Cloning and Expression of Chitinase A from *Serratia marcescens* for Large-scale Preparation of *N*,*N*-Diacetyl Chitobiose

Yue-Jin Wu^a (吳岳進), Chih-Yu Cheng^b* (鄭至玉) and Yaw-Kuen Li^a* (李耀坤) ^aDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, R.O.C. ^bDepartment of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, Taiwan, R.O.C.

The gene of *Serratia marcescens* chitinase A (*chi*A) was cloned by PCR. The complete gene was constructed into a pRSET vector and expressed in *Escherichia coli*. The recombinant enzyme was purified to > 90% homogeneity by hydrophobic interaction chromatography followed by ion-exchange separation. Measured with an electrospray-ionization mass spectrometer, the molecular mass of the protein was 58,607 Da, consistent with a theoretical calculation of the deduced protein without the signal peptide. The recombinant enzyme was characterized and tested for the preparation of chitobiose. In general, the recombinant Chtinase A exhibited an exo-type catalytic activity toward colloidal chitin and released both *N*-acetylglucosamine and *N*,*N*-diacetyl chitobiose as products. After extensive testing, we produced *N*,*N*-diacetyl chitobiose as the predominant product when the enzymatic reaction was performed in sodium acetate buffer at pH 5.5; under such conditions, an enzymatic process is established for the production of the disaccharide on a 100-g scale.

Keywords: Serratia marcescens; Chitinase A; Colloidal chitin; N,N-Diacetyl chitobiose.

INTRODUCTION

Chitin, derived primarily from the exoskeletons of insects and crustaceans, is a β -1, 4-linked, insoluble linear polymer of *N*-acetylglucosamine (GlcNAc). It is the second most abundant organic compound on our planet next to cellulose and the major source of amino sugars in nature. The biological degradation of chitinous materials is thus an important process for the recycling of nutrients in the environment. Certain bacteria, plants and fungi secrete exo- or endo-chitinases capable of degrading chitin to its monomeric or oligomeric saccharides. Among them, exo-chitinase is most extensively studied including its protein structure, catalytic mechanism,¹ essential amino-acid residue(s),^{2,3} and potential application for *N*,*N*-diacetyl chitobiose preparation.⁴

Although the biological function of chitooligosaccharide has not been well studied, the common feature of a pentasaccharide core containing a *N*,*N*-diacetyl chitobiose moiety and three mannose residues was found in many asparagine-linked glycoproteins, which dominates functions in vivo of protein folding,⁵ receptor functioning, cell adhesion and signal transduction.⁶ The biological functions of *N*,*N*-diacetyl chitobiose moiety in the glycan chain are thus expected to be significant. An example was found from the case of *E. coli* invasion in brain microvascular endothelial cells for which the recognition of *N*,*N*-diacetyl chitobiose epitopes on the glycoprotein of brain cell by *E. coli* is essential.^{7,8} In addition to this physiological function, *N*,*N*-diacetyl chitobiose is an effective inducer of bacterial chitinase,⁹ a pathogen-resistant enzyme against fungal infection.¹⁰ We expect that further applications of *N*,*N*-diacetyl chitobiose would be developed if a source of this expensive disaccharide could be devised.

Methods developed to prepare N,N-diacetyl chitobiose include semi-biochemical synthesis, chemical degradation of chitin followed by oligosaccharide separation and enzymatic hydrolysis of chitin. A semi-biochemical process involving catalysis of chitinase with an 1,2-oxazoline derivative of *N*-acetylglucosamine as a glycosyl donor¹¹ has been developed, but suffers from high cost and poor

^{*} Corresponding author. Tel: +886-3-573-1985; Fax: +886-3-572-3764; E-mail: ykl@faculty.nctu.edu.tw (Yaw-Kuen Li);

Tel: +886-7-361-7141 ext. 3817; Fax: +886-7-301-1171; E-mail: cycheng@mail.nkmu.edu.tw (Chih-Yu Cheng)

Abbreviations: ChiA, chitinase A; GlcNAc, N-acetyl-D-glucosamine; (GlcNAc)₂, N,N-diacetyl chitobiose.

yield. Although the chemical degradation of chitin is costless, the laborious separation can only allow a small-scale isolation of *N*,*N*-diacetyl chitobiose or other chito-oligosaccharides. Although many researchers have shown some drawbacks, such as product inhibition, protracted reaction⁴ and the contamination of monomer, in an enzymatic process, an easily obtained chitinase with a high product specificity was expected to be useful for the preparation of *N*,*N*-diacetyl chitobiose. We report here that a *chi*A gene from *S. marcescens* was cloned, over-expressed and applied to preparation of *N*,*N*-diacetyl chitobiose on a 100-g scale.

EXPERIMENTAL SECTION Material

Chemical and microbes. Buffers Sigma-Aldrich (St. Louis, MO, USA), HiTrap SP and Q columns and phenylsepharose resin (Amersham Bioscience, Uppsala, Sweden), chitin, (local supplier in Taiwan) and *S. marcescens* (ATCC 990, Food Industry Research and Development Institute, Hsinchu, Taiwan) were obtained from the indicated sources.

Cloning of chiA

The *chi*A gene was PCR-amplified from genomic DNA of *S. marcescens* using primers 5'-GGAATCAC-ATATGCGCAAATTTAA-3', and 5'-GCAACCGATTAT-TGAACGCCGG-3' which were designed on the basis of the *S. marcescens chi*A gene published in the GenBank database (accession number AF085718). PCR amplification was performed with *Vent* DNA polymerase (NEB) with 25 cycles; each cycle involved 94 °C, 30 s for denaturation, 60 °C, 30 s for annealing, and 72 °C, 4 min for extension. The PCR fragment was first cloned into a cloning vector (QuanTox, Stratagen Co.) and sequenced. The correct gene was then inserted into *Nde I/EcoR* I sites of pRSET A and expressed in *Escherichia coli*.

Cultural conditions and purification of Chitinase A (ChiA)

E. coli BL21 (DE3) served as the host strain for protein expression. A single colony was inoculated into LB medium (5 mL) containing ampicillin (0.1 mg/mL) and cultured at 37 °C on a rotary shaker for 12 h. The overnight culture was then transferred into a conical flask (2 L) containing LB medium (1 L) with ampicillin (0.1 mg/mL) at 37 °C for 15 h. The culture broth was centrifuged at 4 °C for 10 min at 7000 xg. The cell pellet was resupended in sodium phosphate buffer (10 mL, 20 mM, pH 7.0) and then subjected to cell disruption with ultrasonication. After centrifugation to remove cell debris, the supernatant (~10 mL) was loaded onto a hydrophobic interaction column (2.4 \times 20 cm, high-performance phenylsepharose), which was pre-equilibrated with sodium phosphate buffer (20 mM, pH 7.0) containing (NH₄)₂SO₄ (1 M). Elution at flow rate 2 mL/min with a linear gradient of (NH₄)₂SO₄ from 1000 to 0 mM was performed at a decreasing rate 16.67 mM/min. Fractions with chitinase activity were collected and loaded onto a series connection of a cation-exchange column (5 mL HiTrap) and an anion-exchange (5 mL HiTrap) column, pre-equilibrated with phosphate buffer (20 mM, pH 8.0). Chromatography was performed with isocratic elution and phosphate buffer (20 mM, pH 8.0) at a flow rate 2.0 mL/ min. The active fractions were pooled for further study. All purification steps were performed at ambient temperature (25 °C).

Colloidal chitin preparation

Chitin powder (100 g) was suspended in concentrated HC1 (600 mL) and incubated at room temperature until chitin powder was completely dissolved (about 3 h). The resulting solution was then poured into doubly deionized water (4 L) with rapid stirring to form the precipitant of colloidal chitin, which was subsequently collected by centrifugation at 7000 xg for 10 min at 4 °C. The precipitant was washed with sterile distilled water (200 mL each) several times to bring the pH value of the colloidal chitin suspension to 2.0-3.0. After neutralization with sodium hydroxide (1 M), the low-salt colloidal chitin was obtained on repeated centrifugation (7000 xg, 10 min) and washing with water 2-3 times. The acid-treated chitin was kept at 4 °C as a pellet for further applications.

Enzyme activity assay

Chitinase activity was measured via estimating the reducing ends of sugars. The assay was performed by mixing colloidal chitin (0.25 mL, 1%, pH 7.0), and suitably diluted enzyme (0.25 mL) for 1 h at 37 °C. The catalytic reaction was terminated and analyzed on adding dinitrosalicylic acid reagent¹² (0.5 mL). The mixture was boiled for 15 min, chilled and centrifuged to remove insoluble chitin. The resulting adduct of reducing sugars were measured spectrophotometrically at 540 nm. One unit of chitinase activity is defined as the amount of enzyme required to release detect-

able reducing sugars (1 µmol) in 1 min at 37 °C. Electrospray mass spectrometric (ESI-MS) analysis

Mass spectra were recorded with a quadruple timeof-flight mass spectrometer (Q-TOF, Micromass, UK). The quadruple mass analyzer was scanned over a range 50-1500 u/z of mass-to-charge ratio for product analysis and 500-3000 for protein analysis, with a scan step 2 s and a inter scan 0.1 s/step.

Large-scale preparation of N,N-diacetyl chitobiose

The enzymatic degradation of colloidal chitin was performed in a fermenter (5 L) on adding chitinase (200 mL, 230 unit/mL, 20 mM NaOAc, pH 5.5) to colloidal chitin (4 L, 2.5%). The resulting pH value was measured to be 5.7. After reaction for 10 days, the resulting solution was centrifuged to remove the un-reacted chitin. The supernatant was concentrated to form highly viscous syrup with a rotary evaporator. 500 mL of ethanol (95%, w/w) was then added and stirred thoroughly to precipitate salt and protein, which were subsequently removed on centrifugation. After removal of ethanol, the *N*,*N*-diacetyl chitobiose formed as viscous syrup was stored at 4 °C for crystallization.

RESULTS AND DISCUSSION

PCR cloning and sequence of chitinase A from S. *marcescens*

Based on the *S. marcescens chi*A gene sequence, two oligonucleotides were designed and used as primers for PCR cloning. With the chromosomal DNA of *S. marcescens* as template, a DNA fragment (1.7 kb) was amplified and inserted into QuanTox and further constructed in pRSET for protein expression. The amplified *chi*A gene was confirmed with DNA sequencing. Sequence analysis (Fig. 1) revealed that the amplified *chi*A gene contains an open reading frame of 1692 bp encoding 563 amino-acid residues with the first 23 amino acids as signal peptide. As compared with other *chi*A genes deposited in Genbank, the deduced amino-acid sequence of this ChiA exhibited 7-26 residues in variation (data not shown), corresponding to >95 identity to other ChiAs.

Purification of recombinant chitinase A

The full *chi*A gene encoding the protein of *S. marcescens* chitinase A was sub-cloned into pRSET A. The resulting

plasmid was transformed into the E. coli BL21 (DE3) strain, and cultivated in LB medium (37 °C, pH 7.0). The recombinant enzyme, expressed as a soluble form, was further isolated to become highly homogeneous with purification by hydrophobic interaction chromatography (HIC) (Fig. 2) followed with a unique column system coupled with both HiTrap SP (cationic exchange) and HiTrap Q (anion exchange) in series. The recombinant ChiA was eluted at a small salt concentration and at a non-binding region (0 mM NaCl), after which purification was performed using HIC and an ion-exchange column, successively and respectively. ChiA clearly possesses a hydrophobic surface. The final yield was 35%; 50-fold purification was achieved. SDS-PAGE analysis revealed that the recombinant ChiA was obtained with great homogeneity (> 90%). The estimated molecular mass was ~60 kDa. ESI-MS analysis gave a precise measurement, a molecular mass 58,607 Da (as shown in Fig. 3b), consistent with a theoretical calculation of the deduced protein without signal peptide.

Characteristics of the purified chitinase

The assay of pH-dependent and temperature-dependent activities showed that the recombinant ChiA had optimum activity near pH 7.0 and 45 °C (data not shown). The stability of the enzyme to pH and temperature was investigated with colloidal chitin as the substrate. In general, the enzyme was stable for pH 4.0-9.0 over 4 h; throughout the tested pH range the enzyme activity retained at least 80% the activity at pH 7.0. Although recombinant ChiA is pHresistant, it is somewhat sensitive to temperature. An investigation of thermal stability showed that ChiA was stable up to 45 °C with incubation (4 h, pH 7.0); the activity decreased significantly for a temperature greater than 50 °C (Fig. 4). The catalytic outcomes of this recombinant enzyme are comparable to other reported ChiA.^{13,14}

Product specificity

To optimize the catalytic reaction, we analyzed with ESI-MS the product of enzymatic hydrolysis of colloidal chitin obtained from the reaction under varied buffer system, including NaOAc (20 mM), phosphate or Tris, at varied acidity (pH 4-9). In general, the enzymatic products were a mixture of *N*-acetyl glucosamine and *N*,*N*-diacetyl chitobiose (Fig. 5a) when reactions were performed in phos-

1	ATG	CGC	AAA	TTT	AAT	AAA	CCG	CTG	TTG	GCG	CTG	TTG	ATC	GGC	AGC
1	Met	Arg	Lys	Phe	Asn	Lys	Pro	Leu	Leu	Ala	Leu	Leu	Ile	Gly	Ser
46	ACG	CTG	TGT	TCC	GCG	GCG	CAG	GCC	GCC	GCG	CCG	GGC	AAG	CCG	ACC
16	Thr	Leu	Cys	Ser	Ala	Ala	GIN	Ala	Ala	Ala	Pro	Gly	Lys	Pro	Thr
01	አምሮ	CCC	TCC	CCC	N N C	ACC	N N C	TTTC	CCC	አሞሮ	CTT	C 7 7	CTT	CAC	CAC
91 31	TIO	Ala	Tro	GGC	AAC	Thr	Lug	Dho	Ala	TLO	Val	GAA	Val	Aco	CAG
51	TTC	πтα	ттр	OTÀ	ASII	TIIT	цілі	1 110	πια	TIC	var	Oru	var	лэр	OIN
136	GCG	GCT	ACC	GCT	ТАТ	ААТ	ААТ	ТТG	GTG	AAG	GТА	AAA	ААТ	GCC	GCC
46	Ala	Ala	Thr	Ala	Tvr	Asn	Asn	Leu	Val	Lvs	Val	Lvs	Asn	Ala	Ala
					7					7		7			
181	GAT	GTT	TCC	GTC	TCC	TGG	AAT	TTA	TGG	AAT	GGC	GAC	GCG	GGC	ACG
61	Asp	Val	Ser	Val	Ser	Trp	Asn	Leu	Trp	Asn	Gly	Asp	Ala	Gly	Thr
226	ACG	GCC	AAG	ATT	TTA	TTA	AAT	GGT	AAA	GAG	GCG	TGG	AGT	GGT	CCT
76	Thr	Ala	Lys	Ile	Leu	Leu	Asn	Gly	Lys	Glu	Ala	Trp	Ser	Gly	Pro
271	TCA	ACC	GGA	TCT	TCC	GGT	ACG	GCG	AAT	TTT	AAA	GTG	AAT	AAA	GGC
91	Ser	Thr	Gly	Ser	Ser	Gly	Thr	Ala	Asn	Phe	Lys	Val	Asn	Lys	Gly
21.0	000	CCT	m 7 m	C N N	лпс	C1 C	CIIIC	001	mmc	maa	חת ג	000	C1 C	000	mcc
316	GGC	CGT	TAT	CAA	ATG Mot	CAG	GTG	GCA	TTG	TGC	AAT	GCC Nlo	GAC	GGC	TGC
100	GIY	ALQ	туг	GIN	Met	GIN	Val	Ald	Leu	cys	ASII	Ald	Asp	GIY	Cys
361	ACC	GCC	AGT	GAC	GCC	ACC	GAA	ΔͲͲ	GTG	GTG	GCC	GAC	ACC	GAC	GGC
121	Thr	Ala	Ser	Asp	Ala	Thr	Glu	Tle	Val	Val	Ala	Asp	Thr	Asp	Glv
101		1110	001	11010	1110		014	110	Var	, ar	1110	1101		11010	011
406	AGC	CAT	TTG	CCG	CCG	TTG	AAA	GAG	CCG	CTG	CTG	GAA	AAG	AAT	AAA
136	Ser	His	Leu	Pro	Pro	Leu	Lys	Glu	Pro	Leu	Leu	Glu	Lys	Asn	Lys
							_						_		_
451	CCG	TAT	AAA	CAG	AAC	TCC	GGC	AAA	GTG	GTC	GGT	TCT	TAT	TTC	GTC
151	Pro	Tyr	Lys	Gln	Asn	Ser	Gly	Lys	Val	Val	Gly	Ser	Tyr	Phe	Val
496	GAG	TGG	GGC	GTT	TAC	GGG	CGC	AAT	TTC	ACC	GTC	GAC	AAG	ATC	CCG
166	Glu	Trp	Gly	Val	Tyr	Gly	Arg	Asn	Phe	Thr	Val	Asp	Lys	Ile	Pro
E 4 1	000	~ ~ ~	770	CILC	100	010	CILC	CILC		000	mmm	лщо	000		ПСС
241 101	GCG Nla	Cln	AAC	LOU	ACC	Uic	LON	LON	TAC	Clu	Dho	ATC	Dro	ATC	TGC
101	ліа	GTH	ASII	цец	TIIT	111.5	цец	цец	тут	GTÀ	rne	TTC	FIO	TTC	Суз
586	GGC	GGC	ΔΔΤ	GGC	ATC	AAC	GAC	AGC	CTG	ΔΔΔ	GAG	ΔͲͲ	GAA	GGC	AGC
196	Glv	Glv	Asn	Glv	Tle	Asn	Asp	Ser	Leu	Lvs	Glu	Tle	Glu	Glv	Ser
	- 1	- 1	-	- 1		-	-1			1 -				- 1	
631	TTC	CAG	GCG	TTG	CAG	CGC	TCC	TGC	CAA	GGC	CGC	GAG	GAC	TTC	AAA
211	Phe	Gln	Ala	Leu	Gln	Arg	Ser	Cys	Gln	Gly	Arg	Glu	Asp	Phe	Lys
676	ATC	TCG	ATC	CAC	GAT	CCG	TTC	GCC	GCG	CTG	CAA	AAG	GCG	CAG	AAG
226	Ile	Ser	Ile	His	Asp	Pro	Phe	Ala	Ala	Leu	Gln	Lys	Ala	Gln	Lys
721	GGC	GTG	ACC	GCC	TGG	GAT	GAC	CCC	TAC	AAG	GGC	AAC	TTC	GGC	CAG
241	G⊥y	Val	Thr	Ala	Trp	Asp	Asp	Pro	Tyr	Lys	Gly	Asn	Phe	Gly	Gln
766	CTTC	አመድ	CCC	CTTC	770	CAC	CCC	CNT	CCT	CNC	CTC	7 7 7	አመሮ	CTTC	ccc
100	CTG Torr	ATG Mo+	ссс 71~	UTG Low	AAG	CAG C1~	505 71~	UH CAT	UUT Dro	GAC	UTG Low	AAA	ATC T1~	UTG Lovy	UUG Dro
200	цеu	riet	ALd	ьец	пЛг	GTH	Ald	птг	FTO	нэр	цеu	пЛг	тте	ьец	LTO
811	TCG	ATC	GGC	GGC	TGG	ACG	СТС	TCC	GAC	CCG	ምምር	TTC	ፐፐር	ATG	GGC
271	Ser	Ile	Glv	Glv	Trp	Thr	Leu	Ser	Asp	Pro	Phe	Phe	Phe	Met	Glv
856	GAC	AAG	GTG	AAG	CGC	GAT	CGC	TTC	GTC	GGT	TCG	GTG	AAA	GAG	TTC
286	Asp	Lys	Val	Lys	Arg	Asp	Arg	Phe	Val	Gly	Ser	Val	Lys	Glu	Phe

901	CTG	CAG	ACC	TGG	AAG	TTC	TTC	GAC	GGC	GTG	GAT	ATC	GAC	TGG	GAG
<i>301</i>	Leu	Gln	Thr	Trp	Lys	Phe	Phe	Asp	Gly	Val	Asp	Ile	Asp	Trp	Glu
946	TTC	CCG	GGC	GGC	AAA	GGC	GCC	AAC	CCT	AAC	CTG	GGC	AGC	CCG	CAA
<i>316</i>	Phe	Pro	Gly	Gly	Lys	Gly	Ala	Asn	Pro	Asn	Leu	Gly	Ser	Pro	Gln
991	GAC	GGG	GAA	ACC	TAT	GTG	CTG	CTG	ATG	AAG	GAG	CTG	CGG	GCG	ATG
<i>331</i>	Asp	Gly	Glu	Thr	Tyr	Val	Leu	Leu	Met	Lys	Glu	Leu	Arg	Ala	Met
1036	CTG	GAT	CAG	CTG	TCG	GCG	GAA	ACC	GGC	CGC	AAG	TAT	GAG	CTG	ACC
<i>346</i>	Leu	Asp	Gln	Leu	Ser	Ala	Glu	Thr	Gly	Arg	Lys	Tyr	Glu	Leu	Thr
1081	TCC	GCC	ATC	AGC	GCC	GGT	AAG	GAC	AAG	ATC	GAC	AAG	GTG	GCT	TAC
<i>361</i>	Ser	Ala	Ile	Ser	Ala	Gly	Lys	Asp	Lys	Ile	Asp	Lys	Val	Ala	Tyr
1126	AAC	GTT	GCG	CAG	AAC	TCG	ATG	GAT	CAC	ATC	TTC	CTG	ATG	AGC	TAC
<i>376</i>	Asn	Val	Ala	Gln	Asn	Ser	Met	Asp	His	Ile	Phe	Leu	Met	Ser	Tyr
1171	GAC	TTC	TAT	GGC	GCC	TTC	GAT	CTG	AAG	AAC	CTG	GGG	CAT	CAG	ACC
<i>391</i>	Asp	Phe	Tyr	Gly	Ala	Phe	Asp	Leu	Lys	Asn	Leu	Gly	His	Gln	Thr
1216	GCG	CTG	AAT	GCG	CCG	GCC	TGG	AAG	CCG	GAC	ACC	GCT	TAC	ACC	ACG
<i>406</i>	la	Leu	Asn	Ala	Pro	Ala	Trp	Lys	Pro	Asp	Thr	Ala	Tyr	Thr	Thr
1261	GTG	AAC	GGC	GTG	AAT	GCG	CTG	CTG	GCG	CAG	GGC	GTC	AAG	CCG	GGC
<i>421</i>	Val	Asn	Gly	Val	Asn	Ala	Leu	Leu	Ala	Gln	Gly	Val	Lys	Pro	Gly
1306	AAA	ATC	GTC	GTC	GGC	ACC	GCC	ATG	TAT	GGC	CGC	GGC	TGG	ACC	GGG
<i>436</i>	Lys	Ile	Val	Val	Gly	Thr	Ala	Met	Tyr	Gly	Arg	Gly	Trp	Thr	Gly
1351	GTG	AAC	GGC	TAC	CAG	AAC	AAC	ATT	CCG	TTC	ACC	GGC	ACC	GCC	ACC
<i>451</i>	Val	Asn	Gly	Tyr	Gln	Asn	Asn	Ile	Pro	Phe	Thr	Gly	Thr	Ala	Thr
1396	GGG	CCG	GTT	AAA	GGC	ACC	TGG	GAG	AAC	GGC	ATC	GTG	GAC	TAC	CGC
<i>466</i>	Gly	Pro	Val	Lys	Gly	Thr	Trp	Glu	Asn	Gly	Ile	Val	Asp	Tyr	Arg
1441	CAA	ATC	GCC	AGC	CAG	TTC	ATG	AGC	GGC	GAG	TGG	CAG	TAT	ACC	TAC
<i>481</i>	Gln	Ile	Ala	Ser	Gln	Phe	Met	Ser	Gly	Glu	Trp	Gln	Tyr	Thr	Tyr
1486	GAC	GCC	ACG	GCG	GAG	GCG	CCT	TAC	GTG	TTC	AAA	CCT	TCC	ACC	GGC
<i>496</i>	Asp	Ala	Thr	Ala	Glu	Ala	Pro	Tyr	Val	Phe	Lys	Pro	Ser	Thr	Gly
1531	GAT	CTG	ATC	ACC	TTC	GAC	GAT	GCC	CGC	TCG	GTG	CAG	GCT	AAA	GGC
<i>511</i>	Asp	Leu	Ile	Thr	Phe	Asp	Asp	Ala	Arg	Ser	Val	Gln	Ala	Lys	Gly
1577	AAG	TAC	GTG	CTG	GAT	AAA	CAG	CTG	GGC	GGC	CTG	TTC	TCC	TGG	GAG
<i>526</i>	Lys	Tyr	Val	Leu	Asp	Lys	Gln	Leu	Gly	Gly	Leu	Phe	Ser	Trp	Glu
1621	ATC	GAC	GCG	GAC	AAC	GGC	GAT	ATT	CTC	AAC	AGC	ATG	AAC	GCC	AGC
<i>541</i>	Ile	Asp	Ala	Asp	Asn	Gly	Asp	Ile	Leu	Asn	Ser	Met	Asn	Ala	Ser
1666 <i>556</i>	CTG Leu	GGC Gly	AAC Asn	AGC Ser	GCC Ala	GGC Gly	GTT Val	CAA Gln	TAA ***						

Fig. 1. DNA and amino-acid sequence of chitinase A cloned from *Serratia marcescens*. The first 23 residues are a signal peptide (underlined).

phate buffer (pH 6-8), Tris buffer (pH 7.5-9) or NaHCO₃ (pH 9.0). However, *N*,*N*-diacetyl chitobiose is the predominant product for a NaOAc buffer with pH in a range 4-6. The product specificity is unlikely controlled by acidity as both *N*-acetyl glucosamine and disaccharide were produced when NH₄OAc (pH 5-6) was used as buffer. Al-

Fig. 2. Purification of ChiA by hydrophobic interaction chromatography. The column was preequilibrated with ammonium sulfate buffer (1 M, pH 7.0). Elution with linear gradient of ammonium sulfate (heavy line) was monitored at 280 nm (light line) and the enzyme activity (-o-) was measured.

Fig. 3. SDS-PAGE and ESI-MS analyses of purified chitinase. (a) Molecular mass estimated from SDS-PAGE analysis is ~60 kDa. M: protein marker; L1: crude enzyme from intracellular; L2: ChiA purified by a series of ion-exchange column. (b) ESI-MS analysis showed that the molecular mass of purified ChiA is 58608 Da.

though the catalytic detail for product specificity of *S. marcescens* ChiA is unclear, our finding might yield an improved clue for the inconsistency of product specificity reported in the literature.¹⁵⁻¹⁹ Taking into account the buffer effect on product specificity and enzyme activity, we chose NaOAc (20 mM, pH 5.5) as the buffer system for the large-scale production of *N*,*N*-diacetyl chitobiose.

Large-scale preparation of N,N-diacetyl chitobiose

A batch reaction (scale 100 g) was performed on adding enzyme (75 mg) to a colloidal chitin solution (4 L, 2.5%) with NaOAc (pH 5.5, 20 mM). The reaction was periodically monitored with DNS assay and ESI-MS analysis for 10 d at 37 °C. At the end of the reaction, a light yellowish solution was obtained. After concentration, the viscous solution was re-suspended in ethanol. The insoluble salt and protein were largely removed and the N,N-diacetyl chitobiose was satisfactorily soluble in ethanol (95%). N,N-diacetyl chitobiose (80 g, corresponding to 80% yield mass/mass) was obtained. The final product was analyzed with TLC and ESI-MS. Only a clear spot, corresponding to N,N-diacetyl chitobiose, was observed with TLC analysis (Fig. 5a, lane 2). ESI-MS analysis showed a similar result. As shown in Fig. 5b, with little contamination by GlcNAc $(m/z = 244, \text{GlcNAc} + \text{Na}^+)$, the predominant product is *N*,*N*-diacetyl chitobiose. The signals at m/z = 447 and 871 were identified as N,N-diacetyl chitobiose + Na⁺ and 2(N,Ndiacetyl chitobiose) + Na^+ , respectively.

Fig. 4. Thermal stability of ChiA. The residual activity monitored at 37 °C (□), 45 °C (•), 50 °C (o), 55 °C (▼), 60 °C (■).

Fig. 5. Product analysis with (a) TLC and (b) ESI/MS. (a) Enzymatic product analysis by TLC. GlcNAc and (GlcNAc)₂ standard (Lane 1); products from enzymatic reaction with varied buffers: NaOAc, pH 5.5 (Lane 2); phosphate, pH 6.0 (Lane 3); phosphate, pH 7.0 (Lane 4); Tris, pH 8.0 (Lane 5); NaHCO₃, pH 9.0 (Lane 6), (b) ESI/MS analysis of the enzymatic product obtained from large-scale reaction with NaOAc (20 mM, pH 5.0).

CONCLUSION

N,N-diacetyl chitobiose is potentially useful for biological applications, but its availability and cost limit its further extensive research and applications. In this work, we established a feasible method for the preparation of N,N-diacetyl chitobiose as predominant product by using recombinant chitinase A of *S. marcescens*. The high-quality disaccharide produced in large-scale without column chromatographic separation is now possible.

ACKNOWLEDGMENT

The authors are grateful to the National Science Council of Taiwan and the MOE program of Ministry Education for financial support.

Received April 17, 2009.

REFERENCES

1. Brameld, K.-A.; Goddard, W.-A. J. Am. Chem. Soc. 1998,

120, 3571.

- Papanikolau, Y.; Prag, G.; Tavlas, G.; Vorgias, C.-E.; Oppenheim, A.-B.; Petratos, K. *Biochemistry* 2001, 40, 11338.
- 3. Papanikolau, Y.; Prag, G.; Tavlas, G.; Vorgias, C.-E. *Acta Cryst.* **2003**, *D59*, 400.
- 4. Matsuoka, K.; Matsuzawa, Y.; Kusano, K.; Kuzuhara, H. *Biomacromolecules* **2000**, *1*, 798.
- 5. Ceriotti, A.; Duranti, M.; Bollini, R. J. Exp. Bot. 1998, 49, 1091.
- Bertozzi, C.-R.; Kiessling, L.-L. Chem. Glycobiology Sci. 2001, 291, 2357.
- Prasadarao, N.-V.; Wass, C.-A.; Kim, K.-S. Infect. Immun. 1996, 64, 154.
- Datta, D.; Vaidehi, N.; Floriano, W.-B.; Kim, K.-S.; Prasadarao, N.-V.; Goddard, III, W.-A. *Proteins: Struct., Funct., Genet.* 2003, 50, 213.
- Saito, A.; Ishizaka, M.; Perigio, B.; Miyashita, K. Microbiology 2000, 146, 2937.
- Marchant, R.; Davey, M.-R.; Lucas, J.-A.; Lamb, C.-J.; Dixon, R.-A.; Power, J.-B. *Mol. Breed.* **1998**, *4*, 187.

Large-scale Preparation of *N*,*N*-Diacetyl Chitobiose

- Kobayashi, S.; Kiyosada, T.; Shoda, S. *Tetrahedron Lett.* 1997, 38, 2111.
- 12. Miller, G.-L. Anal. Chem. 1959, 3, 426.
- 13. Brurberg, M. B.; Nes, I.-F.; Eijsink, V.-G. *Microbiology* **1996**, *142*, 1581.
- Suzuki, K.; Sugawara, N.; Suzuki, M.; Uchiyama, T.; Katouno, F.; Nikaidou, N.; Watanabe, T. *Biosci. Biotechnol. Biochem.* 2002, 66, 1075.
- 15. Monreal, J.; Reese, E. Can. J. Microbiol. 1969, 15, 689.
- 16. Roberts, R. L.; Cabib, E. Anal Biochem. 1982, 127, 402.
- Aronson, N.-N.; Halloran, B. A.; Worth, C. *Biochem J.* 2003, 376, 87.
- Sikorski, P.; Sørbotten, A.; Horn, S. J.; Eijsink, V. G.; Vårum, K. M. *Biochemistry* 2006, *45*, 9566.
- Horn, S.-J.; Synstad, B.; Eijsink, V.-G. FEBS J. 2006, 273, 491.