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ABSTRACT: Direct conversion of dinitrogen (N2) into
organic compounds, not through ammonia (NH3), is of
great significance both fundamentally and practically.
Here we report a highly efficient scandium-mediated
synthetic cycle affording hydrazine derivatives (RMeN−
NMeR′) directly from N2 and carbon-based electrophiles.
The cycle includes three main steps: (i) reduction of a
halogen-bridged discandium complex under N2 leading to
a (N2)

3−-bridged discandium complex via a (N2)
2−

intermediate; (ii) treatment of the (N2)
3− complex with

methyl triflate (MeOTf), affording a (N2Me2)
2−-bridged

discandium complex; and (iii) further reaction of the
(N2Me2)

2− complex with the carbon-based electrophile,
producing the hydrazine derivative and regenerating the
halide precursor. Furthermore, insertion of a CO molecule
into one Sc−N bond in the (N2Me2)

2−−scandium
complex was observed. Most notably, this is the first
example of rare-earth metal-promoted direct conversion of
N2 to organic compounds; the formation of C−N bonds
by the reaction of these (N2)

3− and (N2Me2)
2− complexes

with electrophiles represents the first case among all N2−
metal complexes reported.

Most N-containing organic compounds are currently
synthesized through ammonia (NH3), the product of

the Haber−Bosch process that converts N2 and H2 to NH3
using metal catalysts under high temperature and pressure.
Direct conversion of N2 into high-value N-containing organic
compounds, not through NH3, is of great significance and
challenging both fundamentally and practically.1 Although
some progress in making C−N bonds through N2−transition
metal2−4 or N2−actinide5 complexes and carbon-based
reagents have been reported in the literature, such an approach
is still in its infancy. As a class of important synthetic
intermediates, hydrazine derivatives,6 which may contain up to
four C−N bonds on the N−N single-bond skeleton, are
primary targets for direct conversion of N2 (Scheme 1).7

However, as far as we are aware, there are only a few of
examples of the direct use of N2 as the nitrogen source for the
construction of C−N bonds of hydrazine derivatives, affording
either pure organic compounds (I)7 or hydrazido−metal
complexes (II)8 as the final products (Scheme 1). Type I
compounds have been realized via N2−metal complexes of
Ti,7g Zr,7e Hf,7d,f Mo,7a and W,7b,c while type II compounds
have been made and structurally characterized via N2−metal

complexes of Ti,7g Zr,8b Hf,8c,d Ta,8a,e Mo,7a,b and W.7b,c

Despite these advances, the efficiency of the transformation
from N2 to I or II and the diversity of transformation strategies
in terms of metals used are still very limited.
In contrast to transition metals mentioned above, rare-earth

metal-mediated conversion of N2 to N-containing organic
compounds has not yet been reported, even though more than
40 N2−rare-earth metal complexes have been documented by
Evans and others.9,10 The absence of this chemistry is mainly
due to the weakly activated N2 ligand.

11,12 Herein we report a
highly efficient scandium-mediated route that affords hydrazine
derivatives (RMeN−NMeR′) directly from N2 and carbon-
based electrophiles (Scheme 1). In this process, the (N2)

2−-,
(N2)

3−-, and (N2Me2)
2−-bridged discandium intermediates

were isolated and structurally characterized. Furthermore,
insertion of one CO molecule into a Sc−N bond of the
(N2Me2)

2−−scandium complex was achieved. To our knowl-
edge, this is the first conversion of a (N2)

3−−metal complex to
N-containing organic compounds among all metals over the
periodic table. In addition, the formation of four C−N bonds
on the N−N single-bond skeleton and 15N-labeled hydrazine
derivatives directly using N2 or

15N2 as the nitrogen source is
also unprecedented.
The chloride-bridged discandium complex 1 could be easily

prepared in a one-pot reaction from ScCl3, Cp*Li (Cp* =
C5Me5), and Li[nBuC(NiPr)2] in 87% yield (Scheme 2a).
When 1 was treated with 2.2 equiv of potassium under N2 in
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Scheme 1. Metal-Promoted Synthesis of Hydrazine
Derivatives Directly from N2 via C−N Bond Formation
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THF, the (N2)
2−-bridged discandium complex 2 was obtained

in 73% yield (Scheme 2b). The 15N analogue 15N-2 was
prepared from 15N2 by a similar procedure. X-ray analysis of 2
revealed a dinuclear structure with a side-on bridging (N2)

2−

ligand (Figure S27). The Sc2N2 skeleton of 2 is similar to the
(N2)

2−−Sc complex [(C5Me4H)2Sc]2(μ-η
2:η2-N2)

9f with a
comparable N−N bond length. The Raman spectrum of 2
exhibits a strong absorption at 1420 cm−1 assignable to the N−
N stretch.13 On the basis of the 15N/14N mass ratio, the
absorption in the 15N-2 Raman spectrum shifts to 1371 cm−1.
In the 15N NMR spectrum of 15N-2, the (15N2)

2− ligand
displays a chemical shift at 455.90 ppm, higher than that
observed for [(C5Me4H)2Sc]2(μ-η

2:η2-N2) (385 ppm).9f

Sc-mediated N2 activation is experimentally more challeng-
ing than with other rare-earth metals because of the small size
and electropositive nature of scandium.9 The first side-on-
bridged (N2)

2−−Sc complex was prepared by reduction of the
cationic precursor [(C5Me4H)2Sc][(μ-Ph)BPh3] with KC8
under N2

9f or by the direct reaction of [(C5Me4H)3Sc] with
N2.

9g Recently, an end-on-bridged (N2)
2−−Sc complex was

prepared via the reduction of Sc[N(SiMe3)2]3 under N2.
14 The

transformation from 1 to 2 provides for the first time a
convenient route to obtain rare-earth metal−N2 complexes
directly from the chloride precursors.
When 2 was treated with potassium in the presence of

[2.2.2]cryptand (crypt) at room temperature, the paramagnetic
(N2)

3−-bridged discandium complex 3 was isolated in 90%
yield (Scheme 2c). 3 could also be prepared directly in 68%
yield via in situ generation of 2 from 1 (Scheme 2d). X-ray
analysis revealed that 3 is a separated ion pair in which the
whole (Sc2N2)

− anion is balanced by a potassium crypt ion
(Figure 1). The Sc2N2 unit in 3 is planar, and the dinitrogen
ligand adopts a side-on μ-η2:η2-N2 mode. The N−N bond
length is 1.3963(16) Å, which is between the lengths of a N
N double bond (1.25 Å for PhNNPh) and a N−N single bond
(1.46 Å for H2NNH2) and consistent with the reported N−N
bond lengths in (N2)

3−−rare-earth metal complexes (1.36−
1.41 Å).10b,d Because of the more negative charge on the

dinitrogen ligand, the average Sc−N(N2) distance (2.056 Å) in
3 is significantly shorter than that in 2 (2.134 Å). In the Raman
spectrum of 3, an absorption at 975 cm−1 indicative of a
(N2)

3− radical was found.12 Furthermore, 3 has an EPR signal
with a g value of 2.0051 (Figure S6), which is in line with the
reported values (2.0038 for Y10b and 2.0025 for La10d). The
multiline pattern of this spectrum is consistent with the
simulated spectrum, which is split by two 45Sc (I = 7/2) atoms
and two 14N (I = 1) atoms. To the best of our knowledge, 3
represents the first scandium complex with a (N2)

3− ligand.
Density functional theory (DFT) studies further confirmed the
structure of 3. The singly occupied molecular orbital (SOMO)
of 3 (Figure S35) is the essentially unperturbed π* orbital of
N2 perpendicular to the Sc2N2 plane (see the Supporting
Information (SI) for details).
The reaction of 3 with carbon-based electrophiles was

explored. When MeOTf was added, functionalization of the
(N2)

3− unit occurred smoothly to give complex 4 in 43%
isolated yield along with the regeneration of 2 in 55% yield
(Scheme 2e). The yield of 4 could be improved by adding
potassium and MeOTf several times to the reaction mixture
(Scheme 2f; see the SI for details). The molecular structure of
4 reveals a (N2Me2)

2−-bridged discandium complex (Figure
2). The dihedral angle between the Sc1−N1−N2 and Sc2−
N1−N2 planes is 41.09(4)°, which indicates that the Sc2N2
unit is not coplanar. The length of the N1−N2 bond in 4

Scheme 2. Synthesis of Complexes 1−4

Figure 1. Molecular structure of 3 (ball-and-stick representation).
Hydrogen atoms have been omitted for clarity. Selected bond lengths
[Å] and angles [deg]: N1−N2 1.3963(16), Sc1−N1 2.0680(12),
Sc1−N2 2.0415(12), Sc2−N1 2.0673(12), Sc2−N2 2.0475(12);
N1−Sc1−N2 39.72(4), N1−Sc2−N2 39.67(4).

Figure 2. Molecular structure of 4 (ball-and-stick representation).
Hydrogen atoms have been omitted for clarity. Selected bond lengths
[Å] and angles [deg]: N1−N2 1.5044(16), C1−N1 1.4718(18), C2−
N2 1.4744(18), Sc1−N1 2.2131(11), Sc1−N2 2.1292(11); N1−
Sc1−N2 40.48(4), N1−Sc2−N2 40.38(4).

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b04293
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b04293/suppl_file/ja9b04293_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b04293/suppl_file/ja9b04293_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b04293/suppl_file/ja9b04293_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b04293/suppl_file/ja9b04293_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b04293/suppl_file/ja9b04293_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b04293/suppl_file/ja9b04293_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b04293


(1.5044(16) Å) is obviously longer than the corresponding
N1−N2 bond in 3 (1.3963(16) Å) and is similar to the N−N
distances observed in (N2H2)

2− complexes derived from
N2.

10e,15 In the 15N NMR spectrum of 15N-4, a δ value of
−231.04 ppm is observed for the (15N2Me2)

2− group, which is
shifted significantly upfield in comparison with that of 2. As far
as we are aware, this methylation represents the first example
of the use of a (N2)

3−−metal complex to construct C−N
bonds using N2 as the nitrogen source, and 4 is also the first
(N2Me2)

2− complex derived from the N2 molecule. In contrast
to 3, complex 2 was stable toward MeOTf.
Further transformation of the (N2Me2)

2−-bridged discan-
dium complex 4, whose (N2Me2)

2− unit was directly derived
from N2, was investigated (Scheme 3). Protonolysis of 4 with

an Et2O solution of anhydrous HCl was carried out, affording
1,2-dimethylhydrazine (5) in 89% yield (Scheme 3a). When 4
was treated with iodine, the (N2Me2)

2− unit was oxidized to
generate azomethane 6 accompanied by the formation of 7
(Scheme 3b). More remarkably, the (N2Me2)

2− unit could be
functionalized by reaction with electrophiles via further
formation of C−N bonds. Thus, treatment of 4 with acyl
chlorides and benzyl bromide led to the formation of the
corresponding tetrasubstituted hydrazine derivatives 8−10
(Scheme 3c−e) with the regeneration of 1 or 11. Besides,
15N-labeled 15N-9 (15N NMR: δ = −240.63 ppm) was
obtained in 70% isolated yield from 15N-4 (Scheme 3d),
providing an efficient route to access 15N-labeled hydrazine
derivatives. The generation of four C−N bonds on the N−N
skeleton and 15N-labeled hydrazine derivatives directly from
N2 or

15N2 is unprecedented (Scheme 3c−e).
As analogues of 1, complexes 7 and 11 (Scheme 3) could

react with potassium under N2 to provide 3. Thus, as shown in
Scheme 4, a synthetic cycle could be realized for scandium-
mediated conversion of N2, MeOTf, and electrophiles to
hydrazine derivatives. The cycle includes three main steps: (i)
reduction of the halogen-bridged discandium complex under
N2, leading to the formation of the (N2)

3−-bridged discandium
complex; (ii) treatment of the (N2)

3− complex with MeOTf,
affording the (N2Me2)

2−-bridged discandium complex; and
(iii) further reaction of the (N2Me2)

2− complex with a carbon-
based electrophile (EX) to produce a hydrazine derivative and
regenerate the halogen-bridged discandium complex. To test
the efficiency of this cycle, a one-pot reaction via sequential
addition of potassium, MeOTf, and PhCOCl to a THF

solution of 1 was carried out, providing the N-containing
compound 9 in 47% isolated yield along with regeneration of 1
in 57% yield (see the SI for details).
Because of the abundance of carbon monoxide (CO), the

direct combination of N2 and CO should be an attractive way
to construct C−N bonds.2c,5 When CO was bubbled into a
THF solution of 4 (Scheme 5), the new dinuclear scandium

complex 12, formed via 1,1-insertion of one CO molecule into
a Sc−N bond in 4, was obtained in 93% isolated yield. The
structure of 12 was confirmed by X-ray diffraction analysis
(Figure 3). The CO unit is bonded with a scandium atom in an

Scheme 3. Representative Reactions of 4 with HCl, I2,
(CH2COCl)2, PhCOCl, and BnBr

Scheme 4. Synthetic Cycle Affording Hydrazine Derivatives
Using N2 as the Nitrogen Source

Scheme 5. Reaction of 4 with CO

Figure 3. Molecular structure of 12 (ball-and-stick representation).
Hydrogen atoms have been omitted for clarity. Selected bond lengths
[Å] and angles [deg]: N1−N2 1.399(3), C3−N2 1.303(3), C3−O1
1.367(3), Sc1−O1 2.1633(17), Sc2−O1 2.1998(17), Sc2−C3
2.166(3); N2−C3−O1 114.3(2), O1−Sc1−N1 72.65(7).
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η2 fashion, which is analogous to the previous reports of CO
insertion into An−N (An = Th, U)16 and Sc−B17 bonds. In
12, the C3−N2 and C3−O1 distances are 1.303(3) and
1.367(3) Å, which are outside the ranges of standard lengths of
C−N single bonds (1.366−1.380 Å) and CO double bonds
(1.212−1.225 Å) in organic amides, respectively.16 In order to
understand the bonding mode in 12, DFT calculations were
carried out, and the optimized structural parameters agree well
with the solid-state structure (see the SI for details). The
HOMO (Scheme 5C) is mainly composed of p orbitals of the
N1, N2, and C3 atoms. The Wiberg bond indexes of the C3−
N2 and C3−O1 bonds are 1.41 and 1.11, in line with double-
bond character of the C3−N2 bond and single-bond character
of the C3−O1 bond, respectively. Hence, 12 is best described
as two resonance forms (A and B in Scheme 5) with a greater
contribution from B.
In summary, we have demonstrated a synthetic cycle of

scandium-mediated conversion of N2 and 15N2 to hydrazine
derivatives via the formation of C−N bonds in (N2)

3−− and
(N2Me2)

2−−scandium intermediates. This process represents
the first rare-earth metal-promoted incorporation of N2 into
organic compounds and provides a useful method for the
preparation of 15N-labeled hydrazine derivatives. Moreover,
upon addition of CO to this (N2Me2)

2−−scandium complex,
the assembly of a C−N bond from CO and N2 was observed.
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