54(\mathrm{CH}), 115.06(\mathrm{CH}), 113.07(\mathrm{CH})$, $91.02(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH}), 84.27(\mathrm{CH}), 79.80(\mathrm{CH})$, $69.60\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 52.26(\mathrm{CH}), 43.59(\mathrm{CH})$, $36.96\left(\mathrm{~d}, J=76 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.34\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $28.57\left(\mathrm{CH}_{2}\right)$.
4.1.35. [3a R,4R(3R),5R,6aS]-4-[4-(3-Chlorophenoxy)-3-fluorobutyl]-5-hydroxy-hexahydro-2H-cyclopenta[b]fur-an-2-one (52). Analogous to the debenzoylation of 4 to alcohol 6, 51 (117 mg) was debenzoylated to afford $\mathbf{5 2}$ $(60 \mathrm{mg})$ in 67% yield.
4.1.36. [3aR,4R(3R),5R,6aS]-4-[4-(3-Chlorophenoxy)-3-fluorobutyl]-5-(tetrahydropyran-2-yloxy)-hexahydro-2Hcyclopenta $|b|$ furan-2-one (53). Analogous to the protection of alcohol 6 as its THP ether 7, alcohol 52 (59 mg) was protected as its THP ether $\mathbf{5 3}(59 \mathrm{mg})$ in 82% yield.
4.1.37. [2RS,3aR,4R(3R),5R,6aS]-4-[4-(3-Chlorophen-oxy)-3-fluorobutyll-5-(tetrahydropyran-2-yloxy)-hexahy-dro-2H-cyclopenta[b|furan-2-ol (54). Analogous to the reduction of lactone 7 to the corresponding lactol, lactone $53(59 \mathrm{mg})$ was reduced to lactol $54(59 \mathrm{mg})$ in 99% yield.
4.1.38. (5Z)-(9S,11R,15R)-16-(3-Chlorophenoxy)-15-flu-oro-9-hydroxy-11-(tetrahydropyran-2-yloxy)-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester (55). Analogous to the conversion of the lactol $[3 \mathrm{a} R, 4 R(1 E, 3 R S)$, $5 R, 6 \mathrm{aS}]$-4-(3-fluoro-4-phenoxybutenyl)-5-hydroxy-hexa-hydro- 2 H -cyclopenta[b]furan-2-ol to the Wittig+esterification product $\mathbf{8}$, lactol $54(59 \mathrm{mg})$ was converted to a sample of olefin $\mathbf{5 5}$ contaminated with triphenylphosphine oxide (147 mg total). The sample was used without further purification in the next step.
4.1.39. (5Z)-(9S,11R,15R)-16-(3-Chlorophenoxy)-9,11-di-hydroxy-15-fluoro-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester (31). Analogous to the deprotection of THP ether 8 to the alcohols $\mathbf{9}$ and $\mathbf{1 0}$, the above sample of THP ether $\mathbf{5 5}$ contaminated with triphenylphosphine oxide (147 mg) was deprotected with $\mathrm{HCl} /$ isopropanol to afford $31(31 \mathrm{mg})$ in 47% yield from lactol $54 .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta 173.40$ (C), 159.18 (C), 134.90 (C), $130.26(\mathrm{CH}), 129.81(\mathrm{CH}), 129.08(\mathrm{CH}), 121.41(\mathrm{CH})$, $115.06(\mathrm{CH}), 113.13(\mathrm{CH}), 91.44(\mathrm{~d}, J=172 \mathrm{~Hz}, \mathrm{CH})$, 78.65 (CH), 74.61 (CH), 69.91 (d, $J=23 \mathrm{~Hz}, \mathrm{CH}_{2}$), $67.63(\mathrm{CH}), \quad 52.57(\mathrm{CH}), 51.72(\mathrm{CH}), \quad 30.05(\mathrm{~d}$, $\left.J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.86\left(\mathrm{CH}_{2}\right), 28.78\left(\mathrm{CH}_{2}\right), 26.82$ $\left(\mathrm{CH}_{2}\right)$, $26.63\left(\mathrm{CH}_{2}\right), 24.90\left(\mathrm{CH}_{2}\right), 21.82\left(\mathrm{CH}_{3}\right)$. MALDILRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{FClNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 493$; found, 493.
4.1.40. (5Z)-(9S,11R,15R)-16-(3-Chlorophenoxy)-9,11-di-hydroxy-15-fluoro-17,18,19,20-tetranor-5-prostenoic acid (30). Analogous to the saponification of isopropyl ester 9 to acid 11, isopropyl ester $31(16 \mathrm{mg})$ was converted to a crude sample of the acid $\mathbf{3 0}$. This sample was purified via reverse-phase HPLC using a C18 column eluting with acetonitrile-water-trifluoroacetic acid 60:40:0.02 to afford $30(3.8 \mathrm{mg}, 28 \%) .{ }^{13} \mathrm{C}$ NMR DEPT spectrum ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 171.10$ (C), 160.97 (C), 136.63 $(\mathrm{CH}), 135.84(\mathrm{C}), 131.50(\mathrm{CH})(\mathrm{CH}), 128.69(\mathrm{CH})$, $122.03(\mathrm{CH}), 115.95(\mathrm{CH}), 114.18$ (CH), $92.94(\mathrm{~d}$, $J=171 \mathrm{~Hz}, \mathrm{CH}), 78.26(\mathrm{CH}), 73.57(\mathrm{CH}), 71.20(\mathrm{~d}$, $\left.J=22 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 51.75(\mathrm{CH}), 51.30(\mathrm{CH}), 43.88\left(\mathrm{CH}_{2}\right)$, $34.33\left(\mathrm{CH}_{2}\right), 30.66\left(\mathrm{CH}_{2}\right), 30.54\left(\mathrm{CH}_{2}\right), 29.17\left(\mathrm{CH}_{2}\right)$, $27.38\left(\mathrm{~d}, J=16 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.01\left(\mathrm{CH}_{2}\right)$. MALDILRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{FClNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 451$; found, 451.
4.1.41. [3aR,4R($1 E, 3 S), 5 R, 6 a S]-5$-Benzoyloxy-4-[3-hy-droxy-4-(3-(trifluoromethyl)phenoxy)-1-butenyl)-hexahy-dro-2 \mathbf{H}-cyclopenta $[b \mid$ furan-2-one (56). Analogous to the reduction of enone $\mathbf{1}$ to β-alcohol 2 with (+)-DIP chloride, the enone $[3 \mathrm{a} R, 4 R(1 E), 5 R, 6 \mathrm{a} S]$-5-benzoyloxy-4-[3-oxo-4-(3-(trifluoromethyl)phenoxy)-1-butenyl]-hexa-hydro- 2 H -cyclopenta[$b]$ furan-2-one ${ }^{21}(1.77 \mathrm{~g}$) was reduced with (+)-DIP chloride to provide β-alcohol $56(624 \mathrm{mg})$ in 35% yield, as well as a mixture of $\mathbf{5 6}$ and the corresponding α-alcohol (681 mg) in 39% yield.
4.1.42. [3aR,4R(3S),5R,6aS]-5-Benzoyloxy-4-[3-hydroxy-4-(3-(trifluoromethyl)phenoxy)-butyl]-hexahydro- 2 H -cy-clopenta[b|furan-2-one (57). Analogous to the hydrogenation of olefin 2 to $[3 \mathrm{a} R, 4 R(3 S), 5 R, 6 \mathrm{a} S]$-5-benzoyl-oxy-4-(3-hydroxy-4-phenoxybutyl)-hexahydro- 2 H -cyclo-penta[b]furan-2-one, olefin $56(600 \mathrm{mg})$ was hydrogenated to afford $57(601 \mathrm{mg})$ in 100% yield.
4.1.43. [3aR, $4 R(3 R), 5 R, 6 \mathrm{aS}]-5-$ Benzoyloxy-4-[3-fluoro-4-(3-(trifluoromethyl)phenoxy)butyl]-hexahydro- 2 H -cyclopenta $[b]$ furan-2-one (58). Analogous to the conversion of the β-alcohol $[3 \mathrm{a} R, 4 R(3 S), 5 R, 6 \mathrm{aS}]$-5-benzoyloxy-4-(3-hydroxy-4-phenoxybutyl)-hexahydro- 2 H -cyclopenta $[b]$ -furan-2-one to the α-fluoride $13, \beta$-alcohol $57(600 \mathrm{mg})$ was reacted with DAST to provide α-fluoride 58 (312 mg) in 50% yield. ${ }^{13} \mathrm{C}$ NMR (50 MHz , peaks not split by CF_{3}): $\delta 176.52$ (C), 165.65 (C), 158.34 (C), 133.18 (CH), 131.37 (C), $129.99(\mathrm{CH}), 129.47(\mathrm{CH})$, $126.36(\mathrm{CH}), 91.10(\mathrm{~d}, J=172 \mathrm{~Hz}, \mathrm{CH}), 84.32(\mathrm{CH})$, $79.88(\mathrm{CH}), 69.67\left(\mathrm{~d}, J=23 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 52.25(\mathrm{CH})$, $43.55(\mathrm{CH}), 36.93\left(\mathrm{~d}, J=75 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.36\left(\mathrm{CH}_{2}\right)$, $28.71\left(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.41\left(\mathrm{CH}_{2}\right)$.
4.1.44. $[3 a R, 4 R(3 R), 5 R, 6 \mathrm{aS}]-4-[3-F l u o r o-4-(3-(t r i f l u o-$ romethyl)phenoxy)butyl|-5-hydroxy-hexahydro-2 - -cyclo-penta[b|furan-2-one (59). Analogous to the debenzoylation of $\mathbf{4}$ to alcohol $\mathbf{6}, 58(310 \mathrm{mg})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ to afford $59(197 \mathrm{mg})$ in 82% yield.
4.1.45. [3aR,4R(3R),5R,6aS|-4-[3-Fluoro-4-(3-(trifluoro-methyl)phenoxy)butyl|-5-(tetrahydropyran-2-yloxy)-hexa-hydro-2 H -cyclopenta[b|furan-2-one (60). Analogous to the protection of alcohol 6 as its THP ether 7, alcohol 59 $(191 \mathrm{mg})$ protected as its THP ether afford $\mathbf{6 0}(224 \mathrm{mg})$ in 95% yield.
4.1.46. [2RS,3aR,4R(3R),5R,6aS|-4-[3-Fluoro-4-(3-(tri-fluoromethyl)phenoxy)butyll-5-(tetrahydropyran-2-yloxy)-hexahydro- 2 H -cyclopenta $[b \mid$ furan-2-ol (61). Analogous to the reduction of lactone 7 to the corresponding lactol, lactone $\mathbf{6 0}(220 \mathrm{mg})$ was reduced to lactol $\mathbf{6 1}(220 \mathrm{mg})$ in 100% yield.
4.1.47. (5Z)-($9 S, 11 R, 15 R$)-15-Fluoro-9-hydroxy-11-(tetra-hydropyran-2-yloxy)-16-[3-(trifluoromethyl)phenoxy]-17, 18,19,20-tetranor-5-prostenoic acid isopropyl ester (62). Analogous to the conversion of the lactol [3aR,4$R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]-4$-(3-fluoro-4-phenoxybutenyl)-5-hy-droxy-hexahydro- 2 H -cyclopenta[b]furan-2-ol to the

Wittig+esterification product 8, lactol $61(220 \mathrm{mg})$ was converted to $62(147 \mathrm{mg})$ in 52% yield.
4.1.48. (5Z)-(9S,11R,15R)-9,11-Dihydroxy-15-fluoro-16-[3-(trifluoromethyl)phenoxy]-17,18,19,20-tetranor-5-prostenoic acid isopropyl ester (33). Analogous to the deprotection of THP ether 8 to the alcohols 9 and 10, THP ether $62(146 \mathrm{mg})$ was deprotected with $\mathrm{HCl} /$ isopropanol to afford $33(92 \mathrm{mg})$ in 73% yield. ${ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}$, peaks not split by CF_{3}): $\delta 173.44$ (C), 155.56 (C), 130.04 $(\mathrm{CH}), 129.77(\mathrm{CH}), 129.09(\mathrm{CH}), 91.44(\mathrm{~d}, J=172 \mathrm{~Hz}$, $\mathrm{CH}), 78.60(\mathrm{CH}), 74.54(\mathrm{CH}), 69.97(\mathrm{~d}, J=23 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 67.64(\mathrm{CH}), 52.49(\mathrm{CH}), 51.70(\mathrm{CH}), 42.66\left(\mathrm{CH}_{2}\right)$, $34.01\left(\mathrm{CH}_{2}\right), 30.01\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.84\left(\mathrm{CH}_{2}\right)$, $28.77\left(\mathrm{CH}_{2}\right), 26.70\left(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 24.89\left(\mathrm{CH}_{2}\right)$, $21.79\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{~F}_{4}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 505.25706$; found, 505.25705.
4.1.49. (5Z)-(9S,11R,1R)-9,11-Dihydroxy-15-fluoro-16-[3-(trifluoromethyl)phenoxy]-17,18,19,20-tetranor-5-prostenoic acid (32). Analogous to the saponification of isopropyl ester 9 to acid 11, isopropyl ester $\mathbf{3 3}(38 \mathrm{mg})$ was converted to acid $32(34 \mathrm{mg})$ in 99% yield. ${ }^{13} \mathrm{C}$ NMR (50 MHz , peaks not split by CF_{3}): $\delta 179.25(\mathrm{C}), 158.45$ (C), $129.92(\mathrm{CH}), 129.50(\mathrm{CH}), 129.12(\mathrm{CH}), 91.32(\mathrm{~d}$, $J=172 \mathrm{~Hz}, \mathrm{CH}), 78.47(\mathrm{CH}), 74.54(\mathrm{CH}), 69.84(\mathrm{~d}$, $\left.J=23 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 52.15(\mathrm{CH}), 51.40(\mathrm{CH}), 42.34\left(\mathrm{CH}_{2}\right)$, $33.00\left(\mathrm{CH}_{2}\right), 29.80\left(\mathrm{~d}, J=21 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.66\left(\mathrm{CH}_{2}\right)$, $26.66\left(\mathrm{CH}_{2}\right), 26.28\left(\mathrm{CH}_{2}\right), 24.37\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~F}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 463.210604; found, 463.21060 .
4.1.50. $\quad[3 a R, 4 R(1 E, 3 R S), 5 R, 6 a S]-5-B e n z o y l o x y-4-[4-$ (3-chlorophenoxy)-3-fluorobutenyl|-hexahydro-2H-cyclo-penta[b]furan-2-one (63) and $[3 a R, 4 R(2 E, 1 R S), 5 R, 6 a S]-$ 5-benzoyloxy-4-[4-(3-chlorophenoxy)-1-fluoro-2-buten-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-one (64). Analogous to the fluorination of allyl alcohol 2 to a mixture of the $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorinated products 4 and 5, allyl alcohol $49(2.29 \mathrm{~g})$ was treated with DAST to afford a crude product, which by TLC analysis (1:1 hexane-ethyl acetate eluent) showed a major spot with $R_{\mathrm{f}}=0.6$, and a minor spot eluting slightly above $R_{\mathrm{f}}=0.6$ (ratio of major:minor ca. 9:1). The crude was chromatographed on a 23 cm tall $\times 53 \mathrm{~mm}$ diameter silica gel column eluting with $2: 1$ hexane-ethyl acetate to afford the major spot, which proton and carbon NMR spectral analysis demonstrated to be a mixture of $\mathrm{S}_{\mathrm{N}} 2$ fluorination product 63 and one diastereomer of $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination product 64 (1.63 g total, 71% yield). MS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{FClNa}(\mathrm{M}+\mathrm{Na})^{+}$, 467.103935; found, 467.10391.
4.1.51. [3aR,4R(1E,3RS),5R,6aS]-4-[4-(3-Chlorophenoxy)-3-fluorobutenyl]-5-hydroxy-hexahydro-2H-cyclopenta[b]-furan-2-one (65) and $[3 \mathrm{a} R, 4 R(2 E, 1 R S), 5 R, 6 a S]-4-[4-(3-$ chlorophenoxy)-1-fluoro-2-buten-1-yll-5-hydroxy-hexahy-dro-2H-cyclopenta[b]furan-2-one (66). Analogous to the debenzoylation of 4 to alcohol $\mathbf{6}$, the above mixture of 63 and one diastereomer of $64(1.60 \mathrm{~g})$ was treated with
$\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ to afford a crude material, which was chromatographed on a 27 cm tall $\times 53 \mathrm{~mm}$ diameter silica gel column, 1:1 \rightarrow 3:2 ethyl acetate-hexane gradient elution. The first to elute was a 100 mg fraction consisting of one diastereomer of the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination product 66 (yield $=8 \%$). The second to elute was an 815 mg fraction consisting of the $\mathrm{S}_{\mathrm{N}} 2$ fluorination product 65 (yield $=66 \%$), as a mixture of two diastereomers at the fluorinated carbon. ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz})$: 176.99 (C), 158.93 (C), 134.83 (C), 134.51 (d, $J=11 \mathrm{~Hz}$, CH), $130.32(\mathrm{CH}), 126.85(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 121.53$ $(\mathrm{CH}), 115.02(\mathrm{CH}), 113.14(\mathrm{CH}), 90.39(\mathrm{~d}, J=172 \mathrm{~Hz}$, $\mathrm{CH}), 82.86(\mathrm{CH}), 76.58(\mathrm{CH}), 69.80(\mathrm{~d}, J=24 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 56.06(\mathrm{CH}), 42.31(\mathrm{CH}), 39.97\left(\mathrm{CH}_{2}\right), 34.52$ $\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{FCl}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 341.095537; found, 341.09555.
4.1.52. $[3 a R, 4 R(1 E, 3 R S), 5 R, 6 a S]-4-[4-(3-C h l o r o p h e n-$ oxy)-3-fluorobutenyl]-5-(tetrahydropyran-2-yloxy)-hexa-hydro-2H-cyclopenta[b]furan-2-one (67). Analogous to the conversion of alcohol 6 to the THP ether 7, alcohol $65(810 \mathrm{mg})$ was converted to its THP ether $\mathbf{6 7}(930 \mathrm{mg})$ in 96% yield. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{FClNa}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 447.135470$; found, 447.13546 .
4.1.53. ($5 Z, 13 E)-(9 S, 11 R, 15 R S)$-16-(3-Chlorophenoxy)-15-fluoro-9-hydroxy-11-(tetrahydropyran-2-yloxy)-17,18, 19,20-tetranor-5,13-prostadienoic acid isopropyl ester (68). Analogous to the reduction of lactone 7 to the corresponding lactol, lactone $67(925 \mathrm{mg})$ was reduced with DIBAL-H to afford a crude sample of lactol [3aR,4R(1E,3RS),5R,6aS]-4-[4-(3-chlorophenoxy)-3-flu-orobutenyl]-5-(tetrahydropyran-2-yloxy)-hexahydro- 2 H cyclopenta $[b]$ furan-2-ol.

Analogous to the Wittig reaction/esterification of the lactol $[3 \mathrm{a} R, 4 R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxy-butenyl)-5-hydroxy-hexahydro- 2 H -cyclopenta[b]furan2 -ol to 8 , the above sample of lactol was converted to 68 (744 mg) in 59% yield (from lactone 67). HRMS, m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{FClNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 575.266163$; found, 575.266163.
4.1.54. $(5 Z, 13 E)-(9 S, 11 R, 15 R S)$-16-(3-Chlorophenoxy)-9,11-dihydroxy-15-fluoro-17,18,19,20-tetranor-5,13-prostadienoic acid isopropyl ester (69). Analogous to the deprotection of THP ether $\mathbf{8}$ to the diols 9 and 10, the THP ether $68(734 \mathrm{mg})$ was treated with $\mathrm{HCl} /$ isopropanol to afford $69(400 \mathrm{mg})$ in 64% yield. The individual C15 diastereomers were separated by HPLC in the next step.
4.1.55. (5Z,13E)-(9S,11R,15R)-16-(Chlorophenoxy)-9, 11-dihydroxy-15-fluoro-17,18,19,20-tetranor-5-prostadienoic acid isopropyl ester (35) and (5Z,13E)($9 S, 11 R, 15 S$)-16-(3-chlorophenoxy)-9,11-dihydroxy-15-fluoro-17,18,19, 20-tetranor-5-prostadienoic acid isopropyl ester (37) . The above sample of 69 was purified by normal-phase HPLC on a chiral AD column to afford
15α-fluoride $35(37 \mathrm{mg})$ and 15β-fluoride $37(146 \mathrm{mg})$. Compound 35: ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 173.39$ (C), 159.05 (C), 137.66 (d, $J=10 \mathrm{~Hz}, \mathrm{CH}), 134.87$ (C), $130.24(\mathrm{CH}), 129.95(\mathrm{CH}), 128.71(\mathrm{CH}), 125.31(\mathrm{~d}$, $J=19 \mathrm{~Hz}, \mathrm{CH}), 121.44(\mathrm{CH}), 115.06(\mathrm{CH}), 113.12$ (CH), 90.74 (d, $J=171 \mathrm{~Hz}, \mathrm{CH}), 78.03(\mathrm{CH}), 73.13$ $(\mathrm{CH}), 70.04\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.61(\mathrm{CH}), 55.97$ $(\mathrm{CH}), 50.51(\mathrm{CH}), 42.91\left(\mathrm{CH}_{2}\right), 33.93\left(\mathrm{CH}_{2}\right), 26.56$ $\left(\mathrm{CH}_{2}\right), 25.67\left(\mathrm{CH}_{2}\right), 24.78\left(\mathrm{CH}_{2}\right), 21.76\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{FCl}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 469.215774; found, 469.21530. Compound 37: ${ }^{13} \mathrm{C}$ NMR (150 MHz): $\delta 173.49$ (C), 159.09 (C), 137.73 (d, $J=11 \mathrm{~Hz}, \mathrm{CH})$, $134.89(\mathrm{C}), 130.27(\mathrm{CH}), 130.00(\mathrm{CH}), 128.76(\mathrm{CH})$, $125.38(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 121.47(\mathrm{CH}), 115.12(\mathrm{CH})$, $113.17(\mathrm{CH}), 90.82(\mathrm{~d}, J=172 \mathrm{~Hz}, \mathrm{CH}), 78.13(\mathrm{CH})$, $73.14(\mathrm{CH}), 70.10\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.67(\mathrm{CH})$, $56.03(\mathrm{CH}), 50.54(\mathrm{CH}), 43.00\left(\mathrm{CH}_{2}\right), 33.99\left(\mathrm{CH}_{2}\right), 26.61$ $\left(\mathrm{CH}_{2}\right), 25.65\left(\mathrm{CH}_{2}\right), 24.83\left(\mathrm{CH}_{2}\right), 21.80\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~F}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 469.215774$; found, 469.21573 .
4.1.56. (5Z,13E)-(9S,11R,15R)-16-(3-Chlorophenoxy)-9,11-dihydroxy-15-fluoro-17,18,19,20-tetranor-5,13-prostadienoic acid (34). Analogous to the saponification of ester 9 to acid 11, isopropyl ester $35(23 \mathrm{mg})$ was converted to acid $34(17 \mathrm{mg})$ in 80% yield. ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}): \delta 178.30$ (C), 159.00 (C), 137.64 (d, $J=8 \mathrm{~Hz}, \mathrm{CH}), 134.90(\mathrm{C}), 130.33(\mathrm{CH}), 129.81(\mathrm{CH})$, $128.98(\mathrm{CH}), 125.58(\mathrm{~d}, J=20 \mathrm{~Hz}, \mathrm{CH}), 121.51(\mathrm{CH})$, $115.08(\mathrm{CH}), 113.17(\mathrm{CH}), 90.89(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH})$, $77.94(\mathrm{CH}), 73.20(\mathrm{CH}), 70.07\left(\mathrm{~d}, J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $55.77(\mathrm{CH}), 50.37(\mathrm{CH}), 42.77\left(\mathrm{CH}_{2}\right), 32.98\left(\mathrm{CH}_{2}\right), 26.38$ $\left(\mathrm{CH}_{2}\right), 25.66\left(\mathrm{CH}_{2}\right), 24.41\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{FClNa} \quad\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 449.15128; found 449.150841 .
4.1.57. (5Z,13E)-(9S,11R,15S)-16-(3-Chlorophenoxy)-9,11-dihydroxy-15-fluoro-17,18,19,20-tetranor-5,13-prostadienoic acid (36). Analogous to the saponification of ester 9 to acid 11, isopropyl ester $37(78 \mathrm{mg})$ was converted to acid $36(53 \mathrm{mg})$ in 75% yield. ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}): \delta \quad 178.30$ (C), 159.00 (C), 137.59 (d, $J=10 \mathrm{~Hz}, \mathrm{CH}), 134.90(\mathrm{C}), 130.34(\mathrm{CH}), 129.85(\mathrm{CH})$, $128.96(\mathrm{CH}), 125.59(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 121.50(\mathrm{CH})$, $115.10(\mathrm{CH}), 113.19(\mathrm{CH}), 90.91(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH})$, $78.01(\mathrm{CH}), 73.20(\mathrm{CH}), 70.08\left(\mathrm{~d}, J=26 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $55.77(\mathrm{CH}), 50.35(\mathrm{CH}), 42.82\left(\mathrm{CH}_{2}\right), 33.06\left(\mathrm{CH}_{2}\right), 26.41$ $\left(\mathrm{CH}_{2}\right), 25.62\left(\mathrm{CH}_{2}\right), 24.46\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{FClNa} \quad\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 449.15128; found, 449.15127.
4.1.58. [3aR,4R(1E,3RS),5R,6aS]-5-Benzoyloxy-4-[3-hy-droxy-4-(3-(trifluoromethyl)phenoxy)-1-butenyl|-hexahy-dro-2H-cyclopenta[b]furan-2-one (70). To a solution of [3aR,4R(1E),5R,6aS]-5-benzoyloxy-4-[3-oxo-4-(3-(triflu-oromethyl)phenoxy)-1-butenyl]-hexahydro-2 H -cyclopenta-[b]furan-2-one ${ }^{21}(2.30 \mathrm{~g}, 4.85 \mathrm{mmol}), \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3.00$ $\mathrm{g}, 8.04 \mathrm{mmol})$, and methanol $(35 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(230 \mathrm{mg}, 6.05 \mathrm{mmol})$ in six portions over 5 min . After 30 min saturated $\mathrm{KH}_{2} \mathrm{PO}_{4}(30 \mathrm{~mL})$ and water
$(30 \mathrm{~mL})$ were added and the mixture was warmed to room temperature. The solution was extracted with 3:2 ethyl acetate-hexane $(3 \times 70 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to afford crude $70(2.62 \mathrm{~g}$, $>100 \%$ nominal yield). HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{Na} \quad\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 499.133990; found, 499.13400.
4.1.59. [3aR,4R(1E,3RS),5R,6aS]-5-Benzoyloxy-4-[3-flu-oro-4-(3-(trifluoromethyl)phenoxy)-1-butenyl]-hexahydro-2H-cyclopenta[b]furan-2-one (71). Analogous to the fluorination of allyl alcohol 2 to a mixture of the $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorinated products 4 and 5 , the sample of crude 70 from above (2.62 g nominal, 2.31 g assuming 100% yield in previous step) was treated with DAST to afford $\mathrm{S}_{\mathrm{N}} 2$ fluorination product 71 as the major component in a mixture with one diastereomer of the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination product $[3 \mathrm{a} R, 4 R(1 R S, 2 E), 5 R, 6 \mathrm{a} S]-5-$ benzoyloxy-4-[1-fluoro-4-(3-(trifluoromethyl)phenoxy)-2-buten-1-yl]-hexahydro-2 H -cyclopenta[b]furan-2-one (total $=807 \mathrm{mg}, 35 \%$ yield calculated as 71). HRMS, m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~F}_{4} \mathrm{Na}, 501.129842$; found, 501.12985.
4.1.60. [3aR,4R(1E,3RS),5R,6aS]-4-[3-Fluoro-4-(3-(tri-fluoromethyl)phenoxy)-1-butenyll-5-hydroxy-hexahydro-2H-cyclopenta[b]furan-2-one (72). Analogous to the debenzoylation of 4 to alcohol 6, 71 (contaminated with its $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination product; 802 mg) was treated with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ to provide a crude product, which was chromatographed on a 15 cm tall $\times 40 \mathrm{~mm}$ diameter silica gel column eluting with a gradient of $1: 1 \rightarrow 3: 2$ ethyl acetate-hexane to afford pure 72 as a slowereluting component (369 mg) in 59% yield, as well as a mixture of 72 with a slightly faster-eluting component $(101 \mathrm{mg})$, this mixture containing approximately 10% of the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fluorination product. MF of $72=\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~F}_{4}$, $\mathrm{MW}=374$. ES-LRMS, peaks at $m / z=392\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$, 100%] and $375\left[(\mathrm{M}+\mathrm{H})^{+}, 30 \%\right]$.
4.1.61. [3aR,4R(1E,3RS),5R,6aS]-4-[3-Fluoro-4-(3-(tri-fluoromethyl)phenoxy)-1-butenyl|-5-tetrahydropyran-2-yl-oxy)-hexahydro-2H-cyclopenta[b]furan-2-one (73). Analogous to the conversion of alcohol 6 to the THP ether 7, alcohol $72(363 \mathrm{mg})$ was converted to its THP ether 73 $(216 \mathrm{mg})$ in 49% yield. MF of $73=\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~F}_{4}$, MW $=$ 458. ES-LRMS, peaks at $m / z=476\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$, $100 \%], 459\left[(\mathrm{M}+\mathrm{H})^{+}, 10 \%\right]$.
4.1.62. (5Z,13E)-(9S,11R,15RS)-15-Fluoro-9-hydroxy-11-(tetrahydropyran-2-yloxy)-16-[3-(trifluoromethyl)phen-oxy)-17,18,19,20-tetranor-5,13-prostadienoic acid isopropyl ester (74). Analogous to the reduction of lactone 7 to the corresponding lactol, lactone $73(210 \mathrm{mg})$ was reduced with DIBAL-H to afford the crude lactol [$2 R S, 3 \mathrm{a} R, 4 R(1 E, 3 R S$),5R,6aS]-4-[3-fluoro-4-(3-trifluo-romethyl)phenoxy)-1-butenyl]-5-tetrahydropyran-2-yl-oxy)-hexahydro- $2 H$-cyclopenta[b]furan-2-ol (180 mg) in 85% yield.

Analogous to the Wittig reaction/esterification of the lactol $[3 \mathrm{a} R, 4 R(1 E, 3 R S), 5 R, 6 \mathrm{a} S]$-4-(3-fluoro-4-phenoxy-butenyl)-5-hydroxy-hexahydro- $2 H$-cyclopenta[b]furan-2ol to 8 , the above lactol (180 mg) was converted to 74 $(122 \mathrm{mg})$ in 53% yield from the lactol and 45% yield from lactone 73. MF of $74=\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{~F}_{4}, \mathrm{MW}=586$. ES-LRMS, peaks at $m / z=604\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 100 \%\right], 586$ ($\mathrm{M}^{+}, 15 \%$).
4.1.63. $(5 Z, 13 E)-(9 S, 11 R, 15 R)-9,11-D i h y d r o x y-15-f l u-$ oro-16-[3-(trifluoromethyl)phenoxy)-17,18,19,20-tetranor-5,13-prostadienoic acid isopropyl ester (39) and (5Z,13E)-(9S,11R,15S)-9,11-dihydroxy-15-fluoro-16-[3-(trifluoro-methyl)phenoxy)-17,18,19,20-tetranor-5,13-prostadienoic acid isopropyl ester (41). Analogous to the deprotection of THP ether 8 to the diols 9 and 10, THP ether 74 $(115 \mathrm{mg})$ was treated with $\mathrm{HCl} /$ isopropanol to afford the diastereomeric mixture $(5 Z, 13 E)-(9 S, 11 R, 15 R S)-9$, 11-dihydroxy-15-fluoro-16-[3-(trifluoromethyl)phenoxy)-17,18,19,20-tetranor-5,13-prostadienoic acid isopropyl ester (66 mg) in 66% yield. The diastereomers were separated by HPLC on a chiral AD column eluting with 4:1 hexane-isopropanol to afford the 15α-fluoride 39 $(8 \mathrm{mg})$ and the 15β-fluoride $41(46 \mathrm{mg})$. Their spectral properties were as follows:

Compound 39: ${ }^{13} \mathrm{C}$ NMR (150 MHz , peaks not split by CF_{3}): $\delta 173.44(\mathrm{C}), 158.47(\mathrm{C}), 137.78(\mathrm{~d}, J=10 \mathrm{~Hz}$, $\mathrm{CH}), 130.07(\mathrm{CH}), 130.06(\mathrm{CH}), 128.72(\mathrm{CH}), 125.20(\mathrm{~d}$, $J=20 \mathrm{~Hz}, \mathrm{CH}), 90.78(\mathrm{~d}, J=171 \mathrm{~Hz}, \mathrm{CH}), 118.06$ $(\mathrm{CH}), 78.12(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{CH}), 73.23(\mathrm{CH}), 70.11(\mathrm{~d}$, $\left.J=25 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.68(\mathrm{CH}), 56.10(\mathrm{CH}), 50.60(\mathrm{CH})$, $42.93\left(\mathrm{CH}_{2}\right), 33.94\left(\mathrm{CH}_{2}\right), 26.60\left(\mathrm{CH}_{2}\right), 25.73\left(\mathrm{CH}_{2}\right)$, $24.80\left(\mathrm{CH}_{2}\right), 21.82\left(\mathrm{CH}_{3}\right), 21.80\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~F}_{4} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 525.223746$; found, 525.22326 .

Compound 41: ${ }^{13} \mathrm{C}$ NMR (150 MHz , peaks not split by CF_{3}): $\delta 173.51$ (C), 158.46 (C), 137.88 (d, $J=10 \mathrm{~Hz}$, $\mathrm{CH}), 130.05(\mathrm{CH}), 130.01(\mathrm{CH}), 128.74(\mathrm{CH}), 125.22(\mathrm{~d}$, $J=20 \mathrm{~Hz}, \mathrm{CH}), 118.14(\mathrm{CH}), 90.86(\mathrm{~d}, J=171 \mathrm{~Hz}$, $\mathrm{CH}), 78.14(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{CH}), 73.13(\mathrm{CH}), 70.11(\mathrm{~d}$, $\left.J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 67.68(\mathrm{CH}), 56.08(\mathrm{CH}), 50.55(\mathrm{CH})$, $42.99\left(\mathrm{CH}_{2}\right), 33.95\left(\mathrm{CH}_{2}\right), 26.59\left(\mathrm{CH}_{2}\right), 25.63\left(\mathrm{CH}_{2}\right)$, $24.81\left(\mathrm{CH}_{2}\right)$, $21.79\left(\mathrm{CH}_{3}\right)$, $21.77\left(\mathrm{CH}_{3}\right)$. HRMS, m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~F}_{4} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 525.223746$; found, 525.22375 .
4.1.64. $(5 Z, 13 E)-(9 S, 11 R, 15 R)-9,11$-Dihydroxy-15-fluoro-16-[3-(trifluoromethyl)phenoxy)-17,18,19,20-tetranor-5,13prostadienoic acid (38). Analogous to the saponification of ester 9 to acid 11, isopropyl $39(4.5 \mathrm{mg})$ was converted to acid $38(3.8 \mathrm{mg})$ in 93% yield. ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, peaks not split by CF_{3}): $\delta 177.50$ (C), 158.46 (C), 137.68 $(\mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{CH}), 130.09(\mathrm{CH}), 129.81(\mathrm{CH}), 128.94$ (CH), $125.37(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 118.18(\mathrm{CH}), 90.83(\mathrm{~d}$, $J=171 \mathrm{~Hz}, \mathrm{CH}), 78.07(\mathrm{CH}), 73.29(\mathrm{CH}), 70.11(\mathrm{~d}$, $\left.J=25 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 55.97(\mathrm{CH}), 50.50(\mathrm{CH}), 42.82\left(\mathrm{CH}_{2}\right)$, $32.74\left(\mathrm{CH}_{2}\right), 26.36\left(\mathrm{CH}_{2}\right), 25.71\left(\mathrm{CH}_{2}\right), 24.37\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~F}_{4} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 461.195281; found, 461.19528.
4.1.65. (5Z,13E)-(9S,11R,15S)-9,11-Dihydroxy-15-fluoro-16-[3-(trifluoromethyl)phenoxy)-17,18,19,20-tetranor-5,13prostadienoic acid (40). Analogous to the saponification of ester 9 to acid 11, isopropyl $41(20 \mathrm{mg})$ was converted to acid $40(16 \mathrm{mg})$ in 85% yield. ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, peaks not split by CF_{3}): $\delta 178.19$ (C), 158.46 (C), 137.72 $(\mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{CH}), 130.07(\mathrm{CH}), 129.84(\mathrm{CH}), 128.94$ $(\mathrm{CH}), 125.44(\mathrm{~d}, J=18 \mathrm{~Hz}, \mathrm{CH}), 118.16(\mathrm{CH}), 90.89(\mathrm{~d}$, $J=171 \mathrm{~Hz}, \mathrm{CH}), 78.05(\mathrm{CH}), 73.23(\mathrm{CH}), 70.09(\mathrm{~d}$, $\left.J=24 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 55.86(\mathrm{CH}), 50.40(\mathrm{CH}), 42.81\left(\mathrm{CH}_{2}\right)$, $32.93\left(\mathrm{CH}_{2}\right), 26.36\left(\mathrm{CH}_{2}\right), 25.61\left(\mathrm{CH}_{2}\right), 24.41\left(\mathrm{CH}_{2}\right)$. HRMS, m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~F}_{4} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 461.195281; found, 461.19482.

4.2. Relative retention index measurements

The prostaglandin of interest was dissolved in $1 / 1 \mathrm{v} / \mathrm{v}$ pH 3.0 ammonium phosphate buffer/acetonitrile (hereinafter termed 'mobile phase') to provide a concentration of about $15-20 \mu \mathrm{~g} / \mathrm{mL}$. As reference standard, $5 \mu \mathrm{~L}$ of a $10 \mathrm{mg} / \mathrm{mL}$ solution of $\mathrm{PGF}_{2 \alpha}$ isopropyl ester in ethanol was diluted with 3 mL of mobile phase to afford a concentration of $16.7 \mu \mathrm{~g} / \mathrm{mL}$. The prostaglandin of interest dissolved in mobile phase, the reference standard $\mathrm{PGF}_{2 \alpha}$ isopropyl ester dissolved in mobile phase, or the mobile phase alone as negative control was injected as a $40 \mu \mathrm{~L}$ aliquot onto a Microsorb-MV ODS reversephase $5 \mu \mathrm{M}$ HPLC column, 4.6 mm internal diameter $\times 15 \mathrm{~cm}$ length, eluting with mobile phase at a rate of $1 \mathrm{~mL} / \mathrm{min}$, using a UV detector set at $\lambda=190 \mathrm{nM}$. The relative retention index of a test prostaglandin is defined as the retention time of the test prostaglandin divided by that for the reference standard $\mathrm{PGF}_{2 \alpha}$ isopropyl ester.

4.3. Biology methods

Binding ${ }^{18 \mathrm{a}}$ and functional activation ${ }^{18 \mathrm{~b}}$ of prostaglandin acids to the FP receptor, and rabbit conjunctival hyperemia, cat papillary constriction, and monkey IOP effects $^{3 a}$ of prostaglandin isopropyl esters, were assayed according to the previously published procedures.

References and notes

1. For recent reviews, see: (a) Clark, A. F. Emerging Drugs 1999, 4, 333; (b) Sugrue, M. F. J. Med. Chem. 1997, 40, 2793.
2. Alm, A. Curr. Opin. Ophthalmol. 1993, 4, 44.
3. (a) Hellberg, M. R.; McLaughlin, M. A.; Sharif, N. A.; DeSantis, L.; Dean, T. R.; Kyba, E. P.; Bishop, J. E.; Klimko, P. G.; Zinke, P. W.; Selliah, R. D.; Barnes, G.; DeFaller, J.; Kothe, A.; Landry, T.; Sullivan, E. K.; Andrew, R.; Davis, A. A.; Silver, L.; Bergamini, M. V. W.; Robertson, S.; Weiner, A. L.; Sallee, V. L. Surv. Ophthalmol. 2002, 47(Suppl. 1), S13; (b) Linden, C.; Alm, A. Drugs Aging 1999, 14, 387; (c) Higginbotham, E. J.; Schuman, J. S.; Goldberg, I.; Gross, R. L.; VanDenburgh, A. M.; Chen, K.; Whitcup, S. M. Arch. Ophthalmol. 2002, 120(10), 1286.
4. For a recent review of the physiochemical properties of fluorinated compounds, see: Smart, B. E. J. Fluor. Chem. 2001, 109, 3.
5. (a) Streitwieser, A. S., Jr.; Heathcock, C. H. Introduction to Organic Chemistry; 2nd ed.; Macmillan: New York, 1981; p 147; (b) Streitwieser, A. S., Jr.; Heathcock, C. H. Introduction to Organic Chemistry; 2nd ed.; Macmillan: New York, 1981; p 229; (c) Streitwieser, A. S., Jr.; Heathcock, C. H. Introduction to Organic Chemistry; 2nd ed.; Macmillan: New York, 1981; p 9.
6. Taken from Table 14, p 9, of Ref. 4.
7. (a) Parsch, J.; Engels, J. W. J. Am. Chem. Soc. 2002, 124, 5664; (b) Guckian, K. M.; Krugh, T. R.; Kool, E. T. J. Am. Chem. Soc. 2000, 122, 6841; (c) Thalladi, V. R.; Weiss, H.-C.; Bläser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702 ; (d) Evans, T. A.; Seddon, K. R. Chem. Commun. 1997, 2023; (e) Howard, J. A. K.; Hoy, V. J.; O’Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613.
8. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A: Structure and Mechanism; 2nd ed.; Plenum: New York, 1984; pp 130-133.
9. "However, it was well known that the 15 -hydroxyl group is essential for biologic activity of prostaglandins, and dehydrogenation of the hydroxyl group results in marked loss of biological activity." Statement from p 1135 of: Stjernschantz, J. W. Invest. Ophthalmol. Vis. Sci. 2001, 42, 1134.
10. (a) Bezuglov, V. V.; Pashinnik, V. E.; Tovstenko, V. I.; Markovskii, L. N.; Freimanis, Ya. F.; Serkov, I. V. Bioorg. Khim. 1996, 22, 814, Chem. Abstr. 2002, 126, 211926; (b) Lakin, K. M.; Makarov, V. A.; Kovalev, S. G.; Petrukhina, G. N.; Serkov, I. V.; Golovanoka, N. K.; Bezuglov, V. V. Eksp. Klin. Farmakol. 1994, 57, 39, Chem. Abstr. 1994, 121, 50656; (c) Nigamatov, I. M.; Serkov, I. V.; Gafurov, R. G.; Bezuglov, V. V.; Fetisov, V. I. Izv. Akad. Nauk. SSSR, Ser. Biol. 1989, 6, 831, Chem. Abstr. 1990, 112, 30749.
11. Klimko, P. G.; Hellberg, M. R.; Zinke, P. W. US patent No 6,649,653 B1, 2003; Chem. Abstr. 2002, 137, 294817.
12. The use of certain 15,15-difluoro- and 9-acyloxy-15-fluoro- $\mathrm{PGF}_{2 \alpha}$ analogs as fertility control agents and as ocular hypotensives has been disclosed. (a) Takagi, Y.; Nakajima, T.; Shimazaki, A.; Kageyama, M.; Matsugi, T.; Matsumura, Y.; Gaelt, B. T.; Kaufman, P. L.; Hara, H. Exp. Eye Res. 2004, 78(4), 767; (b) Shirasawa, E.; Kageyama, M.; Nakajima, T.; Nakano, T.; Mori, N.; Sasakura, H.; Matsumura, Y.; Morizawa, Y. US Patents 5,886,035, 1999; and 5,985,920, 1999; Chem. Abstr. 1998, 129, 108934; (c) Shirasawa, E.; Kageyama, M.; Mori, N.; Sakata, K.; Nakano, T.; Matsumura, Y.; Morizawa, Y. PCT International Application, WO 9812175 A1; Chem. Abstr. 1998, 128, 257279.
13. Saddler, J. C.; Symonds, J. H. US Patent 5,079,371, 1992; Chem. Abstr. 1989, 111, 114959.
14. The commercially available reagent from Aldrich Chemical Company was used.
15. Klimko, P. G.; Davis, T. L.; Griffin, B. W.; Sharif, N. A. J. Med. Chem. 2000, 43, 3400, see footnote 18 therein.
16. Klimko, P. G.; Zinke, P. W. US Patent 6,235,779, 2001; Chem. Abstr. 1998, 129, 41028.
17. For a recent report on the successful preparation of structurally related allyl alkyl fluorides, see: Prakesch, M.; Gree, D.; Gree, R. J. Org. Chem. 2001, 66, 3146.
18. (a) Sharif, N. A.; Xu, S. X.; Williams, G. W.; Crider, J. Y.; Griffin, B. W.; Davis, T. L. J. Pharmacol. Exp. Ther. 1998, 286, 1094; (b) Griffin, B. W.; Williams, G. W.; Crider, J. Y.; Sharif, N. A. J. Pharmacol. Exp. Ther. 1997, 281, 845.
19. Gréen, K. Prostaglandins 1978, 15, 813.
20. Resul, B.; Stjernschantz, J.; No, K.; Liljebris, C.; Selen, G.; Astin, M.; Karlsson, M.; Bito, L. Z. J. Med. Chem. 1993, 36(2), 243.
21. Bowler, J. C.; Crossley, N. S. US Patent Number 4,321,275, 1982; Chem. Abstr. 1972, 78, 110692.

[^0]: Keywords: 15-Fluoro prostaglandin; Glaucoma.

 * Corresponding author. Tel.: +1-817-551-6932; fax: +1-817-615-4696;
 e-mail: peter.klimko@alconlabs.com

[^1]: ${ }^{\mathrm{a}}$ SEM $=$ Standard error of the mean.

