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ABSTRACT: Tetramethyl orthosilicate (TMOS) is shown to be an
effective reagent for direct amidation of aliphatic and aromatic carboxylic
acids with amines and anilines. The amide products are obtained in good to
quantitative yields in pure form directly after workup without the need for
any further purification. A silyl ester as the putative activated intermediate is
observed by NMR methods. Amidations on a 1 mol scale are demonstrated

with a favorable process mass intensity.

Methodologies that facilitate direct amidation of a
carboxylic acid with an amine avoiding poor atom
economy are of much current interest.' Significant progress
has been made with thermal amidations,’ boron based
catalysts® and reagents,” oxophilic transition metal catalysts,”
and other systems.” However, limitations remain, including
multistep synthesis of catalysts, the use of nonstoichiometric
acid-to-amine quantities, extended reflux with azeotropic
removal of water in refluxing aromatic solvents, the need for
chromatographic purification of the amide product, and/or the
inability to mediate the more challenging amidation types.” In
the mid-2000s, a series of seminal papers by Mukaiyama
describe the use of imidazoylsilanes,'® tetrakis(pyridine-2-
yloxy)silane,Il and tetrakis(1,1,1,3,3,3-hexafluoro-2-propoxy)-
silane'? as reagents for direct amidation reactions at room
temperature in ethereal solvents. These silicon-based reagents
perform excellently for all the major classes of acid—amine
combinations, but require prior synthesis from tetrachlorosi-
lane, and with the exception of the latter silane, they do not
afford pure amide upon workup: further purification is required
to remove the ancillary ligand. In addition, other silicon-based
reagents'’ and silicas'* have also been found to be useful in
amide synthesis. A recent perspective’> from industry on
amidation technologies states “The ideal reagent is inexpensive,
widely available, nontoxic, safe, simple to handle, easy to purge
from reaction mixtures, and contributes only minimally to
waste streams”. This desire for convenient and inexpensive
reagents, coupled with the literature precedent for silicas as
reagents for amidation, prompted us to investigate the widely
available and inexpensive tetraalkyl orthosilicates [Si(OR),; R =
Me (TMOS, 1), Et (TEOS, 2)] as potential direct amidation
reagents.m’17

We now report that TMOS 1 is an excellent reagent for
effecting direct amidations, where preliminary comparisons
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amidations
(including N-protected amino acids) | demonstrated

with TEOS 2 showed the former to be more effective.'® Thus,
at 200—250 mol % TMOS 1 (for optimization of the TMOS
loading, see Supporting Information (SI)) loading in refluxing
toluene, direct amidation of phenylacetic acid as a representa-
tive aliphatic acid with a primary amine, cyclic secondary
amines, an acyclic secondary amine, and an aniline—amidations
of increasing difficulty—gave amides 3—7 in excellent to
quantitative yield (Figure 1, top). Notable features of this
amidation protocol include the use of the ideal 1:1
stoichiometry of acid and amine, the toleration of nondried
toluene, and the isolation of the pure amide product directly after
a simple workup procedure. The workup procedure acts to
destroy any excess TMOS 1 or any other residual silicon-
containing components, by rapid basic hydrolysis in a
homogeneous THF—aqueous potassium carbonate solution to
produce silica, followed by addition of solid sodium chloride to
effect phase separation (see Supporting Information for full
details). Any residual amidation components are also removed
in the workup procedure allowing for the isolation of the amide
product in pure form without the need for chromatography.
This protocol also successfully transfers to the inherently
more difficult amidations of benzoic acid as a representative
aromatic carboxylic acid with primary amines and cyclic
secondary amines giving amides 8—10 (Figure 1, bottom)
making this method highly competitive with other methods
reported for these direct amidation classes.*”™"* To effect the
still more challenging amidations of benzoic acid with acyclic
secondary amines and anilines to give amides 11 and 12, higher
reaction concentrations, an excess of carboxylic acid (for 12),
and the use of 4 A MS sieves suspended in the reaction
headspace were necessary.'”~>> There is only limited literature
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Figure 1. Direct amidations of phenylacetic acid (top) and benzoic
acid (bottom) as representative aliphatic and aromatic carboxylic acids
with [acid] = 0.2 M, [amine] = 0.2 M. Isolated percentage yields after
workup are shown, where the value in parentheses is the percentage
conversion. The value in square brackets is the percentage background
conversion without added TMOS 1 under the stated conditions. All
reactions were performed in triplicate; the variation in observed
percentage conversions are +1%. 200 mol % TEOS 2. blacid] = 0.5
M, [aniline] = 0.5 M; 250 mol % TMOS. Background conversion
after 16 h. 250 mol % TMOS, N,; [acid] = 2.0 M, [amine] = 2.0 M.
*With 4 A MS suspended in the head space. /2 equiv of BzOH (the
conversion to amide 12 using 1.1 equiv of BZOH was 84%).
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precedent for high yielding reactions of the former and
latter’ amidation reaction types, and to the best of our
knowledge, no quantitative yields have been reported. The
quantitative yield obtained for amide 12 is therefore notable.”®
In all cases the amide products were obtained in pure form
directly after workup.

Mechanistically, we consider that silyl esters™* are the likely
de facto acylating agents in these direct amidation reactions by
formation as per the equilibrium shown in Scheme 1. In accord

Scheme 1. Silyl Esters as Postulated de Facto Intermediates
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with this hypothesis, silyl ester 13%*° was observed by 'H, BC,
and *Si NMR as the only other species as a minor component
when benzoic acid was heated with TMOS in toluene for 1 h
(see Supporting Information).z‘{”27 Furthermore, when aliquots
were taken from a TMOS mediated direct amidation of benzoic
acid with benzylamine (1 M in both components), the
characteristic '"H NMR resonances for silyl ester 13 (ca. 4%,
5 h) could also be observed.

Further exemplification of the method using branched
aliphatic carboxylic acids, and ortho-substituted benzoic acids
as amidations of increased difficulty gave amides 14—18 in
good to quantitative yields (Figure 2). The method was further
utilized to obtain Moclobemide 19 (an antidepressant),
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Figure 2. Direct amidations with TMOS 1 from the corresponding
carboxylic acid (shown in blue postamidation) and amine/aniline
(shown in red postamidation). Reaction conditions: toluene, reflux,
N,, 200 mol % TMOS 1, [acid] = 0.2 M, [amine] = 0.2 M. “ toluene,
reflux, N,, 250 mol % TMOS, N,, [acid] = 4.0 M, [amine] = 2.0 M.
¥ Toluene, reflux, N,, 250 mol % TMOS, N,, [acid] = 1.0 M, [amine]
= 0.5 M. “ Conversion.

nitrobenzenamide 20 (a viable precursor to the antiarrhythmic
agent procainamide),”® and amides 21 and 22 containing basic
heterocyclic rings from their corresponding acids and amines.
These examples, and the amidation of the heteroaromatic
indomethacin to give amide 23, reveals the functional group
tolerance of the method. Free hydroxyl groups are tolerated
either in the acid or amine component as evidenced by
amidation using lithocholic acid or ethanolamine to give amides
24 and 25. In these reactions, the hydroxyl groups presumably
undergo silylation, but the resulting silyl ethers are cleaved in
the workqu procedure.”” We were delighted to observe that a
N-Cbz’>*" protected amino acid underwent direct amidation
providing amide 26 without detectable racemization.’” In all
cases, the amides were obtained pure directly after a suitable
workup.

Having demonstrated that TMOS is an effective reagent for a
range of direct amidations, we sought to exemplify the method
on scale. Preliminary investigations on a 1 mol scale at 2 M
concentration using benzoic acid and benzylamine as a
representative acid—amine combination were unanticipatedly
slow.” Here, we conjectured that on this scale quantities of
methanol may be deleteriously retained in the reaction mixture.
Accordingly, a 1 mol scale reaction of benzoic acid with
pyrrolidine (Scheme 2) with fractional distillation of methanol
gave a 91% conversion to product after 12 h at reflux and, after

DOI: 10.1021/acs.orglett.7b03841
Org. Lett. XXXX, XXX, XXX—XXX


http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b03841/suppl_file/ol7b03841_si_001.pdf
http://dx.doi.org/10.1021/acs.orglett.7b03841

Organic Letters

Scheme 2. 1 mol Scale Amidation To Give Amide 9
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suitable workup, gave pure amide 9 in 90% isolated yield (158
g), with a process mass intensity (PMI) of 43 (see Supporting
Information). A comparison of green chemistry metrics for
amide-forming reactions has recently been reported: the PMI of
this method compares favorably with representative conditions
for those reported therein via acid chloride (PMI: 292) versus
HATU (PMI: 178) versus boric acid catalysis (PMI: 89).**

In conclusion, we have reported the use of TMOS 1 as a
readily available and inexpensive commodity for the high
yielding direct amidation of representative aliphatic and
aromatic carboxylic acids with primary, cyclic, and acyclic
secondary amines and anilines (i.e., increasingly difficult
amidations)” including the first quantitative direct amidation
of an aromatic carboxylic acid with an aniline. The one-pot
protocol, which does not require dried toluene nor necessitates
preactivation of the carboxylic acid, is operationally simple, and
the workup—annihilating any excess reagent and other silicon
species by its conversion to silica gel—provides the pure amide
products directly in excellent to quantitative yield without the
need for chromatographic purification. A range of other
biologically/medicinally relevant and/or challenging direct
amidations are demonstrated. The method is amenable to
scale-up with competitive process mass intensities compared to
other procedures.”
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