

Communication pubs.acs.org/JACS

Scandium-Promoted Direct Conversion of Dinitrogen into Hydrazine Derivatives via N-C Bond Formation

Ze-Jie Lv,[®] Zhe Huang,[®] Wen-Xiong Zhang,^{*®} and Zhenfeng Xi^{*®}

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

Supporting Information

ABSTRACT: Direct conversion of dinitrogen (N_2) into organic compounds, not through ammonia (NH_3) , is of great significance both fundamentally and practically. Here we report a highly efficient scandium-mediated synthetic cycle affording hydrazine derivatives (RMeN-NMeR') directly from N₂ and carbon-based electrophiles. The cycle includes three main steps: (i) reduction of a halogen-bridged discandium complex under N2 leading to a $(N_2)^{3-}$ -bridged discandium complex via a $(N_2)^{2-}$ intermediate; (ii) treatment of the $(N_2)^{3-}$ complex with methyl triflate (MeOTf), affording a $(N_2Me_2)^{2-}$ -bridged discandium complex; and (iii) further reaction of the $(N_2Me_2)^{2-}$ complex with the carbon-based electrophile, producing the hydrazine derivative and regenerating the halide precursor. Furthermore, insertion of a CO molecule into one Sc-N bond in the (N2Me2)2--scandium complex was observed. Most notably, this is the first example of rare-earth metal-promoted direct conversion of N₂ to organic compounds; the formation of C-N bonds by the reaction of these $(N_2)^{3-}$ and $(N_2Me_2)^{2-}$ complexes with electrophiles represents the first case among all N2metal complexes reported.

M ost N-containing organic compounds are currently synthesized through ammonia (NH₃), the product of the Haber-Bosch process that converts N2 and H2 to NH3 using metal catalysts under high temperature and pressure. Direct conversion of N₂ into high-value N-containing organic compounds, not through NH₃, is of great significance and challenging both fundamentally and practically.¹ Although some progress in making C-N bonds through N2-transition metal²⁻⁴ or N_2 -actinide⁵ complexes and carbon-based reagents have been reported in the literature, such an approach is still in its infancy. As a class of important synthetic intermediates, hydrazine derivatives,⁶ which may contain up to four C-N bonds on the N-N single-bond skeleton, are primary targets for direct conversion of N₂ (Scheme 1). However, as far as we are aware, there are only a few of examples of the direct use of N₂ as the nitrogen source for the construction of C-N bonds of hydrazine derivatives, affording either pure organic compounds $(I)^7$ or hydrazido-metal complexes $(II)^8$ as the final products (Scheme 1). Type I compounds have been realized via N2-metal complexes of Ti,^{7g} Zr,^{7e} Hf,^{7d,f} Mo,^{7a} and W,^{7b,c} while type II compounds have been made and structurally characterized via N2-metal

complexes of Ti,^{7g} Zr,^{8b} Hf,^{8c,d} Ta,^{8a,e} Mo,^{7a,b} and W.^{7b,c} Despite these advances, the efficiency of the transformation from N₂ to I or II and the diversity of transformation strategies in terms of metals used are still very limited.

In contrast to transition metals mentioned above, rare-earth metal-mediated conversion of N2 to N-containing organic compounds has not yet been reported, even though more than 40 N₂-rare-earth metal complexes have been documented by Evans and others.^{9,10} The absence of this chemistry is mainly due to the weakly activated N₂ ligand.^{11,12} Herein we report a highly efficient scandium-mediated route that affords hydrazine derivatives (RMeN-NMeR') directly from N2 and carbonbased electrophiles (Scheme 1). In this process, the $(N_2)^{2-}$, $(N_2)^{3-}$, and $(N_2Me_2)^{2-}$ -bridged discandium intermediates were isolated and structurally characterized. Furthermore, insertion of one CO molecule into a Sc-N bond of the $(N_2Me_2)^{2-}$ -scandium complex was achieved. To our knowledge, this is the first conversion of a $(N_2)^{3-}$ -metal complex to N-containing organic compounds among all metals over the periodic table. In addition, the formation of four C-N bonds on the N–N single-bond skeleton and $^{15}\rm N$ -labeled hydrazine derivatives directly using N_2 or $^{15}N_2$ as the nitrogen source is also unprecedented.

The chloride-bridged discandium complex 1 could be easily prepared in a one-pot reaction from ScCl₃, Cp*Li (Cp* = C_5Me_5 , and $Li[^nBuC(N^iPr)_2]$ in 87% yield (Scheme 2a). When 1 was treated with 2.2 equiv of potassium under N_2 in

Received: April 21, 2019

Scheme 2. Synthesis of Complexes 1-4

THF, the $(N_2)^{2^-}$ -bridged discandium complex 2 was obtained in 73% yield (Scheme 2b). The ¹⁵N analogue ¹⁵N-2 was prepared from ¹⁵N₂ by a similar procedure. X-ray analysis of 2 revealed a dinuclear structure with a side-on bridging $(N_2)^{2^-}$ ligand (Figure S27). The Sc₂N₂ skeleton of 2 is similar to the $(N_2)^{2^-}$ -Sc complex $[(C_5Me_4H)_2Sc]_2(\mu-\eta^2:\eta^2-N_2)^{9^f}$ with a comparable N–N bond length. The Raman spectrum of 2 exhibits a strong absorption at 1420 cm⁻¹ assignable to the N– N stretch.¹³ On the basis of the ¹⁵N/¹⁴N mass ratio, the absorption in the ¹⁵N-2 Raman spectrum shifts to 1371 cm⁻¹. In the ¹⁵N NMR spectrum of ¹⁵N-2, the $(^{15}N_2)^{2^-}$ ligand displays a chemical shift at 455.90 ppm, higher than that observed for $[(C_5Me_4H)_2Sc]_2(\mu-\eta^2:\eta^2-N_2)$ (385 ppm).^{9f}

Sc-mediated N₂ activation is experimentally more challenging than with other rare-earth metals because of the small size and electropositive nature of scandium.⁹ The first side-on-bridged $(N_2)^{2-}$ -Sc complex was prepared by reduction of the cationic precursor $[(C_5Me_4H)_2Sc][(\mu-Ph)BPh_3]$ with KC_8 under N₂^{9f} or by the direct reaction of $[(C_5Me_4H)_3Sc]$ with N₂.^{9g} Recently, an end-on-bridged $(N_2)^{2-}$ -Sc complex was prepared via the reduction of Sc[N(SiMe_3)_2]_3 under N₂.¹⁴ The transformation from 1 to 2 provides for the first time a convenient route to obtain rare-earth metal–N₂ complexes directly from the chloride precursors.

When 2 was treated with potassium in the presence of [2.2.2] cryptand (crypt) at room temperature, the paramagnetic $(N_2)^{3^-}$ -bridged discandium complex 3 was isolated in 90% yield (Scheme 2c). 3 could also be prepared directly in 68% yield via in situ generation of 2 from 1 (Scheme 2d). X-ray analysis revealed that 3 is a separated ion pair in which the whole $(Sc_2N_2)^-$ anion is balanced by a potassium crypt ion (Figure 1). The Sc_2N_2 unit in 3 is planar, and the dinitrogen ligand adopts a side-on μ - η^2 : η^2 -N₂ mode. The N–N bond length is 1.3963(16) Å, which is between the lengths of a N= N double bond (1.25 Å for PhNNPh) and a N–N single bond (1.46 Å for H₂NNH₂) and consistent with the reported N–N bond lengths in $(N_2)^{3^-}$ -rare-earth metal complexes (1.36–1.41 Å).^{10b,d} Because of the more negative charge on the

Figure 1. Molecular structure of 3 (ball-and-stick representation). Hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and angles [deg]: N1–N2 1.3963(16), Sc1–N1 2.0680(12), Sc1–N2 2.0415(12), Sc2–N1 2.0673(12), Sc2–N2 2.0475(12); N1–Sc1–N2 39.72(4), N1–Sc2–N2 39.67(4).

dinitrogen ligand, the average Sc–N(N₂) distance (2.056 Å) in 3 is significantly shorter than that in 2 (2.134 Å). In the Raman spectrum of 3, an absorption at 975 cm⁻¹ indicative of a $(N_2)^{3-}$ radical was found.¹² Furthermore, 3 has an EPR signal with a g value of 2.0051 (Figure S6), which is in line with the reported values (2.0038 for Y^{10b} and 2.0025 for La^{10d}). The multiline pattern of this spectrum is consistent with the simulated spectrum, which is split by two ⁴⁵Sc ($I = 7/_2$) atoms and two ¹⁴N (I = 1) atoms. To the best of our knowledge, 3 represents the first scandium complex with a $(N_2)^{3-}$ ligand. Density functional theory (DFT) studies further confirmed the structure of 3. The singly occupied molecular orbital (SOMO) of 3 (Figure S35) is the essentially unperturbed π^* orbital of N₂ perpendicular to the Sc₂N₂ plane (see the Supporting Information (SI) for details).

The reaction of **3** with carbon-based electrophiles was explored. When MeOTf was added, functionalization of the $(N_2)^{3-}$ unit occurred smoothly to give complex **4** in 43% isolated yield along with the regeneration of **2** in 55% yield (Scheme 2e). The yield of **4** could be improved by adding potassium and MeOTf several times to the reaction mixture (Scheme 2f; see the SI for details). The molecular structure of **4** reveals a $(N_2Me_2)^{2-}$ -bridged discandium complex (Figure 2). The dihedral angle between the Sc1–N1–N2 and Sc2–N1–N2 planes is $41.09(4)^{\circ}$, which indicates that the Sc₂N₂ unit is not coplanar. The length of the N1–N2 bond in **4**

Figure 2. Molecular structure of 4 (ball-and-stick representation). Hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and angles [deg]: N1–N2 1.5044(16), C1–N1 1.4718(18), C2–N2 1.4744(18), Sc1–N1 2.2131(11), Sc1–N2 2.1292(11); N1–Sc1–N2 40.48(4), N1–Sc2–N2 40.38(4).

(1.5044(16) Å) is obviously longer than the corresponding N1–N2 bond in 3 (1.3963(16) Å) and is similar to the N–N distances observed in $(N_2H_2)^{2^-}$ complexes derived from N_2 .^{10e,15} In the ¹⁵N NMR spectrum of ¹⁵N-4, a δ value of –231.04 ppm is observed for the $({}^{15}N_2Me_2)^{2^-}$ group, which is shifted significantly upfield in comparison with that of 2. As far as we are aware, this methylation represents the first example of the use of a $(N_2)^{3^-}$ -metal complex to construct C–N bonds using N_2 as the nitrogen source, and 4 is also the first $(N_2Me_2)^{2^-}$ complex derived from the N_2 molecule. In contrast to 3, complex 2 was stable toward MeOTf.

Further transformation of the $(N_2Me_2)^{2-}$ -bridged discandium complex 4, whose $(N_2Me_2)^{2-}$ unit was directly derived from N_2 , was investigated (Scheme 3). Protonolysis of 4 with

Scheme 3. Representative Reactions of 4 with HCl, I₂, (CH₂COCl)₂, PhCOCl, and BnBr

an Et₂O solution of anhydrous HCl was carried out, affording 1,2-dimethylhydrazine (5) in 89% yield (Scheme 3a). When 4was treated with iodine, the $(N_2Me_2)^{2-}$ unit was oxidized to generate azomethane 6 accompanied by the formation of 7 (Scheme 3b). More remarkably, the $(N_2Me_2)^{2-}$ unit could be functionalized by reaction with electrophiles via further formation of C-N bonds. Thus, treatment of 4 with acyl chlorides and benzyl bromide led to the formation of the corresponding tetrasubstituted hydrazine derivatives 8-10 (Scheme 3c-e) with the regeneration of 1 or 11. Besides, ¹⁵N-labeled ¹⁵N-9 (¹⁵N NMR: $\delta = -240.63$ ppm) was obtained in 70% isolated yield from ¹⁵N-4 (Scheme 3d), providing an efficient route to access ¹⁵N-labeled hydrazine derivatives. The generation of four C-N bonds on the N-N skeleton and ¹⁵N-labeled hydrazine derivatives directly from N_2 or ${}^{15}N_2$ is unprecedented (Scheme 3c-e).

As analogues of 1, complexes 7 and 11 (Scheme 3) could react with potassium under N₂ to provide 3. Thus, as shown in Scheme 4, a synthetic cycle could be realized for scandiummediated conversion of N₂, MeOTf, and electrophiles to hydrazine derivatives. The cycle includes three main steps: (i) reduction of the halogen-bridged discandium complex under N₂, leading to the formation of the $(N_2)^{3-}$ -bridged discandium complex; (ii) treatment of the $(N_2)^{3-}$ complex with MeOTf, affording the $(N_2Me_2)^{2-}$ -bridged discandium complex; and (iii) further reaction of the $(N_2Me_2)^{2-}$ complex with a carbonbased electrophile (EX) to produce a hydrazine derivative and regenerate the halogen-bridged discandium complex. To test the efficiency of this cycle, a one-pot reaction via sequential addition of potassium, MeOTf, and PhCOCl to a THF Scheme 4. Synthetic Cycle Affording Hydrazine Derivatives Using N_2 as the Nitrogen Source

solution of **1** was carried out, providing the N-containing compound **9** in 47% isolated yield along with regeneration of **1** in 57% yield (see the SI for details).

Because of the abundance of carbon monoxide (CO), the direct combination of N_2 and CO should be an attractive way to construct C–N bonds.^{2c,5} When CO was bubbled into a THF solution of 4 (Scheme 5), the new dinuclear scandium

Scheme 5. Reaction of 4 with CO

complex 12, formed via 1,1-insertion of one CO molecule into a Sc-N bond in 4, was obtained in 93% isolated yield. The structure of 12 was confirmed by X-ray diffraction analysis (Figure 3). The CO unit is bonded with a scandium atom in an

Figure 3. Molecular structure of 12 (ball-and-stick representation). Hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and angles [deg]: N1–N2 1.399(3), C3–N2 1.303(3), C3–O1 1.367(3), Sc1–O1 2.1633(17), Sc2–O1 2.1998(17), Sc2–C3 2.166(3); N2–C3–O1 114.3(2), O1–Sc1–N1 72.65(7).

 η^2 fashion, which is analogous to the previous reports of CO insertion into An–N (An = Th, U)¹⁶ and Sc–B¹⁷ bonds. In 12, the C3-N2 and C3-O1 distances are 1.303(3) and 1.367(3) Å, which are outside the ranges of standard lengths of C-N single bonds (1.366-1.380 Å) and C=O double bonds (1.212–1.225 Å) in organic amides, respectively.¹⁶ In order to understand the bonding mode in 12, DFT calculations were carried out, and the optimized structural parameters agree well with the solid-state structure (see the SI for details). The HOMO (Scheme 5C) is mainly composed of p orbitals of the N1, N2, and C3 atoms. The Wiberg bond indexes of the C3-N2 and C3-O1 bonds are 1.41 and 1.11, in line with doublebond character of the C3-N2 bond and single-bond character of the C3-O1 bond, respectively. Hence, 12 is best described as two resonance forms (A and B in Scheme 5) with a greater contribution from B.

In summary, we have demonstrated a synthetic cycle of scandium-mediated conversion of N₂ and ¹⁵N₂ to hydrazine derivatives via the formation of C–N bonds in $(N_2)^{3-}$ and $(N_2Me_2)^{2-}$ -scandium intermediates. This process represents the first rare-earth metal-promoted incorporation of N₂ into organic compounds and provides a useful method for the preparation of ¹⁵N-labeled hydrazine derivatives. Moreover, upon addition of CO to this $(N_2Me_2)^{2-}$ -scandium complex, the assembly of a C–N bond from CO and N₂ was observed.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b04293.

Experimental details; X-ray data for 1-4, 7, 11, and 12; NMR spectra of new compounds; EPR spectra of 3; and Raman spectra of 2, ¹⁵N-2, 3, ¹⁵N-3, 4, and ¹⁵N-4 (PDF)

Crystallographic data for 1-4, 7, 11, and 12 (CIF)

AUTHOR INFORMATION

Corresponding Authors

*wx_zhang@pku.edu.cn

*zfxi@pku.edu.cn

ORCID 🔍

Ze-Jie Lv: 0000-0003-1994-8400 Zhe Huang: 0000-0002-9201-9491 Wen-Xiong Zhang: 0000-0003-0744-2832 Zhenfeng Xi: 0000-0003-1124-5380

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21725201, 21890721, and 21690061), Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), and the High-Performance Computing Platform of Peking University. The authors thank Prof. S.-D. Jiang and Mr. Z. Liu for carrying out the EPR measurement and data analysis.

REFERENCES

(1) For selected reviews of dinitrogen activation promoted by transition metal complexes, see: (a) Schrock, R. R. Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum

Center. Acc. Chem. Res. 2005, 38, 955–962. (b) Jia, H.-P.; Quadrelli, E. A. Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564. (c) Nishibayashi, Y. Recent Progress in Transition-Metal-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions. Inorg. Chem. 2015, 54, 9234– 9247. (d) Bezdek, M. J.; Chirik, P. J. Expanding Boundaries: N₂ Cleavage and Functionalization beyond Early Transition Metals. Angew. Chem., Int. Ed. 2016, 55, 7892–7896. (e) Burford, R. J.; Fryzuk, M. D. Examining the Relationship between Coordination Mode and Reactivity of Dinitrogen. Nat. Rev. Chem. 2017, 1, 0026. (f) Li, J.; Yin, J.; Yu, C.; Zhang, W.-X.; Xi, Z. Direct Transformation of N₂ to N-Containing Organic Compounds. Huaxue Xuebao 2017, 75, 733–743.

(2) (a) Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex. *Science* **2013**, 340, 1549–1552. (b) Guru, M. M.; Shima, T.; Hou, Z. Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. *Angew. Chem., Int. Ed.* **2016**, 55, 12316–12320. (c) Knobloch, D. J.; Lobkovsky, E.; Chirik, P. J. Dinitrogen Cleavage and Functionalization by Carbon Monoxide Promoted by a Hafnium Complex. *Nat. Chem.* **2010**, *2*, 30–35. (d) Semproni, S. P.; Chirik, P. J. Synthesis of a Base-Free Hafnium Nitride from N₂ Cleavage: A Versatile Platform for Dinitrogen Functionalization. *J. Am. Chem. Soc.* **2013**, *135*, 11373–11383. (e) Semproni, S. P.; Chirik, P. J. Activation of Dinitrogen-Derived Hafnium Nitrides for Nucleophilic N–C Bond Formation with a Terminal Isocyanate. *Angew. Chem.* **2013**, *125*, 13203–13207.

(3) (a) Ishida, Y.; Kawaguchi, H. Nitrogen Atom Transfer from a Dinitrogen-Derived Vanadium Nitride Complex to Carbon Monoxide and Isocyanide. J. Am. Chem. Soc. 2014, 136, 16990-16993.
(b) Figueroa, J. S.; Piro, N. A.; Clough, C. R.; Cummins, C. C. A Nitridoniobium(V) Reagent That Effects Acid Chloride to Organic Nitrile Conversion: Synthesis via Heterodinuclear (Nb/Mo) Dinitrogen Cleavage, Mechanistic Insights, and Recycling. J. Am. Chem. Soc. 2006, 128, 940-950. (c) Akagi, F.; Matsuo, T.; Kawaguchi, H. Dinitrogen Cleavage by a Diniobium Tetrahydride Complex: Formation of a Nitride and Its Conversion into Imide Species. Angew. Chem., Int. Ed. 2007, 46, 8778-8781.

(4) (a) Curley, J. J.; Sceats, E. L.; Cummins, C. C. A Cycle for Organic Nitrile Synthesis via Dinitrogen Cleavage. J. Am. Chem. Soc. 2006, 128, 14036-14037. (b) Keane, A. J.; Farrell, W. S.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. Metal-Mediated Production of Isocyanates, R₃EN=C=O from Dinitrogen, Carbon Dioxide, and R₃ECl. Angew. Chem., Int. Ed. 2015, 54, 10220-10224. (c) Klopsch, I.; Finger, M.; Würtele, C.; Milde, B.; Werz, D. B.; Schneider, S. Dinitrogen Splitting and Functionalization in the Coordination Sphere of Rhenium. J. Am. Chem. Soc. 2014, 136, 6881-6883. (d) Klopsch, I.; Kinauer, M.; Finger, M.; Würtele, C.; Schneider, S. Conversion of Dinitrogen into Acetonitrile under Ambient Conditions. Angew. Chem., Int. Ed. 2016, 55, 4786-4789. (e) Schendzielorz, F.; Finger, M.; Abbenseth, J.; Würtele, C.; Krewald, V.; Schneider, S. Metal-Ligand Cooperative Synthesis of Benzonitrile by Electrochemical Reduction and Photolytic Splitting of Dinitrogen. Angew. Chem., Int. Ed. 2019, 58, 830-834. (f) Betley, T. A.; Peters, J. C. Dinitrogen Chemistry from Trigonally Coordinated Iron and Cobalt Platforms. J. Am. Chem. Soc. 2003, 125, 10782-10783. (g) MacLeod, K. C.; Menges, F. S.; McWilliams, S. F.; Craig, S. M.; Mercado, B. Q.; Johnson, M. A.; Holland, P. L. Alkali-Controlled C-H Cleavage or N-C Bond Formation by N2-Derived Iron Nitrides and Imides. J. Am. Chem. Soc. 2016, 138, 11185-11191.

(5) (a) Falcone, M.; Chatelain, L.; Scopelliti, R.; Zivkovic, I.; Mazzanti, M. Nitrogen Reduction and Functionalization by a Multimetallic Uranium Nitride Complex. *Nature* **2017**, *547*, 332– 335. (b) Falcone, M.; Barluzzi, L.; Andrez, J.; Fadaei Tirani, F.; Zivkovic, I.; Fabrizio, A.; Corminboeuf, C.; Severin, K.; Mazzanti, M. The Role of Bridging Ligands in Dinitrogen Reduction and Functionalization by Uranium Multimetallic Complexes. Nat. Chem. 2019, 11, 154–160.

(6) Ragnarsson, U. Synthetic Methodology for Alkyl Substituted Hydrazines. *Chem. Soc. Rev.* 2001, 30, 205–220.

(7) (a) Pickett, C. J.; Leigh, G. J. Towards a Nitrogen-Fixing Cycle: Electrochemical Reduction of a Hydrazido-Complex of Molybdenum-(IV) under N₂ to Yield the Dialkylhydrazine and a Molybdenum(0) Dinitrogen Complex. J. Chem. Soc., Chem. Commun. 1981, 1033-1035. (b) Hidai, M.; Mizobe, Y. Recent Advances in the Chemistry of Dinitrogen Complexes. Chem. Rev. 1995, 95, 1115-1133. (c) Hidai, M. Chemical Nitrogen Fixation by Molybdenum and Tungsten Complexes. Coord. Chem. Rev. 1999, 185-186, 99-108. (d) Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Nitrogen-Carbon Bond Formation from N2 and CO2 Promoted by a Hafnocene Dinitrogen Complex Yields a Substituted Hydrazine. Angew. Chem., Int. Ed. 2007, 46, 2858-2861. (e) Knobloch, D. J.; Toomey, H. E.; Chirik, P. J. Carboxylation of an ansa-Zirconocene Dinitrogen Complex: Regiospecific Hydrazine Synthesis from N2 and CO2. J. Am. Chem. Soc. 2008, 130, 4248-4249. (f) Knobloch, D. J.; Benito-Garagorri, D.; Bernskoetter, W. H.; Keresztes, I.; Lobkovsky, E.; Toomey, H.; Chirik, P. J. Addition of Methyl Triflate to a Hafnocene Dinitrogen Complex: Stepwise N2 Methylation and Conversion to a Hafnocene Hydrazonato Compound. J. Am. Chem. Soc. 2009, 131, 14903-14912. (g) Nakanishi, Y.; Ishida, Y.; Kawaguchi, H. Nitrogen-Carbon Bond Formation by Reactions of a Titanium-Potassium Dinitrogen Complex with Carbon Dioxide, tert-Butyl Isocyanate, and Phenylallene. Angew. Chem., Int. Ed. 2017, 56, 9193-9197.

(8) (a) Fryzuk, M. D.; Johnson, S. A.; Patrick, B. O.; Albinati, A.; Mason, S. A.; Koetzle, T. F. New Mode of Coordination for the Dinitrogen Ligand: Formation, Bonding, and Reactivity of a Tantalum Complex with a Bridging N₂ Unit That Is Both Side-On and End-On. J. Am. Chem. Soc. 2001, 123, 3960-3973. (b) Morello, L.; Love, J. B.; Patrick, B. O.; Fryzuk, M. D. Carbon-Nitrogen Bond Formation via the Reaction of Terminal Alkynes with a Dinuclear Side-on Dinitrogen Complex. J. Am. Chem. Soc. 2004, 126, 9480-9481. (c) Bernskoetter, W. H.; Olmos, A. V.; Pool, J. A.; Lobkovsky, E.; Chirik, P. J. N-C Bond Formation Promoted by a Hafnocene Dinitrogen Complex: Comparison of Zirconium and Hafnium Congeners. J. Am. Chem. Soc. 2006, 128, 10696-10697. (d) Hirotsu, M.; Fontaine, P. P.; Zavalij, P. Y.; Sita, L. R. Extreme N≡N Bond Elongation and Facile N-Atom Functionalization Reactions within two Structurally Versatile New Families of Group 4 Bimetallic "Sideon-Bridged" Dinitrogen Complexes for Zirconium and Hafnium. J. Am. Chem. Soc. 2007, 129, 12690-12692. (e) Ballmann, J.; Yeo, A.; Patrick, B. O.; Fryzuk, M. D. Carbon-Nitrogen Bond Formation by the Reaction of 1,2-Cumulenes with a Ditantalum Complex Containing Side-on- and End-on-Bound Dinitrogen. Angew. Chem., Int. Ed. 2011, 50, 507-510.

(9) For selected reports on $(N_2)^{2-}$ -rare-earth metal complexes, see: (a) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. Isolation and X-ray Crystal Structure of the First Dinitrogen Complex of an f-Element Metal, [(C₅Me₅)₂Sm]₂N₂. J. Am. Chem. Soc. 1988, 110, 6877-6879. (b) Evans, W. J.; Lee, D. S. Early Developments in Lanthanide-Based Dinitrogen Reduction Chemistry. Can. J. Chem. 2005, 83, 375-384. (c) Evans, W. J.; Lee, D. S.; Ziller, J. W.; Kaltsoyannis, N. Trivalent $[(C_5Me_5)_2(THF)Ln]_2(\mu-\eta^2:\eta^2-N_2)$ Complexes as Reducing Agents Including the Reductive Homologation of CO to a Ketene Carboxylate, $(\mu - \eta^4 - O_2 C - C = C = O)^{2-}$. J. Am. Chem. Soc. 2006, 128, 14176-14184. (d) Cheng, J.; Takats, J.; Ferguson, M. J.; McDonald, R. Heteroleptic Tm(II) Complexes: One more Success for Trofimenko's Scorpionates. J. Am. Chem. Soc. 2008, 130, 1544-1545. (e) Jaroschik, F.; Momin, A.; Nief, F.; Le Goff, X.-F.; Deacon, G. B.; Junk, P. C. Dinitrogen Reduction and C-H Activation by the Divalent Organoneodymium Complex [(C5H2tBu3)2Nd(µ-I)K([18]crown-6)]. Angew. Chem., Int. Ed. 2009, 48, 1117-1121. (f) Demir, S.; Lorenz, S. E.; Fang, M.; Furche, F.; Meyer, G.; Ziller, J. W.; Evans, W. J. Synthesis, Structure, and Density Functional Theory Analysis of a Scandium Dinitrogen Complex, $[(C_5Me_4H)_2Sc]_2(\mu-\eta^2:\eta^2-N_2)$. J. Am. Chem. Soc. 2010, 132, 11151-11158. (g) Mueller, T. J.; Fieser,

M. E.; Ziller, J. W.; Evans, W. J. $(C_5Me_4H)^{1-}$ -Based Reduction of Dinitrogen by the Mixed Ligand Tris(polyalkylcyclopentadienyl) Lutetium and Yttrium Complexes, $(C_5Me_5)_{3-x}(C_5Me_4H)_x$ Ln. Chem. Sci. **2011**, 2, 1992–1996. (h) Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Dinitrogen Reduction via Photochemical Activation of Heteroleptic Tris(cyclopentadienyl) Rare-Earth Complexes. J. Am. Chem. Soc. **2013**, 135, 3804–3807.

(10) For selected reports on $(N_2)^{3-}$ and other rare-earth metal dinitrogen complexes, see: (a) Dubé, T.; Conoci, S.; Gambarotta, S.; Yap, G. P. A.; Vasapollo, G. Tetrametallic Reduction of Dinitrogen: Formation of a Tetranuclear Samarium Dinitrogen Complex. Angew. Chem., Int. Ed. 1999, 38, 3657-3659. (b) Evans, W. J.; Fang, M.; Zucchi, G.; Furche, F.; Ziller, J. W.; Hoekstra, R. M.; Zink, J. I. Isolation of Dysprosium and Yttrium Complexes of a Three-Electron Reduction Product in the Activation of Dinitrogen, the $(N_2)^{3-}$ Rdical. J. Am. Chem. Soc. 2009, 131, 11195-11202. (c) Evans, W. J.; Fang, M.; Bates, J. E.; Furche, F.; Ziller, J. W.; Kiesz, M. D.; Zink, J. I. Isolation of a Radical Dianion of Nitrogen Oxide (NO)²⁻. Nat. Chem. 2010, 2, 644-647. (d) Fang, M.; Bates, J. E.; Lorenz, S. E.; Lee, D. S.; Rego, D. B.; Ziller, J. W.; Furche, F.; Evans, W. J. (N₂)³⁻ Radical Chemistry via Trivalent Lanthanide Salt/Alkali Metal Reduction of Dinitrogen: New Syntheses and Examples of $(N_2)^{2-}$ and $(N_2)^{3-}$ Complexes and Density Functional Theory Comparisons of Closed Shell Sc³⁺, Y³⁺, Lu³⁺ versus 4f⁹ Dy³⁺. Inorg. Chem. 2011, 50, 1459-1469. (e) Fang, M.; Lee, D. S.; Ziller, J. W.; Doedens, R. J.; Bates, J. E.; Furche, F.; Evans, W. J. Synthesis of the $(N_2)^{3-}$ Radical from Y^{2+} and Its Protonolysis Reactivity to Form $(N_2H_2)^{2-}$ via the $Y\lceil N$ (SiMe₃)₂]₃/KC₈ Reduction System. J. Am. Chem. Soc. 2011, 133, 3784-3787. (f) Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. Strong Exchange and Magnetic Blocking in N2³⁻-Radical-Bridged Lanthanide Complexes. Nat. Chem. 2011, 3, 538-542. (g) Meihaus, M. R.; Corbey, J. F.; Fang, M.; Ziller, J. W.; Long, J. R.; Evans, W. J. Influence of an Inner-Sphere K⁺ Ion on the Magnetic Behavior of N2³⁻ Radical-Bridged Dilanthanide Complexes Isolated Using an External Magnetic Field. Inorg. Chem. 2014, 53, 3099-3107. (h) Demir, S.; Gonzalez, M. I.; Darago, L. E.; Evans, W. J.; Long, J. R. Giant Coercivity and High Magnetic Blocking Temperatures for N2³⁻ Radical-Bridged Dilanthanide Complexes upon Ligand Dissociation. Nat. Commun. 2017, 8, 2144.

(11) Walter, M. D. Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. *Adv. Organomet. Chem.* **2016**, *65*, 261–377.

(12) Tanabe, Y. Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes. In *Transition Metal–Dinitrogen Complexes*; Nishibayashi, Y., Ed.; Wiley-VCH: Weinheim, Germany, 2019; Chapter 9, pp 441–474.

(13) Fieser, M. E.; Woen, D. H.; Corbey, J. F.; Mueller, T. J.; Ziller, J. W.; Evans, W. J. Raman Spectroscopy of the N–N Bond in Rare Earth Dinitrogen Complexes. *Dalton Trans.* **2016**, *45*, 14634–14644. (14) Woen, D. H.; Chen, G. P.; Ziller, J. W.; Boyle, T. J.; Furche, F.; Evans, W. J. End-on Bridging Dinitrogen Complex of Scandium. J. Am. Chem. Soc. **2017**, *139*, 14861–14864.

(15) (a) Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Hydrogenation and Cleavage of Dinitrogen to Ammonia with a Zirconium Complex. *Nature* **2004**, 427, 527–530. (b) Bernskoetter, W. H.; Olmos, A. V.; Lobkovsky, E.; Chirik, P. J. N₂ Hydrogenation Promoted by a Side-on Bound Hafnocene Dinitrogen Complex. *Organometallics* **2006**, 25, 1021–1027. (c) Morello, L.; João Ferreira, M.; Patrick, B. O.; Fryzuk, M. D. Side-on Bound Dinitrogen Complex of Zirconium Supported by a P_2N_2 Macrocyclic Ligand. *Inorg. Chem.* **2008**, 47, 1319–1323.

(16) Fagan, P. J.; Manriquez, J. M.; Vollmer, S. H.; Day, C. S.; Day, V. W.; Marks, T. J. Insertion of Carbon Monoxide into Metal-Nitrogen Bonds. Synthesis, Chemistry, Structures, and Structural Dynamics of Bis(pentamethylcyclopentadienyl) Organoactinide Dialkylamides and η^2 -Carbamoyls. J. Am. Chem. Soc. **1981**, 103, 2206–2020.

(17) Wang, B.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z. Isolation, Structure and Reactivity of a Scandium Boryl Oxycarbene Complex. *Chem. Sci.* **2016**, *7*, 803–809.