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Cs2:5H0:5PW12O40–SiO2 composite combined with (3-
aminopropyl)triethoxysilane exhibited greater activity and
selectivity for hydration of �-pinene at 333K in a triphasic
system (�-pinene/water/solid acid) compared to previously
reported water-tolerant catalysts such as zeolites, polymer-resins
(Amberlyst 15 and Nafion-H), oxides, and liquid acids such as
H3PW12O40 and H2SO4. The selectivity toward alcohols, includ-
ing mono- and dialcohols, was approximately 80% over
Cs2:5H0:5PW12O40–SiO2 composite.

Terpenic alcohols, such as �-terpineol, 1,8-terpin, and their
derivatives, have applications in perfume and pharmaceutical in-
dustries and have drawn attention as a raw material for electronic
and optical materials. Currently, the practical synthesis of ter-
penic alcohols involves hydration of �-pinene using H2SO4 as
a catalyst. However, replacement of H2SO4 with a solid acid
is desirable from an environmental point of view. Although
hydration of �-pinene over solid acids such as H-� zeolite,1

polymeric membrane containing heteropolyacid,2 and supported
heteropolyacid3 have been conducted in a biphasic system,
consisting of a solid acid and homogeneous solution including
�-pinene, water, and cosolvent, the activity and selectivity
toward alcohols were unsatisfactory.

Few solid acids possess acceptable activity for hydrolysis,
hydration, or esterification, in which water participates as either
a reactant or product.4–8 However, an acidic Cs salt of 12-tung-
stophosphoric acid, Cs2:5H0:5PW12O40 (Cs2.5), is highly active

in acid-catalyzed reactions, even in the presence of a large ex-
cess of water,9 while a Cs2.5–SiO2 composite combined with
(3-aminopropyl)triethoxysilane (APS) is an insoluble and sedi-
mentable water–tolerant solid acid.10 Here, we demonstrate the
high activity and selectivity of the Cs2.5–SiO2 composite for
the hydration of �-pinene in a triphasic system (�-pinene/wa-
ter/solid acid), which is a desirable system for easy separation
of the product (oil phase) from an oil–water biphase.11 The
Cs2.5–SiO2 composite is a more efficient catalyst than other
water–tolerant solid acids, including high-silica zeolite (H-
ZSM-5, H-�, and H-mordenite), ion-exchange resins (Amberlyst
15 and Nafion-H), and liquid acids (H3PW12O40 and H2SO4).

Cs2.5–SiO2 composites10 were prepared using SiO2

[Aerosil 50 (A-50), 48m2 g�1; and CARiACT Q-30 (Q-30),
126m2 g�1], APS (Merck), and Cs2.5. The SiO2 (1.3 g) was
added to a toluene solution of APS (85.6mmol; 200 cm3) at
room temperature under N2. After mixing the suspension for
2 h at room temperature, the solid was separated by filtration.
The solid recovered was dispersed in water (26 cm3) acidified
with 6% HCl (6 cm3), then separated, and dried at 373K
(SiO2–APS). To an aqueous suspension of SiO2–APS, a colloi-
dal aqueous solution of Cs2.5, prepared in advance,9 was added
to obtain the Cs2.5–SiO2 composite, with 14wt% of SiO2–APS.

Hydration of �-pinene was performed in a batch
reactor (Pyrex, 15 cm3) at 333K with 0.64mmol of �-pinene,
6 cm3 of water, and 40mg of catalyst. The products were
analyzed by FID-GC equipped with a capillary column (NB-1,
0.25mm � 60m).

Table 1. Catalytic data for hydration of �-pinene over solid and liquid acidsa

Entry Catalyst
Conv. Selectivityb/% Acid amount kc � 102 TOFd

/% I + II + III I II III IV + V /mmol g�1 /h�1 /h�1

Solid acid
1 Cs2.5–(SiO2(A-50)–APS) 86 75 30 41 4 25 0.08f 4.3 8.8
2 Cs2.5–(SiO2(A-50)–APS)

e 62 67 60 2 5 33 0.08f 2.0 4.1
3 Cs2.5–(SiO2(Q-30)–APS) 40 79 45 29 5 21 0.08f 1.0 2.0
4 H-� (Si/Al = 25) 69 50 13 19 18 50 0.72 2.4 0.5
5 H-ZSM-5 (Si/Al = 30) 3 0 0 0 0 100 0.80 0.1 <0:1
6 H-mordenite (Si/Al = 20) 0 — — — — — 0.71 — —
7 SiO2–Al2O3 0 — — — — — 0.48 — —
8 Amberlyst 15 44 51 26 19 6 49 4.70 1.2 <0:1
9 Nafion-H 16 43 18 21 5 57 0.80 0.4 <0:1

Liquid acid
10 H3PW12O40 40 77 39 35 3 23 1.04 1.1 0.2
11 H2SO4 73 75 31 38 6 25 20.1 0.5 <0:1

aReaction conditions: �-pinene 0.64mmol, water 6 cm3, catalyst 40mg, temperature 333K, and reaction time 48 h. bI monocyclic
terpenic monoalcohols, II monocyclic terpenic dialcohols, III bicyclic terpenic monoalcohols, IV monocyclic terpens, and V bicy-
clic terpenes (see Scheme 1). cFirst-order rate constant. dTurnover frequency (h�1) = initial reaction rate (mmol g�1 h�1)/acid
amount (mmol g�1). eReaction was conducted in a mixture of water (3 cm3) and 1,4-dioxiane (3 cm3), instead of water (6 cm3).
fEstimated by temperature programmed desorption of benzonitrile.
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Table 1 summarizes the conversion, selectivity (for 48 h),
first-order rate constant (k), turnover frequency (TOF) for the hy-
dration of �-pinene and acid amount of the catalyst. The prod-
ucts included monocyclic terpenic monoalcohols (I), mainly
�-terpineol, monocyclic terpenic dialcohols (II), mainly 1,8-ter-
pine, bicyclic terpenic monoalcohols (III), monocyclic terpenes
(IV), mainly limonene and terpinolene, and bicyclic terpenes (V)
(see Scheme 1). While Cs2.5 showed high conversion (92%) but
lower sedimentation, heteropoly species leached into the reac-
tion mixture (data not shown). As shown in Table 1, Cs2.5–
(SiO2(A-50)–APS) was highly active (Entry 1), entirely insolu-
ble as confirmed by ICP analysis of the reaction mixture, and
easily underwent sedimentation. Furthermore, the alcohols
(I + II + III) were selectively formed (75% selectivity). The
activity of Cs2.5–(SiO2(Q-30)–APS) was lower than that
of Cs2.5–(SiO2(A-50)–APS), but selectivity toward alcohols
(I + II + III) reached about 80% (Entry 3). Note that reaction
in the biphasic system consisting of Cs2.5–(SiO2(A-50)–APS)
and a homogeneous solution of �-pinene, water, and 1,4-dioxane
yielded predominantly monocyclic terpenic monoalcohols (I)
(Entry 2), a conversion slightly lower than that in the triphasic
system.

In zeolites and amorphous SiO2–Al2O3 (Entries 4–7), only
H-� zeolite (Si/Al = 25) showed decent activity, but selectivity
toward alcohols was moderate (50%). Nb2O5, Al2O3, and
SO4

2�/ZrO2 were essentially inactive (data not shown). While
previous reports demonstrate that ion-exchange resins such as
Amberlyst 15 and Nafion-H are much effective for water-
concerning reactions,12 it should be emphasized that Cs2.5–
(SiO2(A-50)–APS) possessed greater activity. Liquid acids,
H3PW12O40, and H2SO4 (Entries 10 and 11), were less active
than Cs2.5–(SiO2(A-50)–APS), while both showed selectivity
toward alcohols comparable to Cs2.5–(SiO2(A-50)–APS).

As summarized in Table 1, specific activity per acidic site
(TOF), which was calculated by dividing the initial reaction rate
by the acid amount, for Cs2.5–(SiO2(A-50)–APS) was dramati-
cally larger than that for other solid and liquid acids. This sug-
gests that the protons on Cs2.5–(SiO2(A-50)–APS) probably
are shielded from poisoning by water owing to the hydrophobic
nature of the surface.9 As Table 1 demonstrates, the Cs2.5–SiO2

composites were much selective toward alcohols than H-� as
well as Amberlyst 15 and Nafion-H. It is known that the acid
strength of Cs2.5 is greater than those of H-�, Amberlyst 15,
and Nafion-H, as evaluated by NH3–TPD

13,14 and titration.13,15

Thus, the cation intermediate formed from �-pinene on the
Cs2.5–SiO2 composite is much exposed to nucleophilic attack
by water than that on H-� as well as ion-exchange resins, result-
ing in high selectivity toward alcohols during the hydration of

�-pinene.
The time course of the conversion and selectivity in the

hydration of �-pinene over Cs2.5–(SiO2(A-50)–APS) showed
that the selectivity toward alcohols was about 75%, which was
independent of the conversion. The changes in selectivity toward
monocyclic terpenic monoalcohols (I) and that toward dialco-
hols (II) indicated that II were formed by consecutive reaction
through I, as shown in Scheme 1. In fact, hydration of �-terpi-
neol over Cs2.5–(SiO2(A-50)–APS) under the same reaction
conditions as that of �-pinene showed high selectivity to dialco-
hols (II) (Table 2) and was comparable in activity to that of
�-pinene. Thus, the selective formation of alcohols in the hydra-
tion of �-pinene is due to high selectivity for the both steps in the
consequent reaction. In contrast, Cs2.5–(SiO2(A-50)–APS) was
less active for hydration of limonene. In the present reaction
system, the solubilities of products were greatly different; the
solubility of limonene (IV, 0.15mmol dm�3) is only eightieth
part of that of �-terpineol (I, 12.3mmol dm�3).16 The low
solubility of limonene probably accounts for the low activity
in the hydration of this over Cs2.5–(SiO2(A-50)–APS).
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Scheme 1. Reaction pathway for the hydration of �-pinene.

Table 2. Hydration of �-terpineol and limonene over Cs2.5–
(SiO2(A-50)–APS) compositea

Substrate
Composition

I II III IV V

�-terpineol (I) 39 45 0 16 0
limonene (IV) 7 8 0 85 0
aReaction conditions: substrate 0.64mmol, water 6 cm3, cat-
alyst 40mg, temperature 333K, and reaction time 48 h.
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