Tetrahedron Letters 53 (2012) 674-677

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Cl₃CCN/PPh₃ and CBr₄/PPh₃: two efficient reagent systems for the preparation of N-heteroaromatic halides

Woranun Kijrungphaiboon^{a,b}, Oraphin Chantarasriwong^c, Wainthorn Chavasiri^{b,d,*}

^a Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^b Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok 10330, Thailand

^c Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangmod, Thungkru, Bangkok 10140, Thailand

^d Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

ARTICLE INFO

Article history: Received 6 October 2011 Revised 16 November 2011 Accepted 25 November 2011 Available online 2 December 2011

Keywords: N-Heteroaromatic halides Trichloroacetonitrile Carbon tetrabromide Chlorinating agents Brominating agents

A B S T R A C T

Cl₃CCN/PPh₃ and CBr₄/PPh₃ are two highly reactive reagent systems for the conversion of N-heteroaromatic hydroxy compounds into N-heteroaromatic chlorides or bromides in moderate to excellent yields under mild and acid-free conditions.

© 2011 Elsevier Ltd. All rights reserved.

The utility of N-heteroaromatic halides is well documented. They represent important intermediates in organic transformations and are of pharmaceutical interest. These halides often participate as valuable precursors for the formation of carbon–carbon bonds via cross-coupling reactions, such as Stille/Suzuki,¹ Heck² and Sonogashira.³ They have been involved in nucleophilic substitutions with a wide range of nucleophiles including amines, alcohols, and thiols to generate the corresponding substituted products.⁴ Some N-heteroaromatic chlorides are used as phase-transfer catalysts and are reported as starting materials for the production of various pharmaceutical products such as the antihistamine, pheniramine.⁵

N-Heteroaromatic halides can be prepared from various starting materials. The general protocols mostly stem from the conversion of N-heteroaromatic hydroxy compounds because of their commercial availability and easy transformations. SOCl₂, POCl₃, or PCl₅⁶⁻⁸ are used as chlorinating agents in the synthesis of N-heteroaromatic chlorides. Similarly, N-heteroaromatic bromides can be synthesized by using POBr₃⁹ or PBr₃.¹⁰ However, such reagents are harmful, moisture sensitive, difficult to handle, or generate HCl, HBr, or SO₂ as by-product gases, hence they cannot be applied to acid-sensitive substrates. The utilization of combined reagents consisting of PPh₃ and various halogenating agents has received significant attention as convenient and efficient reagent systems

for the preparation of various organic halides under acid-free conditions.

PPh₃ in combination with chlorinating agents: CCl₄,¹¹ Cl₃CCCl₃,¹² Cl₃CCOCCl₃,¹³ Cl₃CCN,¹⁴ or Cl₃CCONH₂¹⁵ have been reported as efficient reagents for the conversion of alcohols into chlorides. The combination of PPh₃/Cl₃CCN has also been exploited to convert sulfonic acids into sulfonyl chlorides during the synthesis of sulfonamides.¹⁶ PPh₃ in combination with CCl₄,¹⁷ cyanuric chlo-ride,¹⁸ N-chlorosuccinimide (NCS),¹⁹ Cl₃CCOCCl₃,²⁰ or Cl₃CCN²¹ has been used for the conversion of carboxylic acids into acyl chlorides. Recently, the PPh₃/Cl₃CCONH₂ system was introduced as an alternative reagent for the transformation of carboxylic acids into their corresponding amides²² and esters²³ via acid chlorides as reactive intermediates. Similarly, PPh₃/N-bromosuccinimide (NBS)²⁴ and PPh₃/Br₃CCO₂Et²⁵ have been documented for the conversion of carboxylic acids into acyl bromides. The latter system has also been used for the conversion of alcohols into alkyl bromides.²⁶ The PPh₃/Br₃CCOCBr₃ system has been described as a very efficient combined reagent system for the reaction of alcohols to give alkyl bromides,²⁶ and carboxylic acids to yield amides via acid bromides.²⁷

There are only a few reports describing the preparation of N-heteroaromatic halides from N-heteroaromatic hydroxy compounds utilizing the combination of PPh₃/halogenating agents, such as an N-halosuccinimide²⁸ or trichloroisocyanuric acid.²⁹ These methods have disadvantages such as the requirement for a large amount of the reagent and low efficiencies. Alternatively,

^{*} Corresponding author. Tel.: +66 2 218 7625; fax: +66 2 218 7598. *E-mail address*: warintho@yahoo.com (W. Chavasiri).

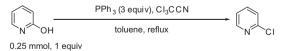
^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.11.123

N-heteroaromatic bromides could be obtained with the use of P_2O_5/Bu_4NBr .³⁰ Due to the extensive number of PPh₃/halogenating agent systems available and there being no reports on the application of PPh₃/Cl₃CCN or PPh₃/CBr₄ to N-heteroaromatic hydroxy compounds, a new and convenient protocol for the preparation of N-heteroaromatic chlorides and bromides from N-heteroaromatic hydroxy compounds using the aforementioned systems is described herein.

To optimize the reaction conditions for the chlorination of N-heteroaromatic hydroxy compounds, several chlorinating agents (3 equiv) coupled with PPh₃ (3 equiv) were examined for the conversion of 2-hydroxypyridine into 2-chloropyridine in refluxing toluene over 4 h and the yield of product was quantified by HPLC (Table 1). In the absence of any chlorinating agent, the reaction did not proceed (entry 1). Cl₃CCN, a reagent bearing a strong electron-withdrawing group, was found to be the most reactive, affording the desired chloride in quantitative yield (entry 2).²⁸ Moderate yields were obtained using Cl₃CCO₂Et, Cl₃CCOl₃, and NCS (41–63%, entries 3, 4 and 7). The use of CCl₄ or Cl₃CCONH₂ gave the desired chloride in poor yields (7% and 22%, entries 5 and 6).

Next, the ratio of PPh₃ and Cl₃CCN and the reaction time were investigated in order to obtain the maximum yield of 2-chloropyridine (Table 2). Decreasing the ratio of PPh₃/Cl₃CCN from 3:3 to 3:1.5 (based on 2-hydroxypyridine) did not reveal a significant effect on the yield of the target product. The desired chlorides were obtained quantitatively in 4 and 8 h (entries 2, 3, 5, and 6), whereas a moderate yield of the chloride was obtained over 1 h (44–48%,

Table 1


The effect of chlorinating agent on the conversion of 2-hydroxypyridine into 2-chloropyridine

ĺ	PPh ₃ (3	equiv), chlorinating agen	t (3 equiv)
Ų	N OH	toluene, reflux, 4 h	N CI
0	0.25 mmol, 1 equiv		
Entry	Chlorinating	% Yield ^a 2-	% Recovery ^a 2-
	agent	chloropyridine	hydroxypyridine
1	None	_	100
2	Cl ₃ CCN	Quant.	0
3	Cl ₃ CCO ₂ Et	63	37
4	Cl ₃ CCCl ₃	46	54
5	CCl ₄	22	78
6	Cl ₃ CCONH ₂	7	93
7	NCS	41	59

^a The yield was determined based on HPLC analysis.

Table 2

The effect of the amount of Cl_3CCN and reaction time on the conversion of 2-hydroxypyridine into 2-chloropyridine

Entry	Equivalents Cl ₃ CCN	Time (h)	% Yield ^a 2- chloropyridine	% Recovery ^a 2- hydroxypyridine
1	3	1	48	52
2	3	4	Quant.	0
3	3	8	Quant.	0
4	1.5	1	44	56
5	1.5	4	Quant. (64) ^b	0 (36) ^b
6	1.5	8	Quant.	0
7	1	1	40	60
8	1	4	60	40
9	1	8	92	8

^a The yield was determined based on HPLC analysis.

^b 2 equiv of PPh₃ and 1.5 equiv of Cl₃CCN were used.

entries 1 and 4). A moderate yield was also furnished when reacting 2-hydroxypyridine with a 2:1.5 ratio of PPh₃ and Cl₃CCN for 4 h (64%, entry 5). However, when the ratio was reduced to 3:1, the yield of the chloride was reduced significantly to 40, 60, and 92% (1, 4, and 8 h), respectively (entries 7–9).

The effect of the solvent was also investigated in order to improve the yield of the chloride. 2-Hydroxypyridine was treated with PPh₃ and Cl₃CCN in organic solvents such as CH_2Cl_2 , CH_3CN , toluene, and *p*-xylene at reflux for 1 h. The chlorination of 2-hydroxypyridine in CH_2Cl_2 and CH_3CN led to the recovery of only the starting material. In refluxing toluene, a 44% yield of the chloride was achieved. 2-Hydroxypyridine could be transformed into 2-chloropyridine in quantitative yield when *p*-xylene was used. However, *p*-xylene is difficult to remove from the reaction mixture, making the reaction inconvenient to perform. After screening a number of solvents, toluene was found to meet the requirements for the chlorination of N-heteroaromatic hydroxy compounds.

Various factors including the type of brominating agent, the ratio of PPh_3 and brominating agent, and the reaction time were next scrutinized to evaluate the conditions for the conversion of N-heteroaromatic hydroxy compounds into N-heteroaromatic bromides. 2-Hydroxypyridine was used as a model substrate and the yield of the product, 2-bromopyridine was quantified by HPLC (see Table 3).

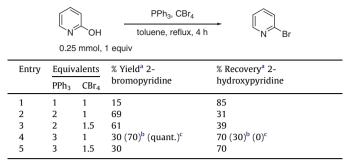
On refluxing in toluene for 4 h, the reaction of 2-hydroxypyridine with Br_3CCO_2Et and NBS provided the desired bromides in 3% and 25% yields, respectively (entries 1 and 4).²⁸ CBr₄ and $Br_3CCOCBr_3$ were promising candidates in terms of new brominating agents for N-heteroaromatic hydroxy compounds, affording 2-bromopyridine in 15% and 45% yield, respectively (entries 2 and 3). Although, the use of $Br_3CCOCBr_3$ gave rise to the bromide in higher yield than CBr₄, several by-products were also obtained, whereas CBr₄ gave only the desired bromide. Thus, CBr₄ was considered the best brominating agent for further investigation.

The ratio of PPh_3 and CBr_4 and the reaction time were investigated to obtain the most appropriate conditions and the results are presented in Table 4.

When the ratio of PPh₃ and CBr₄ was increased from 1:1 to 2:1 and 2:1.5 (based on 2-hydroxypyridine), the yield of the desired bromide increased (entries 1–3). In contrast, the yield of the target bromide decreased when increasing the ratio to 3:1 and 3:1.5 (entries 4 and 5). Despite the fact that a 2:1 ratio of PPh₃ and CBr₄ provided a higher yield than a 3:1 ratio (entries 2 vs 4), from the HPLC chromatogram, it is worth noting that the amount of aryloxyphosphonium salt, generated from the combination of PPh₃ with CBr₄, significantly increased using the ratio of 3:1. Thus, a 3:1 ratio of PPh₃/CBr₄ was selected to examine the effect of reaction time on the yield of the desired bromide. Fortunately, the substrate could be converted into the desired bromide quantitatively when the refluxing time was extended from 4 to 8 h (entry 4).

Table 3

The effect of brominating agent on the conversion of 2-hydroxypyridine into 2-bromopyridine


ĺ	PPh ₃ (1 equiv), brominating agent (1 equiv)				
Ų	N OH	toluene, reflux, 4 h	N Br		
(0.25 mmol, 1 equiv				
Entry	Brominating	% Yield ^a 2-	% Recovery ^a 2-		
	agent	bromopyridine	hydroxypyridine		
1	Br ₃ CCO ₂ Et	3	97		
2	CBr ₄	15	85		
3	Br ₃ CCOCBr ₃	45	14 (41) ^b		
4	NBS	25	75		

^a The yield was determined based on HPLC analysis.

^b Unwanted by-product was obtained.

Table 4

The effect of the amount of PPh_3 and CBr_4 on the conversion of 2-hydroxypyridine into 2-bromopyridine

^a The yield was determined based on HPLC analysis.

^b Reflux for 6 h.

^c Reflux for 8 h.

To investigate the generality and scope of this method, several N-heteroaromatic hydroxy compounds were converted into the corresponding halide using PPh₃ (3 equiv)/Cl₃CCN (1.5 equiv) and PPh₃ (3 equiv)/CBr₄ (1 equiv) (Table 5).

2-Hydroxypyridine and 2-hydroxyquinoline gave excellent yields of 2-halo products (90–100%, entries 1, 2, 7, and 8). 28 In

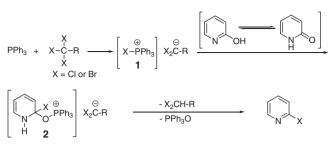
Table 5

The conversion of N-heteroaromatic hydroxy compounds into N-heteroaromatic halides

___ /-

Het-OH 0.25 mmol, 1 equiv		PPh ₃ (3 equiv) halogenating agen	
		toluene, reflux	\rightarrow X = Cl or Br
Entry	Het-OH	Halogenating agent ^a	% Isolated yield of Het-X
1 2	C OH	Cl ₃ CCN CBr ₄	99 ^b Quant. ^b
3 4	OH N	Cl ₃ CCN CBr ₄	Ξ
5 6	OH N	Cl ₃ CCN CBr ₄	94 —
7 8	C N OH	Cl ₃ CCN CBr ₄	95 90
9 10	OH N	Cl₃CCN CBr₄	=
11 12	OH N	Cl ₃ CCN CBr ₄	42 (75) ^c (87) ^d 37 ^d
13 14	O2N N	Cl ₃ CCN CBr ₄	$61^{e} (52)^{c} (31)^{d}$ $11^{e} (31)^{f}$
15 16	OH MeO MeO	Cl₃CCN CBr₄	84 ^c 61 ^c
	MeO N		

^a 1.5 equiv of Cl₃CCN, 4 h; 1 equiv of CBr₄, 8 h.


^b The yield was determined based on HPLC analysis.

^c Reflux for 1 h.

d Reflux for 20 min.

e Reflux for 2 h.

^f Reflux for 30 min.

Scheme 1. Proposed mechanism.

the case of 4-hydroxypyridine, the desired chloride was obtained in a 94% vield, whereas none of the expected bromide was obtained (entries 5³¹ and 6³²). 3-Hydroxypyridine and 8-hydroxyquinoline gave no halo-product (entries 3³³, 4³⁴, 9³⁵ and 10³⁶). The reaction also proceeded with hydroxyquinazolines, however, the conditions needed to be modified slightly. Since they contain two nitrogen atoms, quinazolines exhibit higher reactivity than hydroxypyridines and guinolines. In the case of 4-hydroxyguinazoline, the refluxing time was decreased from 1 h and then to 20 min to provide the desired chloride in a 75% and an 87% yield, respectively (entry 11).³⁷ The bromide was isolated in a 37% yield after 20 min (entry 12).³⁷ In the case of 6-nitroquinazolin-4-ol, the highest yield of the desired chloride was 61% after reaction for 2 h. In contrast to 6-nitroquinazolin-4-ol, decreasing the refluxing time to 1 h and then 20 min did not improve the yield of the desired chloride, entry 11 versus 13.³⁸ A low yield of the bromide was obtained when reaction times of 2 h and 30 min were employed (11-31%, entry 14).³⁹ In addition, 6,7-dimethoxyquinazolin-4-ol could be transformed into the desired chloride and bromide in an 84% and a 61% yield, respectively, within 1 h (entries 15^{40} and 16^{41}).

The mechanism for the reaction of alcohols and carboxylic acids using PPh₃/chlorinating agents has been addressed.⁴² The reactions of N-heteroaromatic hydroxy compounds using PPh₃/chlorinating or brominating agents are considered to operate via a similar mechanism (Scheme 1). PPh₃ reacts with the halogenating agent X₃C–R to generate intermediate **1**, which then reacts with the Nheteroaromatic hydroxy compound to yield aryloxyphosphonium salt **2**. This salt decomposes to give the desired N-heteroaromatic halide and triphenylphosphine oxide. Therefore, the more reactive halogenating agent should contain the stronger electron-withdrawing group (*R*) connecting to $-CX_3$ to stabilize the negative charge presented in the intermediate **1**.

In summary, a new, simple, and convenient method for the synthesis of N-heteroaromatic chlorides using PPh₃/Cl₃CCN and N-heteroaromatic bromides using PPh₃/CBr₄ has been established.

A typical experimental procedure is as follows: to a stirred solution of a selected N-heteroaromatic hydroxy compound (0.25 mmol, 1 equiv) and PPh₃ (196.7 mg, 0.75 mmol, 3 equiv) in toluene (2.5 mL) was added Cl₃CCN (38 μ L, 0.375 mmol, 1.5 equiv) or CBr₄ (82.9 mg, 0.25 mmol, 1 equiv) at reflux under an N₂ atmosphere. The mixture was stirred for the indicated time and the progress was monitored using TLC. The amounts of products in the crude mixtures were determined by HPLC on an Alltech C18 reverse-phase column (4.6 × 250 mm, 5 μ m, Alltech Associates, Inc., USA) with isocratic water/MeOH (90:10) as the mobile phase, flow rate 1.0 mL/min over 20 min, injection volume 10 μ L. Alternatively, they were separated by chromatography on a chromatotron eluting with hexane/EtOAc (10:1).

Acknowledgements

Financial support from the Thailand Research Fund (TRF-MAG), the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), the Graduate school, Chulalongkorn University is acknowledged.

References and notes

- Stille, J. K. Pure Appl. Chem. 1985, 57, 1771–1780; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
- (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066; (b) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2–7; (c) Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379–2411.
- (a) Sonogashira, K. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 521–549; (b) Sonogashira, K. In *Metal-catalyzed Cross-coupling Reactions*; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998; pp 203–229.
- Joule, J.; Mills, K. Heterocyclic Chemistry, 5th ed.; John Wiley & Sons: Chichester, 2010. pp. 133–134.
- 5. Buschauer, A. Arch. Pharm. 1989, 322, 165-171.
- Vanlaer, S.; Voet, A.; Gielens, C.; De Maeyer, M.; Compernolle, F. Eur. J. Org. Chem. 2009, 643–654.
- Mojumdar, S. C.; Simon, P.; Krutosikova, A. J. Therm. Anal. Calorim. 2009, 96, 103–109.
- 8. Morgentin, R.; Jung, F.; Lamorlette, M.; Maudet, M.; Menard, M.; Plé, P.; Pasquet, G.; Renaud, F. *Tetrahedron* **2009**, *65*, 757–764.
- Quallich, G. J.; Fox, D. E.; Friedmann, R. C.; Murtiashaw, C. W. J. Org. Chem. 1992, 57, 761–764.
- 10. Sato, N.; Narita, N. J. Heterocycl. Chem. 1999, 36, 783-786.
- 11. Snyder, E. I. J. Org. Chem. **1972**, 37, 1466.
- 12. Bringmann, G.; Schneider, S. Synthesis 1983, 139-141.
- Magid, R. M.; Fruchey, O. S.; Johnson, W. L. Tetrahedron Lett. 1977, 18, 2999– 3002.
- 14. Matveeva, E. D.; Yalovskaya, A. I.; Cherepanov, I. A.; Bundel, Y. G.; Kurts, A. L. *Zh.* Org. *Khim.* **1991**, *27*, 1611–1618.
- 15. Pluempanupat, W.; Chavasiri, W. Tetrahedron Lett. 2006, 47, 6821-6823.
- 16. Chantarasriwong, O.; Jang, D. O.; Chavasiri, W. Tetrahedron Lett. 2006, 47, 7489-7492.
- 17. Lee, J. B. J. Am. Chem. Soc. 1966, 88, 3440-3441.
- 18. Venkataraman, K.; Wagle, D. R. Tetrahedron Lett. 1979, 20, 3037-3040.
- 19. Froyen, P. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 89, 57-61.
- 20. Villeneuve, G. B.; Chan, T. H. Tetrahedron Lett. 1997, 38, 6489-6492.
- (a) Jang, D. O.; Park, D. J.; Kim, J. Tetrahedron Lett. 1999, 40, 5323–5326; (b) Kim, J.-G.; Jang, D. O. Tetrahedron Lett. 2010, 51, 683–685.

- Chaysripongkul, S.; Pluempanupat, W.; Jang, D. O.; Chavasiri, W. Bull. Korean Chem. Soc. 2009, 30, 2066–2070.
- Chantarasriwong, O.; Jang, D. O.; Chavasiri, W. Synth. Commun. 2008, 38, 2845– 2856.
- Cuevas-Yañez, E.; Garcla, M. A.; de la Mora, M. A.; Muchowski, J. M.; Cruz-Almanza, R. Tetrahedron Lett. 2003, 44, 4815–4817.
- Kang, D. H.; Joo, T. Y.; Lee, E. H.; Chaysripongkul, S.; Chavasiri, W.; Jang, D. O. Tetrahedron Lett. 2006, 47, 5693–5696.
- 26. Tongkate, P.; Pluempanupat, W.; Chavasiri, W. Tetrahedron Lett. 2008, 49, 1146–1148.
- Menezes, F. G.; Kolling, R.; Bortoluzzi, A. J.; Gallardo, H.; Zucco, C. *Tetrahedron Lett.* 2009, 50, 2559–2561.
- 28. Sugimoto, O.; Mori, M.; Tanji, K.-I. Tetrahedron Lett. 1999, 40, 7477-7478.
- 29. Sugimoto, O.; Tanji, K.-I. Heterocycles 2005, 65, 181-185.
- Kato, Y.; Okada, S.; Tomimoto, K.; Mase, T. Tetrahedron Lett. 2001, 42, 4849– 4851.
- Van Baelen, G.; Hostyn, S.; Dhooghe, L.; Tapolcsányi, P.; Mátyus, P.; Lemière, G.; Dommisse, R.; Kaiser, M.; Brun, R.; Cos, P.; Maes, L.; Hajós, G.; Riedl, Z.; Nagy, I.; Maes, B. U. W.; Pieters, L. *Bioorg. Med. Chem.* **2009**, *17*, 7209–7217.
- 32. Murray, A.; Langham, W. H. J. Am. Chem. Soc. 1952, 74, 6289-6290.
- Pearson, D. E.; Hargrove, W. W.; Chow, J. K. T.; Suthers, B. R. J. Org. Chem. 1961, 26, 789–792.
 - McElvain, S. M.; Goese, M. A. J. Am. Chem. Soc. 1943, 65, 2227–2233.
 - Rodríguez, J. G.; de los Rios, C.; Lafuente, A. *Tetrahedron* **2005**, *61*, 9042–9051.
 - 36. Dreis, A. M.; Douglas, C. J. J. Am. Chem. Soc. **2009**, 131, 412–413.
 - Sugimoto, O.; Mori, M.; Moriya, K.; Tanji, K.-I. Helv. Chim. Acta 2001, 84, 1112– 1118.
 - Fernandes, C.; Oliveira, C.; Gano, L.; Bourkoula, A.; Pirmettis, I.; Santos, I. *Bioorg. Med. Chem.* 2007, 15, 3974–3980.
 - 39. 4-Bromo-6-nitroquinazoline (Table 5, entry 14): Yellow solid; R_f = 0.30 (10% EtOAc-hexane); ¹H NMR (CDCl₃) δ (ppm): 7.85 (1H, d, *J* = 8.8 Hz), 8.38 (1H, s), 8.53 (1H, dd, *J* = 8.8, 2.4 Hz), 8.77 (1H, d, *J* = 2.4 Hz); ¹³C NMR (CDCl₃) δ (ppm): 122.4, 123.0, 128.9, 129.0, 145.5, 149.5, 152.5, 160.4; HRMS calcd for C₈H₅BrN₃O₂ (M+H)⁺ 253.9565, found 253.9666.
 - 40. Marzaro, G.; Guiotto, A.; Pastorini, G.; Chilin, A. Tetrahedron 2010, 66, 962-968.
 - 41. 4-Bromo-6,7-dimethoxyquinazoline (Table 5, entry 16): White solid; $R_f = 0.33$ (30% EtOAc-hexane): ¹H NMR (CDCl₃) δ (ppm): 4.08 (6H, d, J = 3.6 Hz), 7.32 (1H, s), 7.36 (1H, s), 8.80 (1H, s); ¹³C NMR (CDCl₃) δ (ppm): 56.5, 56.7, 105.0, 106.9, 122.1, 148.3, 151.6, 152.3, 153.4, 156.8; HRMS calcd for C₁₀H₁₀BrN₂O₂ (M+H)* 268.9926, found 268.9965.
 - Pluempanupat, W.; Chantarasriwong, O.; Taboonpong, P.; Jang, D. O.; Chavasiri, W. Tetrahedron Lett. 2007, 48, 223–226.