Organocatalysis

Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis

Manoj Kumar and Joseph S. Francisco^{*[a]}

Abstract: The role of metal free dual catalysis in the hydrogen sulfide (H_2S)-induced activation of carbon dioxide (CO_2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C–S bond formation via CO_2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO_2 and H_2S , these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus.

Carbon dioxide (CO₂) emissions into the atmosphere are increasing at an alarming rate with every passing year.^[1] According to a recent report,^[2] CO₂ levels in the atmosphere have already crossed the 400 ppm mark, and continue to rise relentlessly. Because of its involvement in global warming, there is an immediate need to better understand the chemistry of CO₂ and identify sequestration or other processes for its removal. Utilizing CO₂ as a renewable source of carbon is an attractive strategy for a sustainable, low-carbon society. This has led to significant interest in developing CO₂ as a C₁ feedstock for carbon–carbon bond formation and carbon–heteroatom functionalization reactions in chemical synthesis.^[3] However, the considerable thermodynamic stability of CO₂ renders it relatively inert as a chemical reactant.^[4] Therefore, low-energy catalytic activation of CO₂ is highly desirable.

Several transition-metal catalysts have been employed to transform CO₂ into valuable commodity chemicals.^[5] Metal-free catalysis presents an alternative approach for CO₂ capture under ambient reaction conditions.^[6] The potential of N-heter-ocyclic carbenes,^[7,8] frustrated Lewis pairs (FLPs),^[9–13] and various other main-group catalysts^[14] for CO₂ activation has been recently established. FLPs contain sterically hindered Lewis acid and Lewis base that makes them catalytically interesting.^[15] For example, Grimme, Stephan, and Erker et al. have re-

 [a] Dr. M. Kumar, Prof. J. S. Francisco Department of Chemistry University of Nebraska-Lincoln, Lincoln, NE 68588 (USA) E-mail: jfrancisco3@unl.edu

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201504953. ported the usefulness of phosphine–borane FLPs in CO₂ activation.^[9a] Piers and co-workers have used $B(C_6H_5)_3$ and amines to convert CO₂ into methane with silanes.^[10] Fontaine and co-workers have established the catalytic effect of $R_2PC_6H_4B(O_2C_6H_4)$ in the hydroboration of CO₂ en route to methanol formation.^[11] Zhu and An have recently examined the CO₂ sequestration with a series of amidophosphoranes at the DFT level and suggested the role of the interplay of the ring strain and the *trans* influence in determining the reactivity, which provides a new platform for the design of FLPs for the CO₂ capture.^[12] In a subsequent study, An and Zhu performed a comparative analysis of the sequestration of CO₂ and CS₂ using the P/N-based FLPs and provided useful mechanistic insights into the factors controlling the sequestration.^[13]

Herein we report the role of metal-free dual organocatalysis in the CO₂ insertion into the S–H bond of hydrogen sulfide (H₂S) in the gas phase that leads to the unprecedented C–S bond formation. The mechanistic beauty of dual organocatalysis lies in the fact that the coexistence of acidic and basic sites in a catalyst (an organic or inorganic acid) causes the concerted activation of the electrophile CO₂ and nucleophile H₂S, and results in the low-energy reaction (Scheme 1). To the best of our knowledge, C–S bond formation in the presence of a metal-free dual catalyst has yet to be achieved.

Scheme 1. Proposed mechanism for the gas-phase formation of carbonyl sulfide by carbon dioxide insertion into the H–S bond of hydrogen sulfide under metal-free dual organocatalysis.

Chem. Eur. J. 2016, 22, 4359 – 4363

Wiley Online Library

The catalytic role of explicit water (H₂O) molecules in lowering the barrier of atmospherically important hydrogen atom transfer (HAT)-based reactions is well-documented.^[16] However, there are other species that can catalyze the HAT reactions in atmosphere. In fact, it is now increasingly becomingly clear that organic acids, which are present in significant amounts in the Earth's atmosphere,^[17–19] can catalyze such reactions much more efficiently.^[20–25] For example, the role of acid catalysis in influencing the energetics of various atmospheric processes such as sulfuric acid (H₂SO₄) forming hydrolysis of SO₃,^[20,21] hydrolysis of ketene,^[23] and tautomerization of the Criegee intermediate^[24,25] has been recently reported. In the Venusian atmosphere, the inorganic acid, H₂SO₄ is expected to be present in appreciable amounts^[26] and may play a role in CO₂ activation.

 H_2S is an important sulfur compound that is emitted into the atmosphere by natural and anthropogenic activities, with fossil fuel burning as its main source.^[27] The insertion of CO_2 into H_2S provides a new mechanism for the formation of carbonyl sulfide (O=C=S) in the troposphere (Scheme 1), where it is one of the most abundant sulfur compounds.^[27] This reaction also holds immense significance for the atmosphere of Venus, where CO_2 is the largest constituent (96.5%) and the formation mechanism of OCS continues to remain unclear.^[26]

Herein, we propose a new mechanism for the OCS formation that takes advantage of H₂S-induced CO₂ activation by metalfree dual catalysis (Scheme 1), and support its feasibility with gas-phase electronic structure calculations. All calculations were performed using the Gaussian 09^[28] software package. The reaction of H₂S with CO₂ leading to monothiolcarbonic acid (HCO₂SH), and subsequent decomposition of HCO₂SH resulting in OCS and H₂O in the gas phase, were extensively examined by means of first-principles quantum chemical calculations. Both reactions were calculated with and without catalysts. There are two possible decomposition pathways for HCO₂SH (Scheme 1). We have considered both in the present work. The catalysts studied in the present work were H₂S, H₂O, hydrogen fluoride (HF), hydrogen chloride (HCl), ammonia (NH₃), methylamine (CH₃NH₂), dimethylamine ((CH₃)₂NH), HCO₂SH, H₂CO₂S, HCOOH, and H₂SO₄. For analyzing the HCO₂SH-induced catalysis, we have considered three possible modes of catalysis: -COOH, -COSH, and -CSOH. HCO₂SH is capable of undergoing intramolecular HAT, which results in the cis, cis conformer. We have used a different notation, H₂CO₂S, to represent that cis, cis conformer, which has no hydrogen atom directly bonded to sulfur atom. Considering that HCO₂SH and H₂CO₂S can exist in multiple conformers depending upon the relative orientation of OH and/or SH moieties (Supporting Information, Schemes S1 and S2), we have only explored the catalysis that is due to their cis, cis and cis, trans conformations in our calculations because the cis, cis conformer is the most stable and the cis, trans form is involved in the sacrificial reactions. The equilibrium and transition-state structures were fully optimized using the M06-2X^[29] level of density functional theory and the augmented correlation-consistent triplet zeta basis set, aug-cc-pVTZ.^[30] The energetics of these reactions was further refined using the coupled-cluster single and double substitution method with a perturbative treatment of triple excitations (CCSD(T))^[31] and the aug-cc-pVTZ basis set. Specifically, the zero-point-corrected CCSD(T)/aug-cc-pVTZ electronic energies at the M06-2X/aug-cc-pVTZ-optimized geometries have been used. For all of the reactions, the M06-2X/aug-cc-pVTZ calculated vibrational frequencies were used to estimate the zero-point correction for the reactants, products, transition states, and intermediates. The presence of zero or single imaginary frequency was used to identify all the stationary points as minima or transition states.

In the first step, the nucleophilic addition of H₂S across the C=O bond in the CO₂ electrophile occurs. The reaction is initiated with the formation of a weak van der Waals association complex, Int₁ between H₂S and CO₂, which has a nominal binding energy of 0.9 kcal mol⁻¹ (Figure 1). Int₁ then transforms into trans, cis-monothiol carbonic acid (HCO2SH) via 4-center transition state, TS_{H2S} . The reaction has an effective barrier of 48.7 kcalmol⁻¹, measured relative to Int₁, and is endothermic by 15.8 kcal mol⁻¹. Though the hydrolysis of CO₂ has been extensively explored,^[32-35] the reaction of CO₂ with H₂S has not received any attention until recently when Baltrusaitis et al. examined the gas-phase reaction between CO2 and reduced sulfur compounds, H₂S and CH₃SH, using ground- and excitedstate density functional theory and coupled-cluster methods.^[36] Our calculated barrier of 48.7 kcalmol⁻¹ and an endothermicity of 15.8 kcal mol⁻¹ are in reasonable agreement with their CR-CC(2,3)/6-311 + G(2df,2p)//CAM-B3LYP/6-311 + G(2df,2p) calculated values of 49.6 and 16.6 kcal mol⁻¹, respectively. Additional calculations suggest that the barrier to nucleophile addition across the C=O bond of CO₂ is tunable depending upon the nature of a nucleophile, that is, the amine addition is more favorable than the H₂O or methanol addition, which, in turn, is preferred over the H₂S addition (Supporting Information, Figure S1). Significant barrier tuning for a nucleophilic addition reaction between XO_2 (X = C, N, or S) and H_2S is also achievable by judiciously changing the central atom in XO₂; sulfur dioxide, SO₂, shows more reactivity than nitric oxide, NO₂, which, in turn, does better than CO₂ (Supporting Information, Figure S2).

The gas-phase CO₂ activation in the presence of various catalysts with single activation site is also examined here. The effect of catalysis on the reaction is significant; for HF-, HCl-, and H₂O-catalyzed reactions, Int₁ has a binding energy of 3.7-4.5 kcalmol⁻¹, and the effective barrier is lowered to 34.0-35.4 kcal mol⁻¹. Int₂ is a postreaction complex in which *trans*,cis-HCO₂SH and the catalyst are H-bonded and now mediates the reaction. Int_2 is 2.6–6.9 kcal mol⁻¹ more stable than the separated products. The activation effect of N-based reagents, NH₃, CH₃NH₂, and (CH₃)₂NH is even higher. The Int₁s and Int₂s are 4.3–6.3 kcal mol⁻¹ and 10.8–15.3 kcal mol⁻¹ more stable than separated reactants and products, respectively. The relatively larger stability of Int₂ implies that the endothermic formation of trans, cis-HCO₂SH can be achieved by judicious selection of catalysis. Interestingly, the calculated barrier for the CO₂ insertion correlates with the nature of amine; the barrier for the unsubstituted amine, NH₃, is 25.2 kcal mol⁻¹, which is lowered to 19.8 kcal mol⁻¹ upon single methyl substitution

Figure 1. Calculated reaction profile for the formation of carbonyl sulfide via PATH-A, which involves insertion of carbon dioxide into the H–S bond of hydrogen sulfide, conformational isomerization in *trans,cis*-monothiolcarbonic acid (HCO₂SH), and decomposition of *cis,trans*-HCO₂SH. Inset: the dimer conformations of HCO₂SH that lead to the decomposition of *cis,trans*-HCO₂SH. The zero point-corrected electronic energies [kcal mol⁻¹] are calculated at the CCSD(T)/ aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level.

(CH₃NH₂), and 16.3 kcal mol $^{-1}$ upon double methyl substitution ((CH₃)₂NH).

The effect of catalysts with dual activation site, HCOOH and H_2SO_4 on the gas-phase CO_2 insertion is investigated. The presence of carbonyl- and hydroxyl-type functionalities in these catalysts allows them to cause the concerted activation of CO_2 and H_2S by forming two point H-bonding interactions in a stereoeffective manner (Scheme 1). The effective barriers for the HCOOH and H_2SO_4 reactions are 27.0 and 27.9 kcal mol⁻¹, 21.7 and 20.8 kcal mol⁻¹ lower than that for the uncatalyzed reaction. These acid catalysts outperform HF, HCl, and H_2O , but turn out to be less effective than NH₃, CH₃NH₂, and (CH₃)₂NH.

The prospect of the CO₂ insertion being an autocatalytic process is explored by calculating the reaction profiles for the H₂S- and *cis,cis*-HCO₂SH-catalyzed gas-phase reactions. The H₂S reaction has an effective barrier of 42.8 kcal mol⁻¹, which is 5.9 kcal mol⁻¹ lower than that for the uncatalyzed reaction, but at least 7.4 kcal mol⁻¹ higher than that calculated with any monofunctional catalyst. On the other hand, the catalytic effect of *cis,cis*-HCO₂SH is appreciably higher; the effective barrier is 7.4 kcal mol⁻¹ lower than that for the H₂S reaction. It is interesting to note that though the catalysis mechanism of the *cis,cis*-HCO₂SH reaction is similar to that for the HCOOH and H₂SO₄ reactions, the effect of *cis,cis*-HCO₂SH on the reaction barrier is less pronounced. This is attributed to the lesser polarity of the S–H bond in *cis,cis*-HCO₂SH compared to the O–H bond in HCOOH and H₂SO₄.

There are two mechanistic choices for converting *trans,cis*-HCO₂SH into OCS: 1) PATH-A, which involves direct decomposition, and 2) PATH-B, which involves intramolecular HAT followed by subsequent decomposition (Scheme 1). We calculated and compared both pathways to determine the most efficient route for the OCS formation. It is important to mention that HCO₂SH is produced in a *trans,cis* form, which is an inactive conformation for the direct decomposition (Figure 1). This

necessitates a double conformational change in the *trans,cis* form to produce the catalytically active *cis,trans* conformer. The calculations suggest that these conformational switches in the gas phase are moderately expensive, with barriers of 5.6 and 8.1 kcalmol⁻¹ (Figure 1). Moreover, *cis,trans*-HCO₂SH is 3.0 kcalmol⁻¹ more stable than the *trans,cis* analogue. From the *cis,trans* conformer, the OCS forming dehydration occurs, which involves the concerted cleavage of C–OH and S–H bonds. The uncatalyzed dehydration step is 5.1 kcalmol⁻¹ exothermic and has a barrier of 39.6 kcalmol⁻¹ (Figure 1). Overall, the gas-phase formation of OCS is 7.7 kcalmol⁻¹ endothermic, and the decomposition of *cis,trans*-HCO₂SH is the rate-limiting step of the reaction.

The barrier to dehydration is lowered to 23.9 kcal mol⁻¹ in the presence of a H₂O molecule (Figure 1). HCOOH and H₂SO₄ acids further lower the dehydration barrier by about 5.0 kcal mol⁻¹. Notably, Int₃ and Int₄ in the acid-catalyzed reactions are significantly more stable than those in the H₂O-catalyzed one, implying that acid catalysis is capable of tuning the energetics of the decomposition reaction. The effect of HCO₂SH on its own decomposition is also examined. The calculated barriers for the autocatalytic reactions are 18.7 and 26.5 kcalmol⁻¹ for the -COOH-based and -COSH-based catalysis, respectively. The larger barrier for the -COSH-based catalysis is due to lower polarity of S–H bond. The barrier of 40.9 kcalmol⁻¹ for the noncatalytic reaction is significantly higher than any of the catalytic reactions. The catalytic effect of substituted amines on the decomposition is larger than any of acid catalysts; the effective barrier of 13.6 kcal mol⁻¹ for the (CH₃)₂NH-catalyzed reaction is 5.3 kcal mol⁻¹ lower than that calculated for the HCOOH-catalyzed reaction.

The PATH-B for the OCS formation from *trans,cis*-HCO₂SH initiates with the intramolecular HAT from thiol sulfur to carbonyl oxygen. This HAT reaction leads to the *cis,cis*-H₂CO₂S. The uncatalyzed HAT in the gas phase involves a significant barrier of

Chem.	Eur. J.	2016.	22.	4359 - 4363	
c		,	,	1000 1000	

Figure 2. Calculated reaction profile for the formation of carbonyl sulfide via PATH-B, which involves insertion of carbon dioxide into the H–S bond of hydrogen sulfide, intramolecular hydrogen atom transfer (HAT) in *trans,cis*-HCO₂SH, conformational isomerization in *cis,cis*-monothiolcarbonic acid (H₂CO₂S) and decomposition of *cis,trans*-H₂CO₂S. Insets: the dimer conformations of HCO₂SH and H₂CO₂S that assist in the intramolecular HAT and the decomposition of *cis,trans*-H₂CO₂S. The zero point-corrected electronic energies [kcal mol⁻¹] are calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level.

31.2 kcal mol⁻¹ and is 3.9 kcal mol⁻¹ endothermic. Baltrusaitis et al. have recently reported a similar barrier of 31.4 kcal mol⁻¹ and an endothermicity of 3.4 kcal mol⁻¹ for this intramolecular HAT reaction in the gas phase.^[36] Our calculations reveal that the reaction becomes appreciably favorable under H₂O or acid catalysis. Interestingly, the HAT barrier is tuned to the extent that the formation of *cis,cis*-H₂CO₂S from *trans,cis*-HCO₂SH is found to be barrierless under acid catalysis. Just like acids, *cis,cis*-HCO₂SH also makes its intramolecular HAT barrierless when the catalysis is –COOH-based (Figure 2). The –COSH-based autocatalytic HAT reaction is relatively less effective, as it involves a noticeable barrier of 11.1 kcal mol⁻¹.

The *cis,cis*-H₂CO₂S must be converted into the *cis,trans* form to allow the subsequent decomposition into OCS and H₂O (Figure 2). This conformational change in the gas phase involves a moderate barrier of 10.3 kcalmol⁻¹ and could be achieved under atmospheric conditions because the *cis,cis*-H₂CO₂S in the acid-catalyzed HAT reaction is produced as a H-bonded complex, Int₄, which has at least 14.0 kcalmol⁻¹ binding energy except in the –COSH-based autocatalytic reaction. This extra energy stored in Int₄ may drive the formation of *cis,trans*-H₂CO₂S.

The *cis*,*trans*-H₂CO₂S then dehydrates into OCS and H₂O. The gas-phase dehydration is 14.5 kcal mol⁻¹ exothermic and has a barrier of 40.4 kcal mol⁻¹. Though the barrier to the dehydration of the *cis*,*trans*-H₂CO₂S is 0.8 kcal mol⁻¹ higher than that for the *cis*,*trans*-HCO₂SH decomposition, the reaction is 9.4 kcal mol⁻¹ more exothermic, which should have a positive effect on the preceding conformational isomerization in the *cis*,*cis*-H₂CO₂S. The effect of H₂O or acid catalysis on the decomposition of *cis*,*trans*-H₂CO₂S is enormous. H₂O lowers the barrier for the H₂CO₂S dehydration by 22.5 kcal mol⁻¹. Acids HCOOH and H₂SO₄ produce greater catalysis, causing an additional barrier lowering of about 9.0 kcal mol⁻¹. Substituted amines produce optimum catalysis in the decomposition of *cis*,*trans*-H₂CO₂S;

the effective barrier for the $(CH_3)_2NH$ -catalyzed reaction is 0.9 kcal mol⁻¹ lower than that calculated for the HCOOH-catalyzed reaction.

The scope for the self-assisted reaction is assessed by exploring the gas-phase decomposition from three dimer conformations. As far as autocatalysis is concerned, the HCO₂SH-mediated reaction has a 3.0 kcalmol⁻¹ lower barrier than that for the H₂CO₂S-mediated reaction and produces an acid-like catalytic effect on the reaction. The dehydration barrier for the noncatalytic reaction is larger than any of the autocatalytic reactions owing to the additional cleavage of a C-OH bond. Interestingly, the effect of catalysis on the decomposition of the cis, trans-H₂CO₂S is marginally greater than that on the *cis,trans*-HCO₂SH decomposition. This is due to the fact that *cis,trans*-H₂CO₂S has larger dipole moment ($\mu = 3.2 \text{ D}$) than that of *cis,trans*-HCO₂SH $(\mu = 2.3 \text{ D})$, which makes the catalytic cleavage of O–H bond in H₂CO₂S easier compared to that of S–H bond in HCO₂SH. The comparative analysis of PATH-A and PATH-B implies that the PATH-A would be favored in the absence of any catalysis due to relatively lower barrier for the rate-limiting decomposition of cis,trans-HCO₂SH. However, under acid or amine catalysis influence, both pathways might become equally likely because the intramolecular HAT in trans, cis-HCO₂SH becomes barrierless and the subsequent conformational isomerization of cis, cis-H₂CO₂S benefits from its coupling to the exothermic decomposition of the *cis,trans*-H₂CO₂S under catalysis.

The main conclusions are that substituted amines or organic and inorganic acids exert significant catalysis on both the gasphase CO₂ activation step and the subsequent rate-limiting decomposition of *cis,trans*-HCO₂SH or *cis,trans*-H₂CO₂S. This implies that the insertion of H₂S into CO₂ can lead to OCS and H₂O for little energy cost within an effective dual organocatalysis scheme. The ability of these reagents to lower the energetics for the CO₂+H₂S reaction by inducing a stereoeffective proton wire makes them potentially interesting catalysts for

Chem.	Eur. J.	2016,	22,	4359 – 4363	
-------	---------	-------	-----	-------------	--

 CO_2 activation. Such a mechanism may play a key role in improving our understanding regarding the coupled carbon and sulfur cycles in the atmospheres of Earth and even Venus.

Keywords: atmospheric chemistry \cdot CCSD(T) theory \cdot CO₂ activation \cdot organocatalysis \cdot potential energy profiles

- [1] R. F. Keeling, S. C. Piper, A. F. Bollenbacher, J. S. Walker, Atmospheric CO₂ records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change; Carbon Dioxide Information Analysis Center, Oak Ridgfge National Laboratory, U. S. Department of Energy: Oak Ridge, TN, 2009.
- [2] ESRL Global Monitoring Division Global Greenhouse Gas Reference Network". NOAA. 6 May 2015. Retrieved 7 May 2015.
- [3] a) W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727; b) M. Mikkelsen, M. Jorgensen, F. C. Krebs, Energy Environ. Sci. 2010, 3, 43–81; c) D. J. Darensbourg, Chem. Rev. 2007, 107, 2388–2410; d) G. A. Olah, Angew. Chem. Int. Ed. 2005, 44, 2636–2639; Angew. Chem. 2005, 117, 2692–2696.
- [4] CRC Handbook of Chemistry and Physics, 73rd ed. (Ed.: D. R. Lide), CRC, Boca Raton, 1992.
- [5] a) N. M. Rezayee, C. A. Huff, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 1028–1031; b) S. Moret, P. J. Dyson, G. Laurenczy, Nat. Commun. 2014, 5, 4017; c) S. Bontemps, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2014, 136, 4419–4425; d) R. Dobrovetsky, D. W. Stephan, Angew. Chem. Int. Ed. 2013, 52, 2516–2519; Angew. Chem. 2013, 125, 2576–2579.
- [6] a) P. P. Power, Nature 2010, 463, 171–177; b) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46–76; Angew. Chem. 2010, 122, 50–81.
- [7] S. N. Riduan, Y. G. Zhang, J. Y. Ying, Angew. Chem. Int. Ed. 2009, 48, 3322–3325; Angew. Chem. 2009, 121, 3372–3375.
- [8] Y. Jiang, O. Blacque, T. Fox, H. Berke, J. Am. Chem. Soc. 2013, 135, 7751 7760.
- [9] a) C. M. Mömming, E. Otten, G. Kehr, R. Frçhlich, S. Grimme, D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643–6646; Angew. Chem. 2009, 121, 6770–6773; b) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441; Angew. Chem. 2015, 127, 6498–6541.
- [10] A. Berkefeld, W. E. Piers, M. Parvez, J. Am. Chem. Soc. 2010, 132, 10660– 10661.
- [11] M. A. Courtemanche, M. A. Legare, L. Maron, F. G. Fontaine, J. Am. Chem. Soc. 2013, 135, 9326–9329.
- [12] J. Zhu, K. An, Chem. Asian J. 2013, 8, 3147-3151.
- [13] K. An, J. Zhu, Organometallics 2014, 33, 7141-7146.
- [14] a) G. Ménard, D. W. Stephan, Angew. Chem. Int. Ed. 2011, 50, 8396– 8399; Angew. Chem. 2011, 123, 8546–8549; b) G. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796–1797.
- [15] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124–1126.
- [16] E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, B. Abel, *Science* 2007, 315, 497–501.

- [17] M. W. Shephard, A. Goldman, S. A. Clough, E. J. Mlawer, J. Quant. Spectrosc. Radiat. Transfer 2003, 82, 383–390.
- [18] M. Grutter, N. Glatthor, G. P. Stiller, H. Fischer, U. Grabowski, M. Höpfner, S. Kellmann, A. Linden, T. von Clarmann, J. Geophys. Res. 2010, 115, D10303.
- [19] C. P. Rinsland, E. Mahieu, R. Zander, A. Goldman, S. Wood, L. Chiou, J. Geophys. Res. 2004, 109, D18308.
- [20] M. K. Hazra, A. Sinha, J. Am. Chem. Soc. 2011, 133, 17444-17453.
- [21] T. S. Miquel, J. S. Francisco, J. M. Anglada, J. Am. Chem. Soc. 2012, 134, 20632–20644.
- [22] R. J. Buszek, A. Sinha, J. S. Francisco, J. Am. Chem. Soc. 2011, 133, 2013– 2015.
- [23] M. K. Louie, J. S. Francisco, M. Verdicchio, S. J. Klippenstein, A. Sinha, J. Phys. Chem. A 2015, 119, 4347–4357.
- [24] M. Kumar, D. H. Busch, B. Subramaniam, W. H. Thompson, *Phys. Chem. Chem. Phys.* 2014, *16*, 22968–22973.
- [25] F. Liu, Y. Fang, M. Kumar, W. H. Thompson, M. I. Lester, Phys. Chem. Chem. Phys. 2015, 17, 20490–20494.
- [26] V. A. Krasnopolsky, *lcarus* 2007, 191, 25-37.
- [27] L. S. S. Nunes, T. M. Tavares, J. Dippel, W. Jaeschke, J. Atmos. Chem. 2005, 50, 79–100.
- [28] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyot a, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpar k, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Kratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- [29] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
- [30] R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 1992, 96, 6796-6806.
- [31] J. Noga, R. J. Bartlett, J. Chem. Phys. 1987, 86, 7041-7050.
- [32] M. T. Nguyen, G. Raspoet, L. G. Vanquickenborne, P. Th. Van Duijnen, J. Phys. Chem. A 1997, 101, 7379–7388.
- [33] M. Lewis, R. Glaser, J. Phys. Chem. A 2003, 107, 6814-6818.
- [34] C. S. Tautermann, A. F. Voegele, T. Loerting, I. Kohl, A. Hallbrucker, E. Mayer, K. R. Liedl, Chem. Eur. J. 2002, 8, 66–73.
- [35] M. T. Nguyen, M. H. Matus, V. E. Jackson, V. T. Ngan, J. R. Rustad, D. A. Dixon, J. Phys. Chem. A 2008, 112, 10386–10398.
- [36] J. Baltrusaitis, E. V. Patterson, C. Hatch, J. Phys. Chem. A 2012, 116, 9331–9339.

Received: December 9, 2015 Published online on February 16, 2016